Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

There is no abstract available.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099282270231106112140
2023-12-13
2025-09-28
Loading full text...

Full text loading...

/deliver/fulltext/cad/21/3/CCADD-21-3-02.html?itemId=/content/journals/cad/10.2174/0115734099282270231106112140&mimeType=html&fmt=ahah

References

  1. VamathevanJ. ClarkD. CzodrowskiP. DunhamI. FerranE. LeeG. LiB. MadabhushiA. ShahP. SpitzerM. ZhaoS. Applications of machine learning in drug discovery and development.Nat. Rev. Drug Discov.201918646347710.1038/s41573‑019‑0024‑5 30976107
    [Google Scholar]
  2. ChenH. EngkvistO. WangY. OlivecronaM. BlaschkeT. The rise of deep learning in drug discovery.Drug Discov. Today20182361241125010.1016/j.drudis.2018.01.039 29366762
    [Google Scholar]
  3. GawehnE. HissJ.A. SchneiderG. Deep learning in drug discovery.Mol. Inform.201635131410.1002/minf.201501008 27491648
    [Google Scholar]
  4. CummingsM.D. SekharanS. Structure-based macrocycle design in small-molecule drug discovery and simple metrics To identify opportunities for macrocyclization of small-molecule ligands.J. Med. Chem.201962156843685310.1021/acs.jmedchem.8b01985 30860377
    [Google Scholar]
  5. SchneiderG. Automating drug discovery.Nat. Rev. Drug Discov.20181729711310.1038/nrd.2017.232 29242609
    [Google Scholar]
  6. GimenoA. Ojeda-MontesM. Tomás-HernándezS. Cereto-MassaguéA. Beltrán-DebónR. MuleroM. PujadasG. Garcia-VallvéS. The light and dark sides of virtual screening: What is there to know?Int. J. Mol. Sci.2019206137510.3390/ijms20061375 30893780
    [Google Scholar]
  7. WillemsH. De CescoS. SvenssonF. Computational chemistry on a budget: Supporting drug discovery with limited resources.J. Med. Chem.20206318101581016910.1021/acs.jmedchem.9b02126 32298123
    [Google Scholar]
  8. GawriljukV.O. ZinP.P.K. PuhlA.C. ZornK.M. FoilD.H. LaneT.R. HurstB. TavellaT.A. CostaF.T.M. LakshmananeP. BernatchezJ. GodoyA.S. OlivaG. Siqueira-NetoJ.L. MadridP.B. EkinsS. Machine learning models identify inhibitors of SARS-CoV-2.J. Chem. Inf. Model.20216194224423510.1021/acs.jcim.1c00683 34387990
    [Google Scholar]
  9. WahlJ. SanderT. Fully automated creation of virtual chemical fragment spaces using the open-source library OpenChemLib.J. Chem. Inf. Model.20216292202221110.1021/acs.jcim.1c01041 35073086
    [Google Scholar]
  10. SadybekovA.V. KatritchV. Computational approaches streamlining drug discovery.Nature2023616795867368510.1038/s41586‑023‑05905‑z 37100941
    [Google Scholar]
  11. MarkovI.L. Limits on fundamental limits to computation.Nature2014512751314715410.1038/nature13570 25119233
    [Google Scholar]
  12. DahlinJ.L. IngleseJ. WaltersM.A. Mitigating risk in academic preclinical drug discovery.Nat. Rev. Drug Discov.201514427929410.1038/nrd4578 25829283
    [Google Scholar]
  13. SliwoskiG. KothiwaleS. MeilerJ. LoweE.W.Jr Computational methods in drug discovery.Pharmacol. Rev.201466133439510.1124/pr.112.007336 24381236
    [Google Scholar]
  14. JiangH. WangJ. CongW. HuangY. RamezaniM. SarmaA. DokholyanN.V. MahdaviM. KandemirM.T. Predicting protein-ligand docking structure with graph neural network.J. Chem. Inf. Model.202262122923293210.1021/acs.jcim.2c00127 35699430
    [Google Scholar]
  15. SegallM. Can we really do computer-aided drug design?J. Comput. Aided Mol. Des.201226112112410.1007/s10822‑011‑9512‑3 22160553
    [Google Scholar]
/content/journals/cad/10.2174/0115734099282270231106112140
Loading

  • Article Type:
    Editorial
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test