Skip to content
2000
Volume 21, Issue 5
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Objectives

This study aimed to investigate the medicinal properties of SZS before and after processing and provide novel insights into its potential for treating insomnia.

Methods

This study employed the network pharmacology platform to gather information on the chemical composition of SZS, human targets, genes, molecular networks, and pathways associated with insomnia treatment using SZS. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was utilized to analyze the chemical profiles of crude SZS, parched SZS, and their combined decoction. The effects of different SZS products on p-chlorophenylalanine-induced insomnia mice were evaluated through pentobarbital-induced sleep tests, behavioral analyses, examination of brain tissue-related mRNA levels, and measurement of plasma neurotransmitters, aiming to explore the sedative and hypnotic effects of various SZS products.

Results

SZS was found to contain a total of 47 genes, including 22 target genes associated with insomnia. These genes may contribute to the sedative and hypnotic effects through 9 related pathways and 69 biological processes. The active components of SZS remained consistent before and after processing. Jujuboside B was found in higher concentrations in crude SZS, while jujuboside A was more abundant in parched SZS. Additionally, SZS exhibited reduced locomotor activity in mice, enhanced the hypnotic effect of pentobarbital sodium, and decreased the levels of acetylcholinesterase, α-1B adrenergic receptor, and solute carrier family 6 member 4 mRNA in the cortex and hippocampus of mice. The levels of acetylcholine, choline acetyltransferase, 5-hydroxyindoleacetic acid, and glutamate in plasma increased, with the hypnotic effect being proportional to the dosage of the drug.

Conclusion

SZS demonstrates sedative and hypnotic effects, potentially mediated by its influence on neurotransmitter levels and related receptors within the central nervous system. There was a slight variation in regulatory capabilities before and after SZS processing, with the combined decoction of crude and parched SZS exhibiting a more pronounced effect, particularly at higher dosages.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099281920240730051328
2025-01-22
2025-10-17
Loading full text...

Full text loading...

References

  1. RothT. KrystalA.D. LiebermanJ.A.III Long-term issues in the treatment of sleep disorders.CNS Spectr.2007127Suppl. 1011417603408
    [Google Scholar]
  2. BhaskarS. HemavathyD. PrasadS. Prevalence of chronic insomnia in adult patients and its correlation with medical comorbidities.J. Family Med. Prim. Care20165478078410.4103/2249‑4863.20115328348990
    [Google Scholar]
  3. SivertsenB. LallukkaT. SaloP. PallesenS. HysingM. KrokstadS. ØverlandS. Insomnia as a risk factor for ill health: Results from the large population-based prospective HUNT Study in N orway.J. Sleep Res.201423212413210.1111/jsr.1210224635564
    [Google Scholar]
  4. AsnisG. ThomasM. HendersonM. Pharmacotherapy treatment options for insomnia: A primer for clinicians.Int. J. Mol. Sci.20151715010.3390/ijms1701005026729104
    [Google Scholar]
  5. WiltT.J. MacDonaldR. BrasureM. OlsonC.M. CarlyleM. FuchsE. KhawajaI.S. DiemS. KoffelE. OuelletteJ. ButlerM. KaneR.L. Pharmacologic treatment of insomnia disorder: An evidence report for a clinical practice guideline by the american college of physicians.Ann. Intern. Med.2016165210311210.7326/M15‑178127136278
    [Google Scholar]
  6. FengY. WuZ. ZhouX. ZhouZ. FanW. Knowledge discovery in traditional Chinese medicine: State of the art and perspectives.Artif. Intell. Med.200638321923610.1016/j.artmed.2006.07.00516930966
    [Google Scholar]
  7. YuF. TakahashiT. MoriyaJ. KawauraK. YamakawaJ. KusakaK. ItohT. MorimotoS. YamaguchiN. KandaT. Traditional Chinese medicine and Kampo: A review from the distant past for the future.J. Int. Med. Res.200634323123910.1177/14732300060340030116866016
    [Google Scholar]
  8. CaoJ.X. ZhangQ.Y. CuiS.Y. CuiX.Y. ZhangJ. ZhangY.H. BaiY.J. ZhaoY.Y. Hypnotic effect of jujubosides from Semen Ziziphi Spinosae.J. Ethnopharmacol.2010130116316610.1016/j.jep.2010.03.02320347951
    [Google Scholar]
  9. YanY. LiQ. DuC.H. JiaJ.P. FengH.X. QinX.M. [Investigation of the potentially effective components of Semen Ziziphi Spinosae based on “in vitro to in vivo” translation approach].Yao Xue Xue Bao201752228329029979520
    [Google Scholar]
  10. LiL.B. KimY.W. WangY.H. BaiL. ZhuX.D. ZhaoZ.L. LeeC.W. JiaoY. WuT. CaiZ.Z. KimS.C. AnW.G. YangC.H. CuiG.C. ZhaoR.J. Methanol extract of semen Ziziphi Spinosae attenuates ethanol withdrawal anxiety by improving neuropeptide signaling in the central amygdala.BMC Complement. Altern. Med.201919114710.1186/s12906‑019‑2546‑031234859
    [Google Scholar]
  11. LiuZ. ZhaoX. LiuB. LiuA. LiH. MaoX. WuB. BiK. JiaY. Jujuboside A, a neuroprotective agent from semen Ziziphi Spinosae ameliorates behavioral disorders of the dementia mouse model induced by Aβ1–42.Eur. J. Pharmacol.201473820621310.1016/j.ejphar.2014.05.04124886882
    [Google Scholar]
  12. LiY.J. LiangX.M. XiaoH.B. WangL.X. BiK.S. Comparative studies on the sedative and hypnotic effects and chemical constituents of the Semen Ziziphi Spinosae (SZS) and the parched Semen Ziziphi Spinosae (pSZS).J. Shenyang Pharm. Univ.2003201353710.14066/j.cnki.cn21‑1349/r.2003.01.011
    [Google Scholar]
  13. GengX. LiT.L. Content changes of main chemical constituents in raw semen zizyphi spinosae and fried semen zizyphi spinosae before and after compatibility.Liaoning Zhongyiyao Daxue Xuebao20171916467
    [Google Scholar]
  14. GuoQ. NiuW. LiX. GuoH. ZhangN. WangX. WuL. Study on hypoglycemic effect of the drug pair of astragalus radix and dioscoreae rhizoma in T2DM rats by network pharmacology and metabonomics.Molecules20192422405010.3390/molecules2422405031717456
    [Google Scholar]
  15. LiuW. ZhangX. MaoB. JiangH. Systems pharmacology-based study of Tanreqing injection in airway mucus hypersecretion.J. Ethnopharmacol.201911242510.1016/j.jep.2019.11242531765763
    [Google Scholar]
  16. WangN. YangB. ZhangJ. ZhengY. WangS. ZhangX. SituH. LinY. WangZ. Metabolite profiling of traditional Chinese medicine XIAOPI formula: An integrated strategy based on UPLC-Q-Orbitrap MS combined with network pharmacology analysis.Biomed. Pharmacother.202012110956910.1016/j.biopha.2019.10956931739163
    [Google Scholar]
  17. MargineanuD.G. Neuropharmacology beyond reductionism – A likely prospect.Biosystems20161411910.1016/j.biosystems.2015.11.01026723231
    [Google Scholar]
  18. BianZ.H. ZhangW.M. TangJ.Y. FeiQ.Q. HuM.M. ChenX.W. SuL.L. FeiC.H. JiD. MaoC.Q. TongH.J. LuT.L. YuanX.H. Effective substance and mechanism of Ziziphi Spinosae Semen extract in treatment of insomnia based on serum metabolomics and network pharmacology.Zhongguo Zhongyao Zazhi202247118820210.19540/j.cnki.cjcmm.20210922.70235178926
    [Google Scholar]
  19. LiuJ. HuA. ZanJ. WangP. YouQ. TanA. Network pharmacology deciphering mechanisms of volatiles of Wendan granule for the treatment of alzheimer’s disease.Evid. Based Complement. Alternat. Med.2019201911210.1155/2019/782676930891080
    [Google Scholar]
  20. WangW. LiuT. YangL. MaY. DouF. ShiL. WenA. DingY. Study on the multi-targets mechanism of triphala on cardio-cerebral vascular diseases based on network pharmacology.Biomed. Pharmacother.201911610899410.1016/j.biopha.2019.10899431112872
    [Google Scholar]
  21. LiJ. MaX. LiuC. LiH. ZhuangJ. GaoC. ZhouC. LiuL. WangK. SunC. Exploring the mechanism of danshen against myelofibrosis by network pharmacology and molecular docking.Evid. Based Complement. Alternat. Med.2018201811110.1155/2018/836329530622613
    [Google Scholar]
  22. HuangF. LiJ. ShiH. WangT. MuhtarW. DuM. ZhangB. WuH. YangL. HuZ. WuX. Simultaneous quantification of seven hippocampal neurotransmitters in depression mice by LC–MS/MS.J. Neurosci. Methods201422981410.1016/j.jneumeth.2014.04.00424735530
    [Google Scholar]
  23. WangJ. Study on the sedative and hypnotic components in raw and fried Semen Ziziphi Spinosae.Zhongchengyao19891111819
    [Google Scholar]
  24. WangD.N. A preliminary study on the fingerprint of the Semen Ziziphi Spinosae (SZS) and the parched Semen Ziziphi Spinosae (pSZS).Haerbin, ChinaHeilongjiang University of Chinese Medicine2004
    [Google Scholar]
  25. KonN. YoshikawaT. HonmaS. YamagataY. YoshitaneH. ShimizuK. SugiyamaY. HaraC. KameshitaI. HonmaK. FukadaY. CaMKII is essential for the cellular clock and coupling between morning and evening behavioral rhythms.Genes Dev.201428101101111010.1101/gad.237511.11424831701
    [Google Scholar]
  26. ShiR. HanY. YanY. QiaoH.Y. HeJ. LianW.W. XiaC.Y. LiT.L. ZhangW.K. XuJ.K. Loganin exerts sedative and hypnotic effects via modulation of the serotonergic system and GABAergic neurons.Front. Pharmacol.20191040910.3389/fphar.2019.0040931068813
    [Google Scholar]
  27. NakhlaA.M. Stimulation of cerebral acetylcholinesterase activity by calcitonin: A possible mediation by 5-hydroxytryptamine.Horm. Res.198012316116410.1159/0001791176445320
    [Google Scholar]
  28. MehtaH ThomasB MohanakumarKP Effects of p-chlorophenylalanine on striatal acetylcholinesterase activity and on biogenic amine levels in nuclei raphe and caudate-putamen during physostigmine-induced tremor in rats.Neurosci Lett20012991-210510810.1016/S0304‑3940(01)01507‑5
    [Google Scholar]
  29. ZhangX.S. BaiL.M. SunJ.N. Effects of ziziphus jujube decoction on the learning and memory in sleep deprivation model rats.China Pharmacy2015267915917
    [Google Scholar]
  30. ChenY.H. LanZ.P. FuZ.Y. LiB.L. ZhangZ.X. Effect of compound gardenia oil and jujube seed oil on learning and memory in ovariectomized rats.Chung Kuo Ying Yung Sheng Li Hsueh Tsa Chih201329540640910.13459/j.cnki.cjap.2013.05.01224386813
    [Google Scholar]
  31. ZhuX.C. LiuX. WangX.L. ZhuT.T. ZhuH. CaiH. Based on the theory of “increased efficacy after frying”, the historical evolution of processing methods of Zizyphus spinosus and its material basis of sedation and hypnosis.Zhong Yao Cai20174081991199510.13863/j.issn1001‑4454.2017.08.057
    [Google Scholar]
  32. XiaJ. YouQ.Y. HuangP.P. DingL. ZhaoB.B. GaoC. Effects of Semen Ziziphi Spinosae on behavior and neurotransmitter receptor in zebrafish sleep deprivation model.Lishizhen Medicine and Materia Medica Research201930920616064
    [Google Scholar]
  33. YouQ.Y. WangP. ZhangC.P. WuL.L. Research on sedative and hypnotic effect of Long Gu and Suan Zao Ren.Liaoning Zhongyiyao Daxue Xuebao200795282910.13194/j.jlunivtcm.2007.05.30.youqy.100
    [Google Scholar]
  34. MonteiroS.C. MattéC. DelwingD. WyseA.T.S. Ovariectomy increases Na+, K+-ATPase, acetylcholinesterase and catalase in rat hippocampus.Mol. Cell. Endocrinol.20052361-291610.1016/j.mce.2005.03.00615869839
    [Google Scholar]
  35. CrouzierD. BaubichonD. BourbonF. TestylierG. Acetylcholine release, EEG spectral analysis, sleep staging and body temperature studies: A multiparametric approach on freely moving rats.J. Neurosci. Methods2006151215916710.1016/j.jneumeth.2005.07.00316139894
    [Google Scholar]
  36. TejadaS. RialR.V. CoenenA.M.L. GamundiA. EstebanS. Effects of pilocarpine on the cortical and hippocampal theta rhythm in different vigilance states in rats.Eur. J. Neurosci.200726119920610.1111/j.1460‑9568.2007.05647.x17596191
    [Google Scholar]
  37. BerridgeC.W. WaterhouseB.D. The locus coeruleus–noradrenergic system: Modulation of behavioral state and state-dependent cognitive processes.Brain Res. Brain Res. Rev.2003421338410.1016/S0165‑0173(03)00143‑712668290
    [Google Scholar]
  38. NalepaI. KreinerG. BielawskiA. Rafa-ZabłockaK. RomanA. α1-Adrenergic receptor subtypes in the central nervous system: insights from genetically engineered mouse models.Pharmacol. Rep.20136561489149710.1016/S1734‑1140(13)71509‑324552996
    [Google Scholar]
  39. Pace-SchottE.F. HobsonJ.A. The neurobiology of sleep: Genetics, cellular physiology and subcortical networks.Nat. Rev. Neurosci.20023859160510.1038/nrn89512154361
    [Google Scholar]
  40. García-SáinzJ.A. Romero-ÁvilaM.T. Alcántara-HernándezR. Mechanisms involved in α1B-adrenoceptor desensitization.IUBMB Life2011631081181510.1002/iub.51921815242
    [Google Scholar]
  41. MaximinoC. PutyB. BenzecryR. AraújoJ. LimaM.G. de Jesus Oliveira BatistaE. Renata de Matos OliveiraK. Crespo-LopezM.E. HerculanoA.M. Role of serotonin in zebrafish (Danio rerio) anxiety: Relationship with serotonin levels and effect of buspirone, WAY 100635, SB 224289, fluoxetine and para-chlorophenylalanine (pCPA) in two behavioral models.Neuropharmacology201371839710.1016/j.neuropharm.2013.03.00623541719
    [Google Scholar]
  42. van DalfsenJ.H. MarkusC.R. The serotonin transporter gene-linked polymorphic region (5-HTTLPR) and the sleep-promoting effects of tryptophan: A randomized placebo-controlled crossover study.J. Psychopharmacol.201933894895410.1177/026988111985597831237183
    [Google Scholar]
  43. RamsayR.R. Molecular aspects of monoamine oxidase B.Prog. Neuropsychopharmacol. Biol. Psychiatry201669818910.1016/j.pnpbp.2016.02.00526891670
    [Google Scholar]
  44. HagaT. Molecular properties of muscarinic acetylcholine receptors.Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.201389622625610.2183/pjab.89.22623759942
    [Google Scholar]
  45. Herrera-SolisA. Herrera-MoralesW. Nunez-JaramilloL. Arias-CarrionO. Dopaminergic modulation of sleep-wake states.CNS Neurol. Disord. Drug Targets201716438038610.2174/187152731666617032014542928322171
    [Google Scholar]
  46. Rincón-PérezI. Sánchez-CarmonaA.J. AlbertJ. HinojosaJ.A. The association of monoamine-related gene polymorphisms with behavioural correlates of response inhibition: A meta-analytic review.Neurosci. Biobehav. Rev.201884496210.1016/j.neubiorev.2017.11.00929155230
    [Google Scholar]
  47. SmithR.L. KennedyC.H. Increases in avoidance responding produced by REM sleep deprivation or serotonin depletion are reversed by administration of 5-hydroxytryptophan.Behav. Brain Res.20031401-2818610.1016/S0166‑4328(02)00278‑412644281
    [Google Scholar]
  48. MasurJ. MärtzR.M. CarliniE.A. Effects of acute and chronic administration of cannabis sativa and (-) delta9-trans-tetrahydrocannabinol on the behavior of rats in an open-field arena.Psychopharmacology197119438839710.1007/BF004043835565250
    [Google Scholar]
/content/journals/cad/10.2174/0115734099281920240730051328
Loading
/content/journals/cad/10.2174/0115734099281920240730051328
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): hypnosis; insomnia; network pharmacology; processing; sedation; Semen Ziziphi Spinosae
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test