Skip to content
2000
Volume 21, Issue 3
  • ISSN: 1573-4099
  • E-ISSN: 1875-6697

Abstract

Background

The development of polymeric-based drug delivery has seen faster growth in the past two decades. In polymers, copolymers are utilized as drug carriers to decrease the side effects and dosage-related toxicity.

Objectives

The primary objective of the study is to utilize computational resources to design drug molecules and perform physicochemical property analysis. In our study, we designed new copolymers based on N-(2-Hydroxypropyl) methacrylamide as backbone along with polyethylene glycol and lauryl methacrylate.

Methods

Different functional groups were selected for attaching to the side chain of the copolymers through a random trial and error approach. In order to predict the pharmacokinetic properties (absorption, distribution, metabolism, excretion, and toxicity), the designed copolymer molecules were evaluated utilizing Swiss ADME and pkCSM pharmacokinetics servers. Molecular interaction between the designed copolymer molecules and human serum albumin was performed using AutoDock Vina and PatchDock server.

Results

The designed molecules are shown to be soluble in water and have high gastrointestinal absorption. Only one molecule is predicted to pass through the blood-brain barrier. Two designed molecules have been shown to have carcinogenic properties. Lethal dose 50, cytochrome P450, and permeability glycoprotein substrate formation were also analyzed for toxicity and metabolism.

Conclusion

Our study will provide insight for designing new drug compounds or carriers

and analyzing their physicochemical properties to further optimize compounds for clinical studies.

Loading

Article metrics loading...

/content/journals/cad/10.2174/0115734099278986231228070823
2024-01-25
2025-11-06
Loading full text...

Full text loading...

References

  1. NagappanS. ParkJ.J. ParkS.S. LeeW.K. HaC.S. Bio-inspired, multi-purpose and instant superhydrophobic–superoleophilic lotus leaf powder hybrid micro–nanocomposites for selective oil spill capture.J. Mater. Chem. A Mater. Energy Sustain.20131236761676910.1039/c3ta00001j
    [Google Scholar]
  2. StuartM.A.C. HuckW.T.S. GenzerJ. MüllerM. OberC. StammM. SukhorukovG.B. SzleiferI. TsukrukV.V. UrbanM. WinnikF. ZauscherS. LuzinovI. MinkoS. Emerging applications of stimuli-responsive polymer materials.Nat. Mater.20109210111310.1038/nmat2614 20094081
    [Google Scholar]
  3. ChenJ.K. ChangC.J. Fabrications and applications of stimulus-responsive polymer films and patterns on surfaces: A review.Materials20147280587510.3390/ma7020805 28788489
    [Google Scholar]
  4. ManoJ.F. Stimuli‐responsive polymeric systems for biomedical applications.Adv. Eng. Mater.200810651552710.1002/adem.200700355
    [Google Scholar]
  5. UhlmannP. IonovL. HoubenovN. NitschkeM. GrundkeK. MotornovM. MinkoS. StammM. Surface functionalization by smart coatings: Stimuli-responsive binary polymer brushes.Prog. Org. Coat.200655216817410.1016/j.porgcoat.2005.09.014
    [Google Scholar]
  6. AndersonJ.M. KimS.W. Advances in drug delivery systems, book review.J. Pharm. Sci.198978608609
    [Google Scholar]
  7. LangerR. PeppasN.A. Advances in biomaterials, drug delivery, and bionanotechnology.AIChE J.200349122990300610.1002/aic.690491202
    [Google Scholar]
  8. HellerA. Integrated medical feedback systems for drug delivery.AIChE J.20055141054106610.1002/aic.10489
    [Google Scholar]
  9. MartinhoN. DamgéC. ReisC.P. Recent advances in drug delivery systems.J. Biomater. Nanobiotechnol.20112551052610.4236/jbnb.2011.225062
    [Google Scholar]
  10. ChytilP. KostkaL. EtrychT. HPMA copolymer-based nanomedicines in controlled drug delivery.J. Pers. Med.202111211510.3390/jpm11020115 33578756
    [Google Scholar]
  11. HytilP. KostkaL. EtrychT. Structural design and synthesis of polymer prodrugs.Polymers for Biomedicine: Synthesis, Characterization, and Applications. ScholzC. John Wiley & Sons2017624
    [Google Scholar]
  12. GhezziM. PescinaS. PadulaC. SantiP. Del FaveroE. CantùL. NicoliS. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions.J. Control. Release202133231233610.1016/j.jconrel.2021.02.031 33652113
    [Google Scholar]
  13. ShiL. ZhangJ. ZhaoM. TangS. ChengX. ZhangW. LiW. LiuX. PengH. WangQ. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery.Nanoscale20211324107481076410.1039/D1NR02065J 34132312
    [Google Scholar]
  14. AllmerothM. ModereggerD. GündelD. KoynovK. BuchholzH.G. MohrK. RöschF. ZentelR. ThewsO. HPMA-LMA copolymer drug carriers in oncology: An in vivo PET study to assess the tumor line-specific polymer uptake and body distribution.Biomacromolecules20131493091310110.1021/bm400709z 23962188
    [Google Scholar]
  15. PetrosR.A. DeSimoneJ.M. Strategies in the design of nanoparticles for therapeutic applications.Nat. Rev. Drug Discov.20109861562710.1038/nrd2591 20616808
    [Google Scholar]
  16. StormG. BelliotS.O. DaemenT. LasicD.D. Surface modification of nanoparticles to oppose uptake by the mononuclear phagocyte system.Adv. Drug Deliv. Rev.1995171314810.1016/0169‑409X(95)00039‑A
    [Google Scholar]
  17. OwensD.III PeppasN. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles.Int. J. Pharm.200630719310210.1016/j.ijpharm.2005.10.010 16303268
    [Google Scholar]
  18. DavisS.S. IllumL. Drug delivery systems for challenging molecules.Int. J. Pharm.199817618
    [Google Scholar]
  19. TekadeR.K. MaheshwariR. TekadeM. Biopolymer-Based Nanocomposites for Transdermal Drug Delivery. Biopolymer-Based Composites.Woodhead Publishing2017
    [Google Scholar]
  20. MaheshwariR. TekadeM. GondaliyaP. KaliaK. D’EmanueleA. TekadeR.K. Recent advances in exosome-based nanovehicles as RNA interference therapeutic carriers.Nanomedicine201712212653267510.2217/nnm‑2017‑0210 28960165
    [Google Scholar]
  21. MovassaghianS. MerkelO.M. TorchilinV.P. Applications of polymer micelles for imaging and drug delivery.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.20157569170710.1002/wnan.1332 25683687
    [Google Scholar]
  22. RavalN. KalyaneD. MaheshwariR. TekadeR.K. Copolymers and block copolymers in drug delivery and therapy.Basic Fundamentals of Drug Delivery. TekadeR.K. 201917320110.1016/B978‑0‑12‑817909‑3.00005‑4
    [Google Scholar]
  23. AlfurhoodJ.A. SunH. KabbC.P. TuckerB.S. MatthewsJ.H. LueschH. SumerlinB.S. Poly(N-(2-hydroxypropyl) methacrylamide)–valproic acid conjugates as block copolymer nanocarriers.Polym. Chem.20178344983498710.1039/C7PY00196G 28959359
    [Google Scholar]
  24. AderibigbeB. Polymeric prodrugs containing metal-based anticancer drugs.J. Inorg. Organomet. Polym. Mater.201525333935310.1007/s10904‑015‑0220‑7
    [Google Scholar]
  25. LangerR. PeppasN. Present and future applications of biomaterials in controlled drug delivery systems.Biomaterials19812420121410.1016/0142‑9612(81)90059‑4 7034798
    [Google Scholar]
  26. VermaR.K. MishraB. GargS. Osmotically controlled oral drug delivery.Drug Dev. Ind. Pharm.200026769570810.1081/DDC‑100101287 10872087
    [Google Scholar]
  27. HoffmanA.S. The origins and evolution of “controlled” drug delivery systems.J. Control. Release2008132315316310.1016/j.jconrel.2008.08.012 18817820
    [Google Scholar]
  28. CuiJ. YanY. SuchG.K. LiangK. OchsC.J. PostmaA. CarusoF. Immobilization and intracellular delivery of an anticancer drug using mussel-inspired polydopamine capsules.Biomacromolecules20121382225222810.1021/bm300835r 22792863
    [Google Scholar]
  29. TiminA.S. GouldD.J. SukhorukovG.B. Multi-layer microcapsules: Fresh insights and new applications.Expert Opin. Drug Deliv.201714558358710.1080/17425247.2017.1285279 28121205
    [Google Scholar]
  30. AaronA. MeganR. VeronikaK. JunC. JenniferS. MarkB. JasonW. YupingB. EugeniaK. Ultrasound-triggered delivery of anticancer therapeutics from MRI-visible multilayer microcapsules.Adv. Ther.20181800051116
    [Google Scholar]
  31. AmgothC. DharmapuriG. Synthesis and characterization of polymeric nanoparticles and capsules as payload for anticancer drugs and nanomedicines.Mater. Today Proc.20163103833383710.1016/j.matpr.2016.11.036
    [Google Scholar]
  32. De KokerS. HoogenboomR. De GeestB.G. Polymeric multilayer capsules for drug delivery.Chem. Soc. Rev.20124172867288410.1039/c2cs15296g 22282265
    [Google Scholar]
  33. CalzoniE. CesarettiA. PolchiA. Di MicheleA. TanciniB. EmilianiC. Biocompatible polymer nanoparticles for drug delivery applications in cancer and neurodegenerative disorder therapies.J. Funct. Biomater.2019101410.3390/jfb10010004 30626094
    [Google Scholar]
  34. ChengG. ZhangX. ChenY. LeeR.J. WangJ. YaoJ. ZhangY. ZhangC. WangK. YuB. Anticancer activity of polymeric nanoparticles containing linoleic acid-SN38 (LA-SN38) conjugate in a murine model of colorectal cancer.Colloids Surf. B Biointerfaces201918182282910.1016/j.colsurfb.2019.06.020 31247407
    [Google Scholar]
  35. HathoutR.M. MetwallyA.A. El-AhmadyS.H. MetwallyE.S. GhonimN.A. BayoumyS.A. ErfanT. AshrafR. FadelM. El-KholyA.I. HardyJ.G. Dual stimuli-responsive polypyrrole nanoparticles for anticancer therapy.J. Drug Deliv. Sci. Technol.20184717618010.1016/j.jddst.2018.07.002
    [Google Scholar]
  36. PanX. ChenJ. YangM. WuJ. HeG. YinY. HeM. XuW. XuP. CaiW. ZhangF. Enzyme/pH dual-responsive polymer prodrug nanoparticles based on 10-hydroxycamptothecin-carboxymethylchitosan for enhanced drug stability and anticancer efficacy.Eur. Polym. J.201911737238110.1016/j.eurpolymj.2019.04.050
    [Google Scholar]
  37. XuL. ZhaoM. GaoW. YangY. ZhangJ. PuY. HeB. Polymeric nanoparticles responsive to intracellular ROS for anticancer drug delivery.Colloids Surf. B Biointerfaces201918125226010.1016/j.colsurfb.2019.05.064 31153020
    [Google Scholar]
  38. BaksiR. SinghD.P. BorseS.P. RanaR. SharmaV. NivsarkarM. In vitro and in vivo anticancer efficacy potential of Quercetin loaded polymeric nanoparticles.Biomed. Pharmacother.20181061513152610.1016/j.biopha.2018.07.106 30119227
    [Google Scholar]
  39. Palmerston MendesL. PanJ. TorchilinV. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy.Molecules2017229140110.3390/molecules22091401 28832535
    [Google Scholar]
  40. KesharwaniP. ChoudhuryH. MeherJ.G. PandeyM. GorainB. Dendrimer-entrapped gold nanoparticles as promising nanocarriers for anticancer therapeutics and imaging.Prog. Mater. Sci.201910348450810.1016/j.pmatsci.2019.03.003
    [Google Scholar]
  41. SalujaV. MankooA. SaraogiG.K. TambuwalaM.M. MishraV. Smart dendrimers: Synergizing the targeting of anticancer bioactives.J. Drug Deliv. Sci. Technol.201952152610.1016/j.jddst.2019.04.014
    [Google Scholar]
  42. DuX. YinS. WangY. GuX. WangG. LiJ. Hyaluronic acid-functionalized half-generation of sectorial dendrimers for anticancer drug delivery and enhanced biocompatibility.Carbohydr. Polym.201820251352210.1016/j.carbpol.2018.09.015 30287030
    [Google Scholar]
  43. LyuZ. DingL. HuangA.Y.T. KaoC.L. PengL. Poly(amidoamine) dendrimers: Covalent and supramolecular synthesis.Mater. Today Chem.201913344810.1016/j.mtchem.2019.04.004
    [Google Scholar]
  44. FarmanzadehD. GhaderiM. A computational study of PAMAM dendrimer interaction with trans isomer of picoplatin anticancer drug.J. Mol. Graph. Model.2018801610.1016/j.jmgm.2017.12.010 29288951
    [Google Scholar]
  45. LuoY. YinX. YinX. ChenA. ZhaoL. ZhangG. LiaoW. HuangX. LiJ. ZhangC.Y. Dual pH/Redox-responsive mixed polymeric micelles for anticancer drug delivery and controlled release.Pharmaceutics201911417610.3390/pharmaceutics11040176 30978912
    [Google Scholar]
  46. BassoJ. MirandaA. NunesS. CovaT. SousaJ. VitorinoC. PaisA. Hydrogel-based drug delivery nanosystems for the treatment of brain tumors.Gels2018436210.3390/gels4030062 30674838
    [Google Scholar]
  47. ChangR. TsaiW.B. Fabrication of photothermo-responsive drug-loaded nanogel for synergetic cancer therapy.Polymers20181010109810.3390/polym10101098 30961023
    [Google Scholar]
  48. MadanM. BajajA. LewisS. UdupaN. BaigJ.A. In situ forming polymeric drug delivery systems.Indian J. Pharm. Sci.200971324225110.4103/0250‑474X.56015 20490289
    [Google Scholar]
  49. RadesN. AchaziK. QiuM. DengC. HaagR. ZhongZ. LichaK. Reductively cleavable polymer-drug conjugates based on dendritic polyglycerol sulfate and monomethyl auristatin E as anticancer drugs.J. Control. Release2019300132110.1016/j.jconrel.2019.01.035 30794827
    [Google Scholar]
  50. LiuY. KhanA.R. DuX. ZhaiY. TanH. ZhaiG. Progress in the polymer-paclitaxel conjugate.J. Drug Deliv. Sci. Technol.20195410123710.1016/j.jddst.2019.101237
    [Google Scholar]
  51. TuY. ZhuL. Enhancing cancer targeting and anticancer activity by a stimulus-sensitive multifunctional polymer-drug conjugate.J. Control. Release20152129410210.1016/j.jconrel.2015.06.024 26113423
    [Google Scholar]
  52. SedláčekO. HrubýM. StudenovskýM. VětvičkaD. SvobodaJ. KaňkováD. KovářJ. UlbrichK. Polymer conjugates of acridine-type anticancer drugs with pH-controlled activation.Bioorg. Med. Chem.201220134056406310.1016/j.bmc.2012.05.007 22658535
    [Google Scholar]
  53. MaJ. GuanR. ShenH. LuF. XiaoC. LiuM. KangT. Comparison of anticancer activity between lactoferrin nanoliposome and lactoferrin in Caco-2 cells in vitro.Food Chem. Toxicol.201359727710.1016/j.fct.2013.05.038 23743119
    [Google Scholar]
  54. DumontN. MerriganS. TurpinJ. LavoieC. PapavasiliouV. GerettiE. EspelinC.W. LuusL. KamounW.S. GhasemiO. SahagianG.G. MullerW.J. HendriksB.S. WickhamT.J. DrummondD.C. Nanoliposome targeting in breast cancer is influenced by the tumor microenvironment.Nanomedicine201917718110.1016/j.nano.2018.12.010 30654182
    [Google Scholar]
  55. PerilloE. Allard-VannierE. FalangaA. StiusoP. VitielloM.T. GaldieroM. GaldieroS. ChourpaI. Quantitative and qualitative effect of gH625 on the nanoliposome-mediated delivery of mitoxantrone anticancer drug to HeLa cells.Int. J. Pharm.20154881-2596610.1016/j.ijpharm.2015.04.039 25891256
    [Google Scholar]
  56. BochicchioS. DapasB. RussoI. CiacciC. PiazzaO. De SmedtS. PottieE. BarbaA.A. GrassiG. In vitro and ex vivo delivery of tailored siRNA-nanoliposomes for E2F1 silencing as a potential therapy for colorectal cancer.Int. J. Pharm.2017525237738710.1016/j.ijpharm.2017.02.020 28189855
    [Google Scholar]
  57. ZuckerD. BarenholzY. Optimization of vincristine–topotecan combination - Paving the way for improved chemotherapy regimens by nanoliposomes.J. Control. Release2010146332633310.1016/j.jconrel.2010.05.024 20685223
    [Google Scholar]
  58. ZuckerD. AndriyanovA.V. SteinerA. RavivU. BarenholzY. Characterization of PEGylated nanoliposomes co-remotely loaded with topotecan and vincristine: Relating structure and pharmacokinetics to therapeutic efficacy.J. Control. Release2012160228128910.1016/j.jconrel.2011.10.003 22019556
    [Google Scholar]
  59. AlvenS. NqoroX. BuyanaB. AderibigbeB.A. Polymer-drug conjugate, a potential therapeutic to combat breast and lung cancer.Pharmaceutics202012540610.3390/pharmaceutics12050406 32365495
    [Google Scholar]
  60. PasutG. VeroneseF.M. Polymer–drug conjugation, recent achievements and general strategies.Prog. Polym. Sci.2007328-993396110.1016/j.progpolymsci.2007.05.008
    [Google Scholar]
  61. AbuchowskiA. McCoyJ.R. PalczukN.C. van EsT. DavisF.F. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase.J. Biol. Chem.1977252113582358610.1016/S0021‑9258(17)40292‑4 16907
    [Google Scholar]
  62. FangQ. YamamotoT. New alternative copolymer constituted of fluorene and triphenylamine units with a tunable 2cho group in the side chain. Quantitative transformation of the 2CHO group to 2CH CHAr groups and optical and electrochemical properties of the polymers.Macromolecules2004371658945899
    [Google Scholar]
  63. JenningsJ. HeG. HowdleS.M. ZetterlundP.B. Block copolymer synthesis by controlled/living radical polymerisation in heterogeneous systems.Chem. Soc. Rev.201645185055508410.1039/C6CS00253F 27341542
    [Google Scholar]
  64. NeumannE. FreiE. FunkD. BeckerM.D. SchrenkH.H. Müller-LadnerU. FiehnC. Native albumin for targeted drug delivery.Expert Opin. Drug Deliv.20107891592510.1517/17425247.2010.498474 20586704
    [Google Scholar]
  65. Marvin was used for drawing, displaying and characterizing chemical structures, substructures and reactions, marvin 21.12.0.ChemAxon2021
    [Google Scholar]
  66. Available from:http://www.chemspider.com
  67. PettersenE.F. GoddardT.D. HuangC.C. CouchG.S. GreenblattD.M. MengE.C. FerrinT.E. UCSF Chimera—A visualization system for exploratory research and analysis.J. Comput. Chem.200425131605161210.1002/jcc.20084 15264254
    [Google Scholar]
  68. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  69. PiresD.E.V. BlundellT.L. AscherD.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures.J. Med. Chem.20155894066407210.1021/acs.jmedchem.5b00104 25860834
    [Google Scholar]
  70. TrottO. OlsonA.J. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  71. Schneidman-DuhovnyD. InbarY. NussinovR. WolfsonH.J. PatchDock and SymmDock: Servers for rigid and symmetric docking.Nucleic Acids Res.200533W363W36710.1093/nar/gki481
    [Google Scholar]
  72. PhysiologyMOL molecular graphics system, version 2.3.3, Schrödinger, L. L. C; ,2005
    [Google Scholar]
  73. KuriataA. GierutA.M. OlenieckiT. CiemnyM.P. KolinskiA. KurcinskiM. KmiecikS. CABS-flex 2.0: A web server for fast simulations of flexibility of protein structures.Nucleic Acids Res.201846W1W338W34310.1093/nar/gky356 29762700
    [Google Scholar]
  74. FuhrU. BoettcherM.I. Kinzig-SchippersM. WeyerA. JetterA. LazarA. TaubertD. Tomalik-ScharteD. PournaraP. JakobV. HarlfingerS. KlaassenT. BerkesselA. AngererJ. SörgelF. SchömigE. Toxicokinetics of acrylamide in humans after ingestion of a defined dose in a test meal to improve risk assessment for acrylamide carcinogenicity.Cancer Epidemiol. Biomarkers Prev.200615226627110.1158/1055‑9965.EPI‑05‑0647 16492914
    [Google Scholar]
  75. BanksW.A. Characteristics of compounds that cross the blood-brain barrier.BMC Neurol.20099Suppl. 1S310.1186/1471‑2377‑9‑S1‑S3 19534732
    [Google Scholar]
  76. OndiekiG. NyagblordzroM. KiketeS. LiangR. WangL. HeX. Cytochrome P450 and P-glycoprotein-mediated interactions involving african herbs indicated for common noncommunicable diseases.Evid. Based Complement. Alternat. Med.2017201711810.1155/2017/2582463 28250793
    [Google Scholar]
  77. NachimuthuS. AssarM.D. SchusslerJ.M. Drug-InducedQ.T. Drug-induced QT interval prolongation: Mechanisms and clinical management.Ther. Adv. Drug Saf.20123524125310.1177/2042098612454283 25083239
    [Google Scholar]
  78. SenanA.M. MuhammedM.T. Al-ShuraymL.A. AlhagS.K. Al-AreqiN.A.S. AkkoçS. Synthesis, structure characterization, DFT calculations, and computational anticancer activity investigations of 1-phenyl ethanol derivatives.J. Mol. Struct.2023129413632310.1016/j.molstruc.2023.136323
    [Google Scholar]
  79. SoniN. TekadeM. KesharwaniP. BhattacharyaP. MaheshwariR. DuaK. HansbroP.M. TekadeR.K. Recent advances in oncological submissions of dendrimer.Curr. Pharm. Des.201723213084309810.2174/1381612823666170329150201 28356042
    [Google Scholar]
  80. KopečekJ. KopečkováP. HPMA copolymers: Origins, early developments, present, and future.Adv. Drug Deliv. Rev.201062212214910.1016/j.addr.2009.10.004 19919846
    [Google Scholar]
  81. SarkarB. AlexandridisP. Block copolymer–nanoparticle composites: Structure, functional properties, and processing.Prog. Polym. Sci.201540336210.1016/j.progpolymsci.2014.10.009
    [Google Scholar]
  82. MitchellS.A. ReynoldsT.D. DasbachT.P. A compaction process to enhance dissolution of poorly water-soluble drugs using hydroxypropyl methylcellulose.Int. J. Pharm.2003250131110.1016/S0378‑5173(02)00293‑4 12480268
    [Google Scholar]
  83. JunkM.J.N. SpiessH.W. HinderbergerD. The distribution of fatty acids reveals the functional structure of human serum albumin.Angew. Chem. Int. Ed.201049468755875910.1002/anie.201003495 20886483
    [Google Scholar]
  84. AreR.P. BabuA.R. Molecular interaction analysis of SPARC–COLLAGEN with human serum albumin.J. Comput. Biophys. Chem.202221892793910.1142/S2737416522500399
    [Google Scholar]
/content/journals/cad/10.2174/0115734099278986231228070823
Loading
/content/journals/cad/10.2174/0115734099278986231228070823
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Albumin; bioinformatics; drug design; in silico; interaction; pharmacokinetics
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test