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Abstract: Rosmarinus officinalis L. is a long-honored medicinal and edible aromatic plant extensive-
ly employed in the food, pharmaceutical, and spice industries. It is rich in various bioactive com-
pounds, including flavonoids, terpenes, phenylpropanoic acids, quinones, and steroids, which exhibit
a range of effects such as antimicrobial, anti-inflammatory, antioxidant, antitumor, hypoglycemic,
hypolipidemic, hepatoprotective, and nephroprotective properties. To further explore the application
potential of Rosmarinus officinalis, we predicted the quality marker (Q-Marker) based on the meas-
urability of chemical constituents, traditional medicinal properties, and effectiveness. This approach
was informed by research on the components, biological activities, and mechanisms of action, fol-
lowed by network pharmacology analysis. Ultimately, 17 practical components were selected as
potential biomarkers, including carnosic acid, carnosol, rosmanol, isorosmanol, epirosmanol, 7-
methoxyrosmanol, 7-ethoxyrosmanol, rosmaridiphenol, rosmadial, rosmarinic acid, 1,8-cineole,
rosmarinine, royleanone, horminone, homovanillic acid, ferruginol, and cryptotanshinone. Most of
these compounds belong to the categories of terpenoids and organic acids. Through enrichment anal-
ysis, we identified the targets and pathways of these components in various diseases, such as micro-
bial infection, cancer, apoptosis, oxidative stress, and abnormal glycolipid metabolism. This integrat-
ed approach that combines plant components, big data, and pharmacology for marker screening is
more rational. The results provide a reference for the development, research, and quality evaluation

of rosemary resources.
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1. INTRODUCTION

Rosemary (Rosmarinus officinalis L.), also known as
Dew of the Sea, is a perennial evergreen shrub belonging to
the Lamiaceae family. It is native to the Mediterranean coast
and grows widely in Europe and North Africa. Rosemary has
long been a common spice in the traditional Mediterranean
diet [1], and it also has a rich history as an herb used in Eu-
ropean folk medicine to treat gastrointestinal, skin, and res-
piratory diseases [2, 3]. Recently, the European Medicines
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Agency (EMA) updated the herbal monograph on rosemary,
systematically describing the indications, dosage, administra-
tion, and contraindications of rosemary leaves and essential
oil [4]. According to the Compendium of Materia Medica, an
ancient Chinese medicine text, rosemary was introduced to
China from the Western regions during the reign of Emperor
Wei Wen [5]. In another traditional Chinese medicine book,
the Supplement to Materia Medica, rosemary was officially
recorded for the first time as a medicinal material, character-
ized as "hot, warm, non-toxic," and noted for "treating Qi
and blood imbalance." In China, rosemary is traditionally
used by the Yi and Zhuang ethnic groups, who believe it is
effective in treating abdominal pain, bloating, dizziness,
headaches, obesity, and other ailments. Additionally, as a
safe and effective natural antioxidant, preservative, and fla-
voring agent, rosemary is widely used in the modern food
industry [6]. It has been approved by the European Union as
an additive for various food categories [7]. However, the low

XXXX Bentham Science Publishers


https://creativecommons.org/licenses/by/4.0/

2 Current Analytical Chemistry, XXXX, Vol. XX, No. XX

bioavailability of certain components limits its therapeutic
efficacy. To address this issue, an increasing number of stud-
ies are exploring new delivery systems. Novel green nano-
particles have effectively enhanced the bioavailability of
components.

In recent years, with the development of natural medicine
resources, research on rosemary and its diverse biological
activities has gradually become a hot topic [8]. More bioac-
tive ingredients are being discovered and utilized through
extraction processes, and the identification of components is
continuously evolving. Multi-component and multi-target
characteristics define medicinal plants. Therefore, it is neces-
sary to establish a more scientific quality evaluation system
based on their pharmacological activities. Due to the com-
plexity of plant extracts, standardizing their quality is chal-
lenging. However, the normative documents on the quality
of rosemary issued by most countries are too brief, and there
is insufficient research on quality evaluation. The theory of
Quality Markers (Q-Markers) aligns well with the character-
istics of herbal medicine. It provides an effective quality
control system for medicinal materials. The purpose of the
Q-Marker theory is to study quality evaluation and control
methods, addressing the existing problems of herbal medi-
cine products and further establishing quality control tech-
nology [9]. Exploring the quality markers of rosemary is
significant for enhancing its safety and effectiveness in food,
health care products, and medicinal materials. Consequently,
the concept of Q-Markers is used to identify the critical
components of rosemary, which can serve as a reference for
the quality evaluation of multifunctional herbs.

Currently, the development of natural products is facing
challenges. The discovery of new active components and
mechanisms of action has revealed certain limitations. There
is no information about these components in traditional qual-
ity assessment methods. This restricts our ability to conduct
more in-depth research on their potential functions. In this
study, we conducted high-throughput screening using net-
work pharmacology to provide a new solution for the quality
evaluation of natural products. By integrating the relation-
ships between ingredients, targets, and pathways, we can
comprehensively assess the quality of herbal products.

2. CHEMICAL COMPONENTS

The active components of rosemary are categorized into
non-volatile and volatile substances, which include flavo-
noids, terpenes, volatile oils, and organic acids. Flavonoids
such as quercetin, luteolin, galangin, diosmetin, chrysin, and
8-methoxy kaempferol represent an important class of com-
pounds that exhibit significant antioxidant activity in rose-
mary [10]. Similar to other plants in the Lamiaceae family,
many terpenoids, including monoterpenes, sesquiterpenes,
diterpenes, and triterpenes, have been isolated from rose-
mary. Monoterpenes and sesquiterpenes primarily constitute
the essential components of volatile oils, which include 1,8-
cineole, camphor, pinene, borneol, verbenone, and caryo-
phyllene, among others. Diterpenoids in rosemary are further
divided into diterpenoid phenols and diterpenoid quinones.
Most of these components share a similar parent nucleus,
indicating that some may be classified as secondary metabo-
lites. Diterpene phenols include carnosic acid, carnosol, and
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rosmanol, while the main diterpenoid quinones are crypto-
tanshinone, royleanone, and rosmanol quinone. The content
of diterpenoids is relatively high, and they are considered to
play significant roles in antioxidant and antitumor effects
[11]. Triterpenoids include betulin, oleanolic acid, and ur-
solic acid. Volatile oils are the characteristic components of
rosemary essential oil, with more than 90% comprising ter-
penes that exhibit potent antibacterial effects [12]. Repre-
sentative substances include camphor, 1,8-cineole, pinene,
and verbenone. Additionally, rosmarinic acid, caffeic acid,
and ferulic acid are also widely studied components of rose-
mary. The classification information of specific chemical
components is shown in Table 1.

3. STUDIES ON BIOLOGICAL ACTIVITIES AND
MECHANISMS OF ACTIONS

3.1. Antibacterial Action

Rosemary exhibits broad-spectrum antibacterial activity.
It strongly inhibits Escherichia coli, Klebsiella pneumoniae,
and Staphylococcus aureus [29]. Some researchers used an
ethanol extract of rosemary (200 mg/mL) to treat bacterial
colonies associated with oral infections. The results showed
that colony densities decreased, the bacteria were loosely
connected, and biofilm formation ability was effectively in-
hibited, with Candida albicans being the most significantly
affected [30]. One study combined a rosemary water extract
with selenium nanoparticles through biosynthesis. This nano-
carrier exhibits potent antibacterial activity against Gram-
positive bacteria [31]. The volatile oil of rosemary also ex-
hibits strong antibacterial activity. The main components of
rosemary essential oil recognized by the European Pharma-
copoeia are volatile oils, including 1,8-cineole, camphor, and
a-pinene [32, 33]. The MIC of rosemary essential oil against
Staphylococcus aureus, Escherichia coli, and Klebsiella
pneumoniae ranges from 1 pg/mL to 300 pg/mL, with the
strongest inhibitory effect observed against Staphylococcus
aureus [34]. Researchers used ethyl acetate and n-hexane as
extractants to isolate components with different polarities
from the extracts, finding that n-hexane-soluble components,
which are the main volatile compounds, were identified by
GC-MS. These include camphor (19.6%), 1,8-cineole
(11.7%), verbenone (11.5%), borneol (10.6%), a-pinene
(5.8%), and linalool (5.7%), all of which exhibited the most
potent antibacterial activity against Staphylococcus aureus
(MIC = 78 pg/mL) [35].

Rosmarinic Acid (RA) destroyed cytoskeletal proteins of
various bacteria and inhibited intracellular Na+/K+-ATPase
activity, playing an antibacterial role against Escherichia
coli, Salmonella, and others [36, 37]. RA, as a covalent mod-
ifier of Keapl and a specific inducer of Nrf2, formed cova-
lent bonds with cysteine 151 of Keapl in the BTB domain,
preventing proteasome-mediated degradation caused by
Keapl binding to Nrf2. This promoted the nuclear transloca-
tion of Nrf2 and induced the bactericidal activity of macro-
phages through the autophagy pathway [38]. RNAIII is an
effector of the Agr Regulatory System in Staphylococcus
aureus, and psma is a virulence regulator of the bacterium.
Carnosic Acid (CA) and Carnosol (CL) are specific inhibi-
tors of these factors, reducing bacterial virulence in a con-
centration range of > 5 uM [39].



Predictive Analysis of Rosmarinus officinalis L. Quality Marker

Table 1. Classifications of the main chemical components in R. officinalis L.

Current Analytical Chemistry, XXXX, Vol. XX, No. XX 3

Class Number Name Molecular Formula CASNO References
1 Chrysin CisH004 480-40-0 [13]
2 Apigenin CisH;00s 520-36-5 [13-17]
3 Apigenin-7-O-glucoside C,1H2010 578-74-5 [16]
4 Genkwanin Ci6H120s 437-64-9 [15, 16, 18]
5 Hispidulin Ci6H1206 1447-88-7 [14, 15]
6 Homopsyllidin CyH»0py 17680-84-1 [15, 16, 19]
7 Cirsimaritin Ci7H140¢ 6601-62-3 [16]
8 Vicenin 2 Cy7H30015 23666-13-9 [20]
9 Luteolin CisH00s 491-70-3 [14, 16, 17]
10 Cynaroside C21Hy0011 5373-11-5 [20]
11 Luteolin-7-O-glucuronide C,H50, 29741-10-4 [16,21]
12 Nepetin CiH1204 520-11-6 [14]
13 Cirsiliol Cy7H1404 34334-69-5 [15]
14 Diosmetin Ci6H1206 520-34-3 [14]
Flavonoids
15 Diosmin CysH3,015 520-27-4 [14]
16 Galangin CisH;00s 548-83-4 [13]
17 Kaempferol C,5H,00¢ 520-18-3 [13]
18 Quercetin CisH00; 117-39-5 [13]
19 Rutin C17H30016 153-18-4 [13]
20 Isorhamnetin Ci6H 1,04 480-19-3 [13, 16]
21 5-Hydroxy-4',7-dimethoxyflavone Cy7H405 5128-44-9 [16]
22 Myricetin CisH;0O0s 529-44-2 [13]
23 Eriodictyol CisH1206 552-58-9 [16]
24 Hesperetin Ci6H 1406 520-33-2 [16]
25 Hesperidin CysH3405 520-26-3 [13, 16, 21]
26 Naringin Cy7H3,014 10236-47-2 [13]
27 8-Methoxykaempferol CsH 1,07 571-74-4 [22]
28 6-Methoxyluteolin Ci6H1206 520-11-6 [22-24]
29 Myrcene CioHis 123-35-3 [17, 25, 26]
30 Geraniol CioHis0 106-24-1 [17]
31 Nerol CioHis0 106-25-2 [17]
32 Linalool CioHis0 78-70-6 [17, 23, 26]
Monoterpenes
33 a-Phellandrene CioHi6 99-83-2 [23, 25, 26]
34 a-Terpinene CioHis 99-86-5 [23, 25, 26]
35 y-Terpinene CioHis 99-85-4 [23,26]
36 Terpinolene CioHi6 586-62-9 [23, 26]

(Table 1) Contd....
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Class Number Name Molecular Formula CASNO References
37 Limonene CioHis 138-86-3 [14,17, 23]
38 B-Phellandrene CioHi6 555-10-2 [23]
39 Carvone CioH1s0 99-49-0 [23]
40 trans-Carveol CioH;60 1197-07-5 [17]
41 m-Cymene CioHi4 535-77-3 [23]
42 p-Cymene CioHi4 99-87-6 [17, 23, 26]
43 Thymol CioH1s0 89-83-8 [17]
44 Carvacrol CioH1s0 499-75-2 [17,26]
45 4-Terpineol CioHis0 562-74-3 [17, 23, 26]
46 a-Terpineol CioHis0 98-55-5 [17, 23, 26]
47 a-Campholenal CioH;60 4501-58-0 [23]
48 p-Cymen-8-ol CioH1s0 1197-01-9 [17]
49 Isothujol CioH1s0 513-23-5 [23]
50 a-Thujene CioHis 2867-05-2 [23]
51 Sabinene CioHi6 3387-41-5 [17, 25, 26]
52 cis-Sabinol CioH;i60 3310-02-9 [23]
53 a-Thujone CioHi60 546-80-5 [17]
54 B-Thujone CioH;i60 471-15-8 [17]
55 Isopinocamphone CioH;60 15358-88-0 [17]
) 56 cis-Verbenol CioHi60 1845-30-3 [23]
57 Verbenone CioH1s0 80-57-9 [23, 25, 26]
58 Fenchone CioH;60 1195-79-5 [23]
59 Camphene CioHis 79-92-5 [17, 23, 26]
60 o-Fenchene CioHis 471-84-1 [23]
61 Camphor CioH;60 76-22-2 [17, 25, 26]
62 Borneol CioHis0 507-70-0 [17, 25, 26]
63 Isoborneol CioHis0 124-76-5 [23]
64 Bornyl acetate C12Hy00, 76-49-3 [17,23,25]
65 1, 8-cineole CioHis0 470-82-6 [17,23,25]
66 a-pinene CioHi6 80-56-8 [17, 23, 26]
67 a-Pinene oxide CioH;60 1686-14-2 [23]
68 B-Pinene CioHis 127-91-3 [17,23,25]
69 Verbenene CioHs 4080-46-0 [17]
70 Myrtenol CioH;60 515-00-4 [17,23,25]
71 Myrtenal CioH1s0 564-94-3 [23]
72 Homomyrtenol CH;50 128-50-7 [17]
73 Chrysanthenone C0H 1,0 473-06-3 [17]
74 Pinocarvone CioH1s0 30460-92-5 [17,23,25]
Sesquiterpenes 75 a-Caryophyllene CisHos 6753-98-6 [17, 25, 26]

(Table 1) Contd....
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76 B-Elemene CisHa4 515-13-9 [17]
77 a-Elemene CisHa4 5951-67-7 [26]
78 Abscisic acid Ci5sHy004 21293-29-8 [13]
79 a-Amorphene CisHa4 20085-19-2 [17,26]
80 a-Muurolene CisHa4 10208-80-7 [17]
81 t-Muurolol CisH,0 19912-62-0 [17]
82 y-Cadinene CisHa4 39029-41-9 [17]
83 §-Cadinene CisHa4 483-76-1 [17,26]
84 a-Cadinol CisH,0 481-34-5 [17]
85 o-Calacorene CisHyo 21391-99-1 [17]
86 a-Eudesmol CisH,0 473-16-5 [26]
- 87 v-Eudesmol CisH,0 1209-71-8 [26]
88 B-Eudesmol CisH,0 473-15-4 [17]
89 B-Selinene CisHa4 17066-67-0 [17]
90 a-Copaene CisHa4 3856-25-5 [17,26]
91 Manool CH3,0 596-85-0 [17]
92 a-Guaiene CisHa4 3691-12-1 [17]
93 B-Caryophyllene CisHy 87-44-5 [22]
94 Caryophyllene oxide CisH»,0 1139-30-6 [17, 25, 26]
95 trans-Caryophyllene CisHa4 87-44-5 [17, 25, 26]
96 Spathulenol CisH»,0 6750-60-3 [17]
97 Alloaromadendrene CisHy 25246-27-9 [17]
98 Viridiflorol CisH,0 552-02-3 [17]
99 Rosmadial C10H2405 85514-31-4 [14, 16, 19]
100 Rosmaridiphenol C1Hp505 91729-95-2 [15, 16]
101 Carnosic acid C10Hp504 3650-09-7 [14, 16, 20]
102 Methyl carnosate C31H3004 82684-06-8 [15]
103 Ferruginol CaoH300 514-62-5 [22]
104 Isorosmanol C,H»605 93780-80-4 [27]
105 20-Deoxocarnosol C,H2503 94529-97-2 [27]
Diterpenoids
106 12-O-Methylcarnosic acid C31H3004 62201-71-2 [16]
107 Royleanonic acid C10H2605 350590-46-4 [27]
108 Carnosol C10H2604 5957-80-2 [14, 16, 21]
109 Pisiferal C1Hp50, 24035-37-8 [28]
110 7-Methoxy-epirosmanol C, Ha505 24703-38-6 [28]
111 7-O-Isopropyl-epirosmanol Cy3H3,05 - [28]
112 7-O-Isopropyl rosmaquinone Ca3H3005 - [28]

(Table 1) Contd....
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113 7B-Ethoxy rosmaqunione CyH»505 - [27]
114 Rosmaquinone B C,H»605 864962-10-7 [28]
115 7-Acetoxy atuntzensin A CyH»607 - [27]
116 Galdosol C10H240s 52591-18-1 [28]
117 Rosmanol C10H2605 80225-53-2 [14, 16, 19]
) 118 7-Methoxyrosmanol C,1Hp505 113085-62-4 [28]
119 7-Ethoxyrosmanol C3,H300s 111200-01-2 [22]
120 Epirosmanol C10H2605 93380-12-2 [15, 16, 19]
121 Rosmanol quinone C,H»405 121927-71-7 [18]
122 Royleanone C1Hp505 6812-87-9 [22]
123 Betulin C30Hs00, 473-98-3 [18]
124 Betulinic acid C30Ha4s0; 472-15-1 [16, 18, 27]
Triterpenoids
125 Oleanolic acid C30Ha4s0; 508-02-1 [14]
126 Ursolic acid C30H4s0; 77-52-1 [14]
Coumarins 127 Ellagic acid C4HOg 476-66-4 [13]
Lignans 128 Medioresinol C,H»405 40957-99-1 [16]
129 Cinnamic acid CoH;0, 621-82-9 [13]
130 p-Coumaric acid CoH;0; 7400-08-0 [13, 16, 17]
131 Caffeic acid CoH;O4 331-39-5 [13, 16, 17]
132 Ferulic acid CioH004 1135-24-6 [17]
133 Chlorogenic Acid Ci6Hi509 327-97-9 [13, 14, 17]
134 Neochlorogenic acid Ci6H 509 906-33-2 [14]
Phenylpropanoic acids
135 Rosmarinic acid CisH;60s 20283-92-5 [16, 17, 20]
136 Salvianolic acid A Cy6H2010 96574-01-5 [20, 21]
137 Salvianolic acid L C36H30016 389065-74-1 [21]
138 Eugenol CioH20, 97-53-0 [17]
139 Methyleugenol C11H140, 93-15-2 [17]
140 Elemicin Ci2H; 605 487-11-6 [17]
141 Taxadione C10H2605 19026-31-4 [22]
Quinones 142 Horminone C,oH2504 21887-01-4 [22]
143 Cryptotanshinone C9H»003 35825-57-1 [22]
144 Taraxasterol C30Hs500 1059-14-9 [22]
145 Cholesterol C»7H,460 57-88-5 [22]
Steroids
146 Campesterol C,sHasO 474-62-4 [22]
147 Sitosterol CaoHs500 83-46-5 [22]

(Table 1) Contd....
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148 4-Hydroxybenzoic acid C;HO5 99-96-7 [13, 16]
149 Protocatechuic acid C;HsO4 99-50-3 [13]
150 Vanillic acid CsHO4 121-34-6 [13]
151 Homovanillic acid CoH 004 306-08-1 [22]
152 Gallic acid C;HOs 149-91-7 [13,17]
153 Syringic acid CoH ;005 530-57-4 [13,17]
154 Quinic acid C;H;,06 77-95-2 [21]

Others 155 Citric acid C¢H304 77-92-9 [21]
156 7, 24-Tirucalladien-3, 27-diol C30Hs00, 6138-94-9 [18]
157 Tirucalla-7, 24-dien-3f, 21, 23-triol C30Hs00; 135383-76-5 [18]
158 3-Octanol CsH;s0 589-98-0 [23]
159 2-Methyl-3-octanone CoH 50 923-28-4 [23]
160 1-Octen-3-ol CsH;60 3391-86-4 [17,23]
161 Filifolone CioH1s0 4613-37-0 [17]
162 Rosmarinine Ci3H27NOg 520-65-0 [22]

3.2. Anti-inflammatory and Antioxidant Effects

Rosemary contains a variety of terpenoids, phenylpropa-
noic acids, and flavonoids, and it acts on multiple targets to
exert anti-inflammatory and antioxidant activities. The meth-
anol extract of rosemary has been found to have a therapeu-
tic effect on ulcerative colitis in rats. By measuring the levels
of antioxidant indices and inflammatory factors in vivo and
in vitro and observing histopathological changes, it was
demonstrated that the methanol extract of rosemary exerted a
significant therapeutic effect on ulcerative colitis in rats
within a safe dose range, even outperforming SASP, a posi-
tive control drug [40]. One study evaluated the therapeutic
effect of inhaling atomized rosemary aqueous extracts on
ovalbumin-induced asthma in rats, showing a significant
reduction in immunoglobulin E and inflammatory cytokine
levels, along with a decrease in the number of inflammatory
and goblet cells. Concurrently, antioxidant enzyme levels
increased, suggesting that aqueous extracts may alleviate
allergic asthma symptoms through antioxidant and anti-
inflammatory mechanisms [41].

Studies have shown that CA and CL clear intracellular
ROS, upregulate antioxidant defense, and regulate various
inflammatory signaling pathways, such as NF-kB, MAPK,
Nrf2, and the NLRP3 inflammasome. Additionally, the ex-
pressions of pro-inflammatory cytokines, adhesion mole-
cules, chemokines, and prostaglandins were decreased [42].
Kim et al. found that CA alleviated renal tubule damage after
LPS injection in mice by downregulating Scr and BUN lev-
els, inhibiting NF-kB-mediated inflammation and Caspase-3-
dependent apoptosis, and regulating oxidative stress through
antioxidant enzymes [43]. MPTP (10 pmol/L) induced mor-
phological atrophy of dopamine neurons, decreased cell
viability, and increased abnormal expression of caspase-3,
which were reversed by CA treatment. Furthermore, MDA

concentration decreased, and SOD activity increased, further
confirming the antioxidant capability of CA [44]. CL was
bound to heat shock protein 90 to block the activation of the
NLRP3 inflammasome, which holds positive significance for
treating endotoxemia [45]. In neuroinflammatory conditions,
RA regulated the expressions of hypoxia-inducing factors by
controlling the PDPKI1/Akt/mTOR pathway. As a result,
MIl-type polarization of microglia was inhibited, leading
instead to the transformation of cells into the M2 phenotype
with anti-inflammatory effects [46]. 1,8-cineole reduced in-
flammation in mice with colitis by inhibiting the NF-«xB sig-
naling pathway, preventing the nuclear translocation of NF-
kB, and enhancing PPARy expression. Additionally, it
played an antioxidant role by promoting Nrf2 nuclear trans-
location, activating the Nrf2/Keapl system, and enhancing
the expressions of HO-1 and NQOI1 to improve the activities
of SOD and CAT [47, 48]. Furthermore, 1,8-cineole also
influenced the arachidonic acid pathway involving 5-LOX
and COXs by blocking the production of LTB4 and PGE2,
both of which are pro-inflammatory mediators activated by
serum amyloid A [49]. a-Pinene inhibited the NF-xB signal-
ing pathway and the expression of iNOS in human chondro-
cytes stimulated by IL-1p [50]. Similar results indicated that
a-pinene blocked the activation of MAPK and NF-«xB path-
ways in LPS-induced peritoneal macrophages of mice, lead-
ing to decreases in the expression of iNOS, the activity of
COX-2, and the secretions of IL-6, TNF-a, and NO [51].

3.3. Antitumor Effect

It is a hot research topic to search for compounds with
antitumor potential from extracts of natural plant sources.
Recent studies have found that components of rosemary ex-
hibit significant antitumor activity. Among prostate cancer
cells, PC-3 cells are androgen-insensitive, while 22RV1 cells
are androgen-sensitive. Treatment with rosemary extracts



8  Current Analytical Chemistry, XXXX, Vol. XX, No. XX

significantly inhibited the proliferation of these cancer cells
while inducing apoptosis and reducing migration. In contrast,
the extract did not affect PNT1A, a normal prostate epithelial
cell. The overactivation of the PI3K/Akt/mTOR pathway in
prostate cancer cells is associated with cell proliferation,
increased viability, drug tolerance, and overall poor progno-
sis. Some results indicated that rosemary extracts also re-
duced the phosphorylation levels of Akt and mTOR, effec-
tively inhibiting the activation of this pathway [52]. Silver
nanoparticles are effective nano-drugs for inhibiting cancer
cell proliferation, and plant extracts serve as excellent reduc-
ing agents for synthesizing nanoparticles [53]. The silver
nanoparticles synthesized from the aqueous extract of rose-
mary exhibit significant cytotoxicity toward human breast
cancer cell lines and may have synergistic effects [54]. Bou-
zas et al. prepared a Supercritical Extract (SFRE) of rose-
mary, with CA and CL content of 12%-16%, which inhibited
the proliferation of non-small cell lung cancer cell lines
H1299 and H1975 in a dose-dependent manner. SFRE re-
duced ATP levels in tumor cells and activated apoptosis by
decreasing glycolysis and mitochondrial oxidative phosphor-
ylation. Currently, lipid metabolism genes are being used as
prognostic indicators and therapeutic targets for tumors. For-
tunately, SFRE regulated a range of lipid metabolic targets,
including SREBF1, FASN, and SCD1 involved in lipogene-
sis; HMGCR for cholesterol production; ACSL for fatty acid
activation; ABCA1 and ApoAl for cholesterol homeostasis;
and CHKA and AGPAT for membrane phospholipid biosyn-
thesis and remodeling. In addition, SFRE inhibited carcino-
genic pathways mediated by EGFR and JAK1, which were
involved in cell proliferation and inflammation, respectively.
Surprisingly, SFRE synergized with clinical therapeutic
agents such as cisplatin, pemetrexed, and pembrolizumab
[55]. In patients with advanced cancer, the incidence of ca-
chexia ranges from 50% to 80%. This condition is character-
ized by a wasting syndrome involving systemic metabolic
disorders, progressive loss of muscle and fat, weight reduc-
tion, and progressive failure of systemic organs.

RA inhibited the nuclear translocation of Glil and pro-
moted its degradation through the proteasome pathway, re-
ducing the malignant degree of PDAC [56]. CL and its ana-
logs inhibited the NF-xB pathway and activated the AKT
pathway to alleviate muscle atrophy in mouse tumor-
associated cachexia models. Another experiment found that
CL improved the disorder of fat degradation in 3T3-L1 cells
and inhibited the breakdown of triglycerides and the release
of free glycerol by regulating the AMPK pathway [57].
Hasei et al. found that stimulation of HepG2 cells with CA
(10 uM) upregulated the tumor suppressor p53, which is
inhibited by the rapamycin complex 1 (mTORC1), and in-
creased Caspase-3 activation through AMPK-related targets.
These factors led to the inhibition of proliferation and induc-
tion of apoptosis in hepatoma cells [58]. CA also increased
the levels of proteins such as Sestrin2 and MRP2 associated
with the Nrf2/ARE pathway in HepG2 cells, which protected
cells from oxidative stress and carcinogens, thereby inhibit-
ing cancer progression [59].

3.4. Hypoglycemic and Lipid-lowering Effects

Abnormal metabolism of sugars and lipids is becoming a
global health problem. Dietary therapy based on plant prod-
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ucts and their extracts as dietary supplements has significant
benefits in improving diabetes, hyperlipidemia, and other
related diseases. Multiple studies have shown that the vari-
ous components of rosemary have notable hypoglycemic and
lipid-lowering effects. Impaired insulin function in its effec-
tor cells leads to elevated blood sugar levels, while compen-
satory increases in insulin further exacerbate insulin re-
sistance and contribute to the progression of type 2 diabetes.
Extracts of rosemary have been shown to alleviate insulin
resistance in muscle cells induced by high glucose and high
insulin, improving glucose uptake in L6 myotube cells by
reducing the phosphorylation of IRS-1, mTOR, and p70S6K.
Ultimately, the biological effects of insulin were restored.
Additionally, increased intracellular phosphorylation of
AMPK stimulated downstream ACC proteins and GLUT4
on the plasma membrane [60].

This indicates that rosemary regulates glucose transport
and metabolism in multiple ways. Compared with irbesartan,
an adjuvant drug used in treating diabetes, CA demonstrated
a better hypoglycemic effect by preventing islet damage and
alleviating insulin resistance [61]. Yamamotoya et al.
proved that CA and CL inhibited the expression of G6PC,
PCKI1, and other gluconeogenesis-related genes induced by
cAMP in insulin resistance [58]. Islet function gradually
recovers due to the reduced supply of lipolysis and glucone-
ogenic substrates. By regulating reverse cholesterol
transport, RA reduced body weight, blood sugar, total cho-
lesterol, and triglycerides in hyperlipidemic mice. Further
studies found that RA increased the expression of cholester-
ol-uptake transporters such as SR-B1, LDL-R, ABCGS5, and
ABCGS in liver tissue. In addition, the activity of CYP7A1
was enhanced, promoting the excretion of cholesterol. Nota-
bly, fatty acid oxidation was also stimulated through AMPK-
mediated expression of CPT1A [62]. These findings suggest
that RA plays multiple regulatory roles in lipid metabolism.

3.5. Anti-nerve Damage Effect

Rosemary is often used in traditional medicine to refresh
the mind and improve sleep, reflecting its unique role in neu-
roregulation. Alrashdi er al. observed the behavioral and
neurobiological effects of rosemary extract in an epileptic rat
model induced by PTZ. They conducted Morris water maze
experiments with rats in different treatment groups and
found that the spatial learning and memory abilities of the
rats treated with the extract were improved. The evaluation
results revealed a decrease in the epilepsy score, along with a
reduction in spasticity and a delay in the onset of the first
myoclonus. Biochemical indicators showed increased levels
of oxidative stress markers in the epileptic rat model. In con-
trast, the extract elevated antioxidant markers and main-
tained the typical morphology of rat brain tissue [63].

Yi-Bin et al. developed a nanocarrier to deliver CA to the
brain, inhibiting the transcriptional activity of CEBP-B by
reducing the interaction between CEBP-f3 and NF-kB in the
brains of APP/PS1 transgenic mice [64]. It was demonstrated
that CA regulated the CEBP B-NF «B-cytokine network as-
sociated with AD, playing a neuroprotective role. RA and
ursolic acid inhibited neurotoxicity induced by AB1-42 and
reduced the accumulation of amyloid plaques in the hippo-
campus of AD mice by directly binding to Ki-67 and dicorti-
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cotin, which improved impaired social memory and hippo-
campal neurogenic disorders in these mice [65]. A compre-
hensive study demonstrated that the protective effect of CL
on the nervous system involves multiple targets. CL activat-
ed gene expression related to mitochondrial dynamics and
improved the structural homeostasis of mitochondrial mem-
brane proteins. It restored ND protein homeostasis by inhib-
iting the IIS pathway, regulating the MAPK pathway, and
activating chaperones. CL also prevented neuronal damage
by inhibiting the deposition of AP, poly-Q, and a-SYN. It is
generally believed that AP mediates cholinergic nervous
system diseases, while poly-Q and a-SYN induce ASH and
damage to dopaminergic neurons. CL reduced neuronal le-
sions associated with these toxic proteins by activating the
Notch and Wnt pathways [66].

3.6. Hepatoprotective and Nephroprotective Effects

The active ingredients in rosemary play significant roles
in protecting the liver and kidneys. Rosemary tincture has
been shown to exhibit hepatoprotective activity in rats with
liver injury. The tincture contains a considerable amount of
polyphenols and terpenes, including phenolic diterpenes
(CA, CL, rosmanol, rosmadial) and RA. These compounds
exert hepatoprotective effects through antioxidant mecha-
nisms [67]. Formulating rosemary essential oil into a
nanoemulsion reduces its hydrophobicity. Researchers eval-
uated the effect of this nanoemulsion on liver injury induced
by thioacetamide in Wistar rats. Oral administration of the
nanoemulsion significantly improved transaminase levels
and pathological changes in the liver [68]. CTX induces cel-
lular oxidative stress and liver toxicity. Rosemary exhibits
strong antioxidant activity and is a potential therapeutic
agent against liver toxicity. After 16 days of treatment with
rosemary extract, liver toxicity induced by CTX in mice im-
proved, significantly reducing levels of AST and lipids while
mitigating histological damage [69]. RA reduced ALT and
AST levels in the serum of mice with liver injury induced by
APAP and alleviated histological lesions in the liver. It up-
regulated the expressions of Nrf2 and downstream HO-I,
which are suppressed during liver injury. The increase in
these proteins inhibited ROS activity and the NEK7-NLRP3
pathway, leading to decreased secretions of IL-1p and IL-18
in liver tissue [70]. Moreover, it was reported that RA re-
versed the increase of Bax and the decrease of Bcl-2 induced
by APAP, which are markers of apoptosis. Additionally, RA
increased the levels of SOD, GSH, and GSH-PX by activat-
ing the Nrf2/HO-1 signaling pathway and inhibited lipid
peroxidation, which benefited the alleviation of acute liver
injury induced by lipopolysaccharide/D-galactosamine in
mice [71].

Rosemary has potential protective effects against renal
toxicity caused by heavy metal pollutants. For example, po-
tassium dichromate and nickel chloride induce oxidative
stress in the kidneys. The accumulation of ROS leads to re-
nal dysfunction and structural changes in kidney tissue.
Rosemary extract possesses significant antioxidant and met-
al-chelating capabilities. After treatment with the extract,
renal tissue damage in rats was significantly ameliorated, and
biochemical indicators were restored [72, 73]. CA had a
therapeutic effect on renal toxicity caused by cadmium chlo-
ride (CdCI2) and other factors. A low dose of CL (5 uM)
effectively inhibited the apoptosis of normal renal epithelial
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(NKE) cells induced by CdCI2 (40 uM). Experiments con-
ducted both in vitro and in vivo found that CA removed free
radicals and inhibited cell fibrosis. It also inhibited the TGF-
B1/Smad/Collagen IV pathway by activating Nrf2/HO-1,
which reduced the renal toxicity of cadmium [74]. Diabetic
Nephropathy (DN) is one of the most severe complications
of diabetes. Urinary creatinine and protein levels in Db/db
mice were reduced after 14 weeks of CA treatment, indicat-
ing that glomerular necrosis and mesangial dilation were
alleviated. Similarly, kidney damage was significantly im-
proved in streptozotocin-induced diabetic rat models after 20
weeks of CA treatment. In a high-glucose microenvironment,
CA activated Nrf2 in murine Glomerular Mesangial Cells
(mGMCs) and downregulated the expression of genes related
to the NF-xB signaling pathway. This was beneficial for in-
hibiting several fibrotic factors, such as renal transforming
growth factor-Bl1, fibronectin, and E-cadherin [61]. One
study designed nanoparticles for delivering RA, which can
accumulate in the kidneys over an extended period in cases
of acute kidney injury induced by ischemia-reperfusion, sig-
nificantly improving renal function. This delivery system
reduces oxidative stress, the inflammatory response, and the
apoptosis of renal tubular cells, providing a new strategy for
treating acute kidney injury [75].

3.7. Other Effects

Rosemary ingredients are effective in relieving various
skin symptoms. RA increased the expression of NHEI in the
stratum corneum, a crucial factor in activating ceramide syn-
thetase, which helped reduce skin water loss, increase hydra-
tion, and improve skin barrier function [76]. Imiquimod, an
inducer of psoriasis in laboratory animals, caused neutrophil
infiltration and increased levels of IL-23 and IL-17A, result-
ing in redness, swelling, and scaling in the skin tissues of
mice [77]. The pathological condition of the mice improved
after RA gavage. CL reduced the abnormal expressions of
immunoglobulin E and IL-1B in the serum of mice induced
by UV-B. Similarly, markers associated with skin inflamma-
tion in the backs of mice, such as iNOS, COX-2, and
STATS3, were significantly inhibited [78]. Many toxic com-
ponents, including dioxins, environmental pollutants, and
Malassezia metabolites, are associated with AhR, which can
easily lead to skin diseases. Studies have found that CA, CL,
7-Methoxy-epirosmanol, 5-Hydroxy-4', 7-dimethoxyflavone,
and betulinic acid exhibit strong antagonistic effects against
these components, suggesting that rosemary extract may
prevent or treat skin diseases caused by AhR [79]. Dry Eye
Disease (DED) often causes sustained oxidative stress and
inflammation in the eyes. Researchers combined RA with
gelatin nanogels for DED treatment. This formulation inhib-
its the production of inflammatory factors and ROS while
promoting mucin secretion. This strategy provides a novel
reference for ocular drug delivery [80].

4. PREDICTION ANALYSIS OF Q-MARKER OF
ROSEMARY

4.1. Q-marker Prediction of Rosemary Based on the
Measurability of Chemical Constituents

Stability and testability are essential conditions for
screening Q-markers. Terpenes and phenylpropanoic acids
are the primary contributors to the antioxidant activity of
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rosemary. Rapid and efficient quantitative determination of
their contents is crucial for evaluating the quality of rose-
mary. Li and Liao used HPLC to establish fingerprints with
typical peaks identified in different parts of the plant, such as
stems and leaves. The results showed that the types of com-
ponents were nearly the same, primarily phenylpropanoic
acids and diterpenoids [81]. They identified the characteristic
peaks of ferulic acid, RA, and CA. Li et al. employed HPLC-
ELSD to determine the contents of RA, CL, CA, oleanolic
acid, and ursolic acid in rosemary, demonstrating that the
method was sensitive and reproducible [82]. Sharma et al.
used UHPLC-ESI-QTOF-MS to analyze the components in
rosemary extracts obtained through nine different extraction
methods. The results indicated that the contents of RA, luteo-
lin-7-O-glucuronide, CA, CL, and ursolic acid in the extracts
were stable [83].

Due to substantial differences in the chemical composi-
tion of rosemary essential oils from various regions, distinct
chemical types have been formed. For instance, gas chroma-
tography-mass spectrometry analysis of three rosemary es-
sential oils from Algeria revealed two distinct chemical types
dominated by a-pinene or camphor [84]. Similar results were
found in the chemical analysis of Egyptian rosemary volatile
oil samples [85]. In contrast, rosemary volatile oil from the
United Arab Emirates is characterized by high levels of
monoterpenes, classifying it as the 1,8-cineole chemical type
[86]. Wu et al. determined the chemical compositions and
contents of rosemary from multiple producing areas using
GC-MS and UPLC-Q-TOF-MS, ultimately identifying 47
main components. The characteristic compounds included
volatile components such as 1,8-cineole, verbenone, ter-
pinene, camphor, and borneol, as well as non-volatile com-
ponents like RA and CA. While the types of ingredients were
consistent across different producing areas, their contents
varied. It is worth noting that the levels of verbenone differ
significantly, which may serve as a new marker to distin-
guish rosemary from various regions [87].

There are many terpenoids in rosemary extract, most of
which are secondary metabolites. Diterpenoids exhibit high
thermal stability and can be easily extracted, separated, and
detected. The contents of CL (4.21%), CA (0.39%), and
rosmanol (0.12%) are relatively high [88]. Cao et al. simu-
lated the degradation of these diterpenoids in the human
body by preparing artificial body fluids. They found that CA
was oxidized to CL and rosmanol in the artificial intestinal
fluid, which was further converted to 7-methoxyrosmanol, 7-
ethoxyrosmanol, or CA. This suggests that the oxidation of
CA may produce a variety of diterpenoids in rosemary [89].
Therefore, we should control quality by comparing the rela-
tive contents of these compounds.

In addition, CA and CL are the primary lipophilic com-
ponents in rosemary extract, while RA is the most significant
hydrophilic component. Adjusting the solvent composition is
essential for improving extraction efficiency. Mo et al. uti-
lized CCE to simultaneously extract CA and RA, collecting
the supernatant and precipitate as water-soluble and fat-
soluble extracts, respectively. This approach represents an
efficient extraction strategy [90]. It is also important to con-
sider how different solvents affect the content of quality
markers. At present, there is little research on establishing
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quality standards for rosemary. The methods for the extrac-
tion, separation, and determination of the components men-
tioned above serve as references for the quality control of
rosemary.

4.2. Q-marker Prediction of Rosemary Based on the
Traditional Medicinal Properties

In traditional Chinese medicine, herbs are distinguished
by their "Flavors" and "Natures." The medicinal properties
of rosemary, as recorded in the Supplement to Materia
Medica, are classified as "hot" and "warm." Modern pharma-
cology has demonstrated that the medicinal properties of
herbs are closely related to their active ingredients. Some
studies have found that "hot" and "warm" herbs often contain
high levels of volatile oils and possess a strong aroma [91].
One of the uses of rosemary is the extraction and processing
of essential oil, which serves as a raw material in cosmetics,
medicine, food, and other fields. One study categorized the
types and contents of various essential oils into 1,8-cineole,
verbenone, camphor, and a-pinene based on different mark-
ers [92]. El Mrabet et al. employed FT-MIR to detect the
content of 1,8-cineole and quantify the levels of adulterants
in rosemary essential oil, demonstrating high effectiveness in
evaluating essential oil quality [93]. Wei et al. analyzed the
volatile components of small-leaf and large-leaf rosemary
using GC-MS. The results showed significant differences in
the relative contents of 1,8-cineole and geraniol between the
two types of rosemary, which could serve as potential mark-
ers for their differentiation [94].

Due to differences in harvesting times and drying meth-
ods, the composition of various components in rosemary
may differ significantly. The chemical compositions of vola-
tile oils before and after drying were analyzed using GC-MS,
revealing that the contents of a-pinene, 1,8-cineole, verbe-
none, and borneol changed to varying degrees [95]. To max-
imize oil yield in the preparation of rosemary essential oil
products, it is recommended to shorten the drying time [96].
Additionally, when harvesting and drying rosemary, in-
creased temperatures may lead to the degradation of volatile
components. Therefore, it is advisable to avoid harvesting at
noon and to use low-temperature or shade-drying methods
[97]. In conclusion, components in rosemary essential oil,
such as a-pinene, 1,8-cineole, verbenone, borneol, and gera-
niol, can serve as candidate markers that are useful for
screening essential oil products.

4.3. Q-marker Prediction of Rosemary Based on the Ef-
fectiveness of Chemical Constituents

From the perspective of traditional efficacy and modern
pharmacology, rosemary is recognized for its powerful anti-
oxidant effects. The European Union has also approved
rosemary extract as a safe and effective natural antioxidant
[98]. A report on rosemary identifies the components most
relevant to its biological activity as CA, CL, RA, and ursolic
acid, in that order [99]. Fernandez-Ochoa et al. utilized
HPLC-ESI-QTOF-MS to analyze plasma samples from mice
taken at different time points to study the absorption and
metabolism of phenolic compounds in rosemary leaf extract.
Although the absorption rate of flavonoids was the highest,
the antioxidant capacity of these compounds in the plasma
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samples was not enhanced. It was speculated that the binding
of flavonoids to plasma proteins might impair their biologi-
cal activity. The active components are more likely to be
diterpenes, triterpenes, and their metabolites [100].

Excessive free radicals are the primary factors leading to
the disruption of the antioxidant balance in the body and
triggering oxidative stress. Rosemary extract is rich in poly-
phenols, which possess strong free radical scavenging abili-
ties. Most of these mechanisms are associated with oxidative
stress pathways [101]. Generally, antioxidants can neutralize
free radicals by providing hydrogen atoms through a hydro-
gen atom transfer mechanism. Additionally, free radicals can
be eliminated by donating electrons directly via the single
electron transfer mechanism.

In molecular orbital theory, the energy difference be-
tween the highest occupied molecular orbital (HOMO) and
the lowest unoccupied molecular orbital (LUMO) is referred
to as the energy gap, which significantly impacts molecular
activity. A lower LUMO energy level makes it easier for a
molecule to gain electrons, while a higher HOMO energy
level increases the likelihood of the molecule losing elec-
trons. Based on the energy gap, we can predict the antioxi-
dant capacity of various compounds: a smaller energy gap
indicates that electrons can be more readily excited and tran-
sitioned, which corresponds to higher radical scavenging
activity of the molecule [102].

To begin our study, we searched the PubChem database
to obtain the molecular structures of representative polyphe-
nols in rosemary. The frontier orbital energy of each compo-
nent was then analyzed at the B3LYP-D3(BJ)/6-311G**
level using density functional theory (DFT), with calcula-
tions completed using the ORCA 6.0.1 program. Compari-
sons revealed that the reactivities of rosmarinic acid and sev-
eral major diterpenoid phenolic compounds were higher than
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those of ursolic acid. The detailed DFT analysis model is
shown in Fig. (1), demonstrating that these ingredients are
effective at clearing free radicals in the body. Their strong
antioxidant effects make them suitable as potential quality
markers for rosemary.

5. FURTHER PREDICTIVE ANALYSIS OF Q-MARKERS
FOR ROSEMARY BASED ON NETWORK PHAR-
MACOLOGY

5.1. Prediction of Q-markers in Rosemary and Screening
of Core Targets

We searched the HERB and BATMAN-TCM databases
[103, 104] and combined them with information on compo-
nents collected from Table 1 to screen for biological activi-
ties. Oral Bioavailability (OB) represents the percentage of
an orally administered drug that reaches systemic circulation.
High oral bioavailability is a crucial indicator for determin-
ing whether a bioactive molecule can be utilized as a thera-
peutic agent. Drug-Likeness (DL) is a qualitative concept
used in drug design to evaluate the similarity between pro-
spective compounds and marketed drugs, helping to predict
whether a compound is druggable. For compounds included
in the TCMSP database [105], a preliminary screening was
conducted based on the criteria of OB > 30% and DL > 0.18,
as recommended by the database. Chemical components not
found in the TCMSP database were also temporarily includ-
ed in the collection. All candidate compounds were imported
into the Swiss ADME database [106], and core components
were further identified based on high gastrointestinal absorp-
tion and scores for Lipinski's rule of five. This classic meth-
od evaluates the drug activity of compounds based on empir-
ical rules, specifying five criteria for molecular weight: lipo-
philicity, the number of rotatable bonds, and the number of
hydrogen bond donors and acceptors. In this study, we se-
lected compounds that met three or more of these criteria.

=-0.0044
Ll\l()
B T
J o ‘r!"df' ¥ . LMo * Lumo  O* E“m) -0.0231
5 :{,,«% < E, o= -0.0253
e S's: -ds$ - i E, . =-0.0748
5 42(5 Y }uﬁw« B . 1 LUMO E, iyo= 00655
o ‘q e & o g g&/ -
syt gzl |l | e .
4 » s 3 e A .,»”wg; Q L 9 . F
S R (O L P Hla 17
] L rS ¢ o8,
gl e,
E,,,=-0.2301 E,,,=-0.2031 E,,,=-0.1989 E,,=-0.1954 E,,=-0.1953 JE,,=-0.1950 JE, ~-0.1880 JE, =-0.1697 JE_ =-0.1436
P Los )’ ,’
b ks [
y 4 . x5 oo T ey te g
st e Lot e |8 |7
! 4 e*’”? b4 ézﬁ 3 g
. Hgr |y |t e =)
L . el , "!’ aPe- “d ® ¢ ® - E, 0= 0-2091
4L 3gtr | e L ) _ Euowo™ 0245
o Wpal Wi 7 & E — 02181 E jono=-0-2133
- - Eono=-02162  E  =-02157 oo
# - EHOMO_ -0.2141 »
E, o= 02270 Fuowo=0-2075
Ursolic acid Carnosic acid Carnosol 7-Methoxyr 1 7-Ethoxyr I R 1 R idiphenol R dial Rosmarinic acid

Fig. (1). Energy gap diagram of the main active ingredients in R. officinalis L. (4 higher resolution / colour version of this figure is available

in the electronic copy of the article).
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Fig. (3). Active components and targets distribution of R. officinalis L. (A higher resolution / colour version of this figure is available in the
electronic copy of the article).

Fig. (4). The protein-protein interactions network of potential targets of Q-Markers of R. officinalis L. (A higher resolution / colour version of
this figure is available in the electronic copy of the article).
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Numerous studies on the active components of rosemary
primarily focus on terpenoids and organic acids. The content
of these components is high and relatively stable, making
them suitable sources for the Q-Marker of rosemary. By ref-
erencing network pharmacological screening conditions,
various principles of Q-Marker, and published literature, 17
components were ultimately selected as potential quality
markers for rosemary. These components include cineole,
carnosic acid, carnosol, rosmanol, isorosmanol, epirosmanol,
rosmarinine, rosmaridiphenol, rosmadial, royleanone, hor-
minone, homovanillic acid, ferruginol, cryptotanshinone,
rosmarinic acid, 7-methoxyrosmanol, and 7-ethoxyrosmanol.
Their structures are shown in Fig. (2). The majority of these
compounds are diterpenoids, which possess excellent phar-
macological properties. Carnosic Acid (CA) is a representa-
tive component; however, it decomposes under the influence
of external factors, transforming into compounds such as CL,
RA, and other similar derivatives. Monitoring the ratio of
CA to CL is more rational than tracking a single component
[107]. Another experiment analyzed the correlation between
this ratio and the antioxidant activity of rosemary extract,
revealing that CL enhances antioxidant activity. Consequent-
ly, they determined the optimal ratio of CA to CL. Therefore,
we hypothesize that evaluating the ratio between CA and CL
or its derivatives could serve as a new method of evaluation
[108].

We obtained the gene targets related to the core compo-
nents using SwissTargetPrediction [109], as shown in
Fig. (3). After removing duplicates, we identified 526 tar-
gets, which were then imported into the STRING 12.0 online
tool (https://string-db.org/) to create the protein interaction
network. Single nodes without interactions in the network
were removed. The results were subsequently imported into
Cytoscape 3.9.1, where the "Analyze Network" function was
used to calculate and sort the degree values of the network
nodes (Fig. 4). Finally, the top 30 nodes with the highest
degree values were selected as the core target genes (Fig. 5).

5.2. GO Analysis and KEGG Pathway Analysis

To further predict the potential targets and mechanisms
of action, we imported 30 core target genes into the DAVID
database for GO and KEGG network pharmacological analy-
sis. The top 10 GO items and KEGG pathways were selected
based on the p-value to create histograms (Figs. 6 and 7).
Additionally, the top 20 KEGG signaling pathways and 17
active components from rosemary, along with the 30 core
target genes, were comprehensively analyzed to construct the
"component-target-pathway" network (Fig. 8). The results
indicated that the biological processes related to the core
targets of rosemary included protein phosphorylation, pep-
tidyl-serine phosphorylation, positive regulation of protein
kinase B signaling, phosphatidylinositol 3-kinase signaling,
negative regulation of apoptosis, and the cellular response to
reactive oxygen species, among others. In the KEGG en-
richment analysis, the major pathways identified were endo-
crine resistance, proteoglycans in cancer, hepatitis B, lipid
metabolism and atherosclerosis, EGFR tyrosine kinase inhib-
itor resistance, and the AGE-RAGE signaling pathway in
diabetic complications, among others. It can be speculated
that these core targets of rosemary interfere with the occur-
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rence and development of diseases through the aforemen-
tioned processes and pathways.

CONCLUSION

Network Pharmacology is a methodology based on big
data analysis. This approach not only provides significant
support for modern drug research but also offers novel ideas
for the quality control of traditional herbal medicines. Tradi-
tional quality control of herbal medicines primarily relies on
chemical analysis methods, such as HPLC and GC-MS, to
detect the content of individual components, often neglecting
the diversity of active components in natural products. Net-
work Pharmacology integrates efficacy data from various
herbal medicines with molecular target information to con-
struct interaction networks. By analyzing these interactions,
the core components that influence the efficacy of the herbs
can be identified. This method provides a more comprehen-
sive way to evaluate the overall quality of various herbal
medicines and offers a feasible solution for standardized
quality control in other herbal products.

The diverse active ingredients in rosemary play a role in
the occurrence and development of oxidation, inflammation,
infections, tumors, and various organ lesions. Current re-
search indicates that rosemary clears reactive oxygen species
through classical antioxidant pathways, thereby enhancing
the body's ability to resist oxidative stress damage. It inhibits
inflammation via pathways such as NF-kB, MAPK, and
Nrf2, effectively delaying disease progression. Network
pharmacological predictions of the primary active component
targets suggest that they ameliorate conditions such as in-
flammation, tumors, and abnormalities in glucose and lipid
metabolism through related targets like PI3K, Akt, MAPK,
and STATS3.

This study lists the chemical compositions and biological
activities of rosemary and predicts 17 compoundsincluding
CA, RA, rosmanol, CL, epirosmanol, rosmaridiphenol,
rosmadial, and 1,8-cineole, as potential quality markers
based on their chemical composition, measurability, effec-
tiveness, and traditional medicinal properties. These sub-
stances represent the characteristic components found in
rosemary leaves and essential oil products, providing a basis
for establishing a quality evaluation system for rosemary.
Currently, most countries lack detailed application specifica-
tions for rosemary, making the identification of quality
markers significant for formulating future medicinal stand-
ards. Furthermore, existing research on the active ingredients
and pharmacological mechanisms of rosemary remains in-
sufficient, with most findings derived from animal experi-
ments. Additionally, the bioavailability of some components
is low, greatly limiting their applications. Therefore, further
exploration of the formulation optimization and structural
transformation of components is warranted.

Edible and medicinal herbs are generally safe and effec-
tive, positively contributing to human health. Rosemary, a
traditional herb with a long history and high economic value,
contains numerous compounds that exhibit antioxidant, anti-
inflammatory, antibacterial, antitumor, and various other
beneficial effects. Due to its considerable edible and medici-
nal value, the cultivation of rosemary has expanded in recent
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years, presenting a wide range of utilization prospects. How-
ever, the relative lack of research on quality control has led
to resource waste and environmental pressures. By continu-
ously exploring the potential mechanisms of rosemary, we
can establish a sustainable resource industry chain, allowing
it to play a more significant role in food, healthcare, and
medicine.
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