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 Abstract: Background: As one of the most important economic crops, tobacco products have a long 
history and dominate the development of the world economy. Pectin, as a complex colloidal sub-
stance widely present in plant cell walls, its content is an important factor affecting the safety of 
tobacco smoking. 

Objective: This study aimed to analyze the content and structure of pectin in tobacco samples. 

Methods: In this study, tobacco pectin was extracted by ultrasonic-assisted ionic liquid extraction, 
and the 13C MultiCP/MAS NMR spectral analysis of pectin was conducted. 

Results: The type of extractant, duration of ultrasonication, extraction temperature, and solid-liquid 
ratio were optimized. Under the conditions of using 1-Butyl-3-methylimidazolium tetrafluoroborate 
([Bmim]BF4) as the extractant, the solid-liquid ratio of 1:20 g/mL, and the ultrasonic power of 600 w 
for 30 min at 30°C, the yield of 23.7% of tobacco stem pectin and the purity of 54.2% could be ob-
tained. The optimized MultiCP sequence parameters, with 10 CP cycles of 1.0 ms and the repolariza-
tion time of 50 ms could obtain high-resolution spectra within a time of 1.0 h. The C-6 peaks of the 
pectin in spectra were fitted using the spectral deconvolution technique and calculated the methyl-
esterification (DM) of the tobacco pectin, which was generally less than 50% and belonged to the 
low methyl esterification pectin. The pectin content of the tobacco sample was calculated using the 
standard curve method with the addition of dimethyl sulfone (DMS) as an internal reference. The 
results of this method were consistent with the colorimetric method. 

Conclusion: The 13C MultiCP/MAS NMR method has the advantages of being green, fast, and accu-
rate and provides a new technical tool for quantitative and qualitative studies of cell wall substances 
in tobacco samples. 
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1. INTRODUCTION 

 Pectin is widely distributed in the middle layer of the 
plant cell wall and can be used as a gelling agent, thickener, 
and stabilizer [1-3]. It is also suitable for producing packag-
ing films and coatings [4]. Pectin macromolecule is a linear 
chain consisting of (1,4)-α-D-galacturonic acid, partially 
methyl-esterified at the carboxyl group of C-6 [5], and the 
degree of methyl-esterification (DM) refers to the number of 
methyl-esters on the backbone [6]. As a crucial structural 
parameter, DM plays an important role in the efficacy of 
pectin, especially in its gelation and stability [7]. The main 
chemical components in tobacco include alkaloids, sugars,  
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organic acids, proteins, etc [8]. Among them, pectin polysac-
charide is a hydrocolloid substance that plays an important 
role in the stability of tobacco tissue structure. However, 
tobacco pectin produces harmful gases such as formaldehyde 
and formic acid during burning and smoking [9]. These gas-
es are hazardous to consumers' health and harm the safety of 
tobacco smoking [10]. Therefore, it is important to establish 
a rapid and accurate analytical method to quantify the pectin 
content in tobacco. 

 The methods of determining pectin content are divided 
into chemical and instrumental analytical methods. Chemical 
methods include titration and gravimetric methods. The titra-
tion method is suitable for the determination of pure pectin 
and has limitations in use [11]; the gravimetric method is 
safe and reliable, but the operation is time-consuming and 
laborious [12]. The common instrumental methods include 
UV spectrophotometry [13], high-performance liquid chro-
matography (HPLC) [14, 15], and near-infrared spectroscopy 
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(NIR) [16]. These methods are fast and accurate. However, 
the disadvantage is that the sample preparation is cumber-
some; most of them need acidolysis or enzymolysis, and the 
structural information of plant macromolecules cannot be 
obtained [17]. Nuclear Magnetic Resonance (NMR) technol-
ogy offers certain advantages in analyzing material structure 
[18]. In particular, liquid NMR is a powerful tool for the 
structural study of organic compounds, and rich molecular 
structure information can be obtained by analyzing the spec-
tra [19]. However, it’s difficult to find a suitable solvent to 
dissolve the sample. In contrast, the solid-state NMR 
(ssNMR) technique is a valuable tool for analyzing the struc-
ture and conformation of polysaccharides. It can also be em-
ployed to study insoluble biomass samples [20]. This tech-
nique has been used in food science [21, 22], agricultural 
science [23], pharmaceutical chemistry [24, 25], material 
science [26], and other fields [27]. However, due to the low 
sensitivity and low spectral resolution, it is challenging to 
meet the requirements of quantitative analysis in a relatively 
short period [28]. To achieve these objectives, the magic-
angle-spinning (MAS) technique is used [29]. This technique 
homogenizes the anisotropic spin interactions between dif-
ferent nuclei and reduces the broadening of resonance lines. 

 At present, the most commonly used quantitative method 
is direct polarization (DP), which often obtains reliable quan-
titative information by setting the cycle delay greater than 5 
times the maximum longitudinal relaxation time(T1) in the 
sample [30]. However, for biomolecules, it usually takes tens 
of hours to obtain quantitative 13C DP/MAS ssNMR spectra 
with good signal-to-noise ratios (SNR), which makes this 
method difficult to generalize for bulk measurements. There-
fore, most NMR studies of biomolecules do not rely on DP 
but use cross-polarization (CP) [31]. Although CP reduces 
the detection time, the accuracy of quantification is poor for 
different types of nuclei. This is because, under the same 
experimental conditions, the cross-polarization efficiency of 
abundant (I) and dilute (S) nuclei are different. They have 
different CP kinetic behaviors [32]. Based on the above 
problems, researchers have proposed the method of multiple-
cross polarization (MultiCP) to achieve S nuclei detection in 
a short time [33]. The concept of MultiCP was initially in-
troduced by Gerstein in 1985 [34]. A quantitative detection 
technique based on MultiCP was proposed by Wu et al. in 
1989 [35]. In 2014, Schmidt-Rhor et al. named this method 
MutiCP and further optimized it in 2017 to reduce signal loss 
due to 90° pulse resonance deviation and excitation pulse 
width accuracy using the 180° compensated pulse technique 
[33, 36]. Through the MultiCP process, the CP efficiencies 
of different S-nuclei in the sample system gradually increase 
and tend to the same level, thereby achieving quantitative 
information. The method is based on heteronuclear dipole 
interactions, so it is sensitive to nuclear spacing and molecu-
lar mobility and can obtain high-resolution NMR carbon 
spectra of solid materials [37]. Currently, the MultiCP meth-
od has been used to detect the crystallinity of cellulose [38], 
to quantify the component content of valine/methionine mix-
tures [39], and to determine the proportion of carbon-
containing functional groups in kerogen [40]. However, the 
experimental parameters can affect the accuracy of measur-
ing results for complex natural samples, thus need to be op-
timized. 

 In practice, one of the most important steps in structural 
analysis is to extract the "target" analyte from the sample 
[41]. Among the extraction methods for plant pectin, the 
most common industrial extraction technique is acid extrac-
tion [42]. This method is carried out under acidic, high-
temperature conditions. Although the extraction efficiency is 
high, it pollutes the environment and is highly corrosive to 
the equipment [43]. Enzymatic extraction is a specialized 
extraction method with high extraction efficiency. However, 
it is costly [44]. In recent years, ionic liquids (ILs) have 
gained considerable attention as a designable "green" solvent 
in various fields [45], particularly the chemical industry, due 
to their good solubility and thermal stability [46]. They have 
been widely used to extract and separate biologically active 
substances. Ultrasonic-assisted extraction (UAE), a green 
separation technology, has rapidly developed in recent years 
[47]. It uses ultrasonic waves to enhance the speed of media 
molecules' movement, penetration, and interaction, thus 
promoting the solubilization of substances in plant tissues. 
The combination of ILs and UAE can fully utilize both ad-
vantages. Compared to the traditional acid extraction meth-
od, UAE-IL extraction offers a shorter extraction cycle and 
lower energy and solvent consumption. It provides a new 
method for the extraction of pectin in tobacco [48].  

 In this study, tobacco pectin was extracted using UAE-
ILs extraction. The content and structure of tobacco pectin 
were analyzed using the 13C MultiCP/MAS ssNMR tech-
nique. The experimental parameters of the MultiCP pulse 
sequence were optimized, and a suitable internal reference 
was selected to achieve rapid and accurate quantitative anal-
ysis of tobacco pectin. The methyl esterification information 
in the pectin samples was obtained using the deconvolution 
technique. 

2. MATERIALS AND METHODS 

2.1. Instruments, Materials and Reagents 

 Bruker Advance Ш HD 400WB solid-state nuclear mag-
netic resonance spectrometer (Bruker�� Germany), with 
Bruker 4 mm 1H-13C double resonance MAS probe. TU-
1901 UV spectrometer (Beijing PuXi General Instrument 
Co., Ltd), DF-101S thermostatic bath (Gongyi Yuhua In-
strument Co., Ltd), KJD-30L ultrasonic instrument (Chang-
zhou Kejingda Washing Machine Co., Ltd), JA2003 elec-
tronic balance (Shanghai Shunyu Hengping Instrument Co., 
Ltd.), TDL-5-A centrifuge (Shanghai Anting Scientific In-
strument Factory), DZF-ZB vacuum drying box (Beijing 
Ever Bright Medical Treatment Instrument Co., Ltd), XW-
80A vortex oscillator (Jiangsu Xinkang Medical Instrument 
Co., Ltd), DHG-9140A drying oven (Shanghai Jinghong 
Experimental Equipment Co., Ltd), RE-52AA rotary evapo-
rator (Shanghai Yarong Biochemical Instrument Factory). 

 Tobacco stems, flue-cured tobacco, and reconstituted 
tobacco are from Jiangxi Province of China. Burley tobacco 
samples are from the Hubei Province of China. Oriental to-
bacco samples are from Yunnan Province of China. All the 
above samples are provided by Jiangxi China Tobacco In-
dustry Co. The tobacco samples were dried at 40°C for 2 h, 
crushed, sieved by a 40-mesh sieve, and sealed.  
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 1-Butyl-3-methylimidazole tetrafluoroborate ([Bmim]BF4, 
97%); 1-butyl-3-methylimidazole bromide ([Bmim]Br, 97%); 
1-butyl-3-methylimidazole chloride ([Bmim]Cl, 97%); cellulase 
(enzyme mixture, ≥1000 unit/g); polygalacturonic acid; dime-
thyl sulfone (DMS, 99%) was purchased from Aladdin (Shang-
hai, China). Sodium-3-(trimethylsilyl)propionate (TMSP, 98% 
atom) was purchased from Rhawn (Shanghai, China). Other 
chemical reagents used in this work were of analytical grade 
and the secondary distilled water was used throughout the 
work. 

2.2. Pectin Extraction Method 

 Tobacco samples (2.5 g) were treated with 40 mL of 
[Bmim]BF4 solution (1.0 M) and sonicated at 30°C for 30 
min. Subsequently, 200 mL of distilled water was added to 
dissolve the extracted pectin and filtered to remove the pre-
cipitate. Following this, 30 mg of cellulase was added to the 
filtrate, which was then placed in a drying oven at 45°C for 
12 h. After the hydrolyzed cellulose was removed by filtra-
tion, the resulting solution was the pectin solution. To further 
refine the pectin, it was heated to 80-90°C for decompression 
distillation, with approximately 150 mL of water being re-
moved. Then, 200 mL of anhydrous ethanol was added to the 
remaining pectin solution and precipitated for 3-4 h. The 
mixture was centrifuged at 4000r/min for 5 min, with the 
precipitate being washed with 100 mL of anhydrous ethanol 
2-3 times. The washed precipitate was put into a vacuum 
oven, drying at 55°C for 12 h. After that, the pectin sample 
was obtained [49]. Overall, pectin extraction procedures are 
schematized in Fig. (1).�

 
Fig. (1). Flowchart of pectin extraction from tobacco samples. 

 The yield and purity of tobacco pectin extracted by ultra-
sonic-assisted ionic liquid were calculated according to the 
following equations (1, 2) [50, 51] respectively: 
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where W0 represents the weight of the dried tobacco sample, 
W1 represents the weight of extracted pectin, and W2 repre-
sents the mass of galacturonic acid in pectin extract.  

2.3. Solid-state Nuclear Magnetic Resonance Analysis of 
pectin 

 All samples in the study were analyzed on a Bruker 400 
MHz AVANCE AV III spectrometer with a probe size of 4 
mm. All spectra were measured at a spinning frequency of 
14 kHz. For the acquisition of 13C DP/MAS ssNMR spectra, 
1024 scans were performed over a time of 29 h with a recy-
cle delay of 100 s (5T1). The optimal experimental parame-
ters for the MultiCP sequence were set as follows: 10 periods 
of 1.0 ms CP, the duration of repolarization period of 50 ms, 
a setting of the number of scans to 2048, and a relaxation 
delay of 1.0 s. The ramp for CP was implemented in 11 steps 
and a 1% amplitude increment. The measuring time of Mul-
tiCP requires 1.0 h. 

 For each NMR quantitative test, 100 mg of tobacco pec-
tin and 5 mg of DMS were accurately weighed, mixed, and 
carefully ground into a homogeneous powder. Then, the 
samples were tightly packed in the 4 mm rotor for measuring 
the spectra. The obtained NMR spectra were optimized using 
MestReNova14.3.3 software, including adjustment of the 
window function, phase correction, baseline correction, and 
curve smoothing [52]. 

2.4. Spectral Deconvolution Analysis 

 The decomposition of 13C MultiCP/MAS NMR spectra in 
the regions of 180-165 ppm was pursued by MestReNo-
va14.3.3 software. Three Lorentzian/Gaussian peaks were 
introduced. After several iterations, the residuals gradually 
decreased until the fit converged. The results of peak separa-
tion were applied to obtain the DM (Eq. 3) [53].  

�� � �
�������

����
����   (Eq. 3) 

 Where ACOOCH3 represents the integral area of the methyl-
substituted galacturonic acid, AC-6 represents the integral area 
of the C-6 peak. 

2.5. Standard Curve of 13C MultiCP/MAS ssNMR 

 To construct a mass-based calibration curve for pectin, a 
series of mass gradient mixtures of polygalacturonic acid 
(10, 20, 30, 40, and 50 mg) and 5 mg of DMS were prepared. 
To maintain the same filling volume, part of the sample was 
homogenously mixed with NaCl and then loaded into a 4 
mm rotor. The spectrum of each mixture was acquired using 
the 13C MultiCP/MAS ssNMR. The standard curve was plot-
ted using the mass of polygalacturonic acid as the x-axis and 
the ratio of the integrated area of the C-6 (180-165 ppm) 
peak to the DMS (~42.5 ppm) peak in the spectrum as the y-
axis [54]. 
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2.6. Colorimetric Method Analysis of Pectin 

 To verify the experimental results of NMR, the GalA 
content was determined using the m-hydroxy diphenyl color-
imetric method reported by Blumenkrantz [55]. The analyti-
cal procedure is detailed in the Supplementary Material, the 
colorimetric calibration curve is provided in Fig. (S1), and 
Table S1 shows the moisture content of different types of 
tobacco samples. In addition, the accuracy of the results was 
verified by the sample spiking test, and the results are listed 
in Table S2. 

3. RESULTS AND DISCUSSION 

3.1. Ultrasonic-assisted Ionic Liquid Extraction of Pectin 

 The extraction process has the most significant effect on 
the yield and purity of pectin [56]. In this study, conditions 
such as the type of ILs, the duration of ultrasonication, the 
extraction temperature, and the solid-liquid ratio were opti-
mized to achieve the best extraction results. 

 An ionic liquid is a non-molecular solvent composed of 
ions. It usually consists of organic cations containing het-
eroatoms and inorganic or organic anions [57]. The insoluble 
pectin constituents can be directly contacted and hydrolyzed 
into soluble pectin under acidic conditions and thus released 
from plant tissues [58]. Therefore, three representative acidic 
hydrophilic ILs were selected for the extraction of tobacco 
stem samples in this experiment: [Bmim]Cl, [Bmim]Br, and 
[Bmim]BF4, and the pH values of these selected ILs are 
shown in Table S3. According to the reference [59], the con-
centration of ILs was chosen to be 1.0 mol/L. The extraction 
results of three ILs were compared under the conditions of 
ultrasonication at 30°C for 30 min, and the solid-liquid ratio 
of 1:20 g/mL, as shown in Fig. (2). The highest yield and 
purity of pectin was obtained using [Bmim]BF4 extractant. 
This is because the cations such as Ca2+ and Mg2+ in the to-
bacco stem samples bind to pectin through ionic bonding and 
have a confining effect on pectin. The [Bmim]BF4 extractant 
has strong binding ability with Ca2+, Mg2+, and other ions, 
which can increase the solubility of pectin and thus improve 
the yield [59]. Therefore, [Bmim]BF4 was chosen as the ex-
tractant in this study. 

 Secondly, the extraction process conditions were opti-
mized. The yield and purity of pectin from tobacco stem 
under different conditions were obtained by choosing differ-
ent levels of duration of ultrasonication of 10, 20, 30 min; 
extraction temperature of 20, 30, 50°C and solid-liquid ratio 
of 1:10, 1:20, 1:30 g/mL. The sample size was maintained 
constant, and the results are shown in Fig. (3). It can be seen 
that the yield of pectin progressively increased with the ex-
tension of the duration of ultrasonication at 10, 30, and 50 
min, while the purity of pectin slightly decreased at 50 min. 
This is because a short duration of ultrasonication leads to 
insufficient hydrolysis, whereas a long time leads to exces-
sive hydrolysis, thereby increasing the fragmentation of pec-
tin molecules and lowering the purity of pectin [60, 61]. 
Consequently, the duration of ultrasonication was chosen to 
be 30 min. The extraction temperature also plays a crucial 
role. At temperatures of 20, 30, and 50°C, the yield and puri-
ty of pectin show a trend of initial increase followed by de-
crease. As the temperature rises, the molecular thermal 

movement intensifies, enhancing the solvent and solute dif-
fusion ability and greatly accelerating the extraction process. 
However, higher temperatures will cause degradation of pec-
tin molecules, deepening of color, and browning. It affects 
its property and structure [62]. Therefore, the extraction 
temperature was chosen to be 30°C. The solid-liquid ratio 
determines the contact area of liquid with solid and influ-
ences the pectin yield. A low solid-liquid ratio will lead to 
incomplete immersion of raw materials in the solvent. A 
high solid-liquid ratio requires large solvent consumption 
and causes high acidity, which is unbeneficial for the extrac-
tion of pectin [63]. Consequently, the optimal process condi-
tions for pectin extraction were: duration of ultrasonication 
of 30 min, extraction temperature of 30°C, and solid-liquid 
ratio of 1:20 g/mL, under which the yield was 23.3% and the 
purity was 54.2%. 

 
Fig. (2). Effect of different types of ionic liquids on the yield and 
purity of pectin from tobacco stems. (A higher resolution / colour 
version of this figure is available in the electronic copy of the arti-
cle). 

 

 To verify the robustness of the extraction method, three 
parallel experiments were carried out under optimal condi-
tions, and the pectin content of the tobacco stem samples was 
determined by the colorimetric method. The results were 
11.2%, 11.8%, and 11.8%, respectively, with a relative 
standard deviation of 2.98% (n=3), indicating that the extrac-
tion formula is stable. 

3.2. Optimization of Parameters of MultiCP/MAS Pulse 
Sequence 

 The 13C DP/MAS ssNMR spectrum was chosen to evalu-
ate the 13C MultiCP/MAS ssNMR spectrum due to its high 
spectrum intensity and reliable quantitative information [64]. 
During the experimental process of 13C DP/MAS ssNMR, 
the settings of the relevant experimental parameters directly 
affect the accuracy of the DP spectrum [65]. Among them, 
the recycle delay is an important parameter affecting the 
accuracy of the signal peak area, and its setting is directly 
related to 13C longitudinal relaxation time (T1,C) [66]. Typi-
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cally, a delay 3-5 times that of the longitudinal relaxation 
time is inserted in between every scan of the NMR experi-
ment, which allows full restoration of the nuclear spins to 
equilibrium along the direction of the polarizing magnetic 
field. It is guaranteed that the intensity of the signal being 
integrated is fully proportional to the number of nuclei [67, 
68]. In this experiment, the pectin of the tobacco stem was 
chosen to determine the T1,C. The obtained relaxation curve 
was fitted with the function I(t)=I(0)exp(-x/T1,C) [69] as 
shown in Fig. (4). The T1,C of the C-6 peak (180-165 ppm) 
was 20.9 s. Therefore, the 13C DP/MAS recycle delay was 
set to 100 s (~5T1,C), and the accurate quantitative spectrum 
was obtained in 29.0 h. The result is illustrated in Fig. (5). 

 
Fig. (3). Effect of time, temperature, and solid-liquid ratio on the 
yield and purity of pectin from tobacco stems. (A higher resolution 
/ colour version of this figure is available in the electronic copy of 
the article). 
 

 
Fig. (4). Mono-exponential T1,c fitting of pectin. R2=0.9043, 
T1,C=20.90 s. (A higher resolution / colour version of this figure is 
available in the electronic copy of the article). 
 
 In the MultiCP sequence, important experimental param-
eters include the contact time of CP blocks (tp), the duration 

of the repolarization period between each CP block (tz), and 
the number of CP blocks (n). Due to the complex kinetics of 
polarization transfer in MultiCP, the difference in tp of CP 
blocks often produces large differences, so the optimization 
of tp is the most critical [33]. In our test, the tp of 0.010 ms, 
0.10 ms, 0.30 ms, 0.50 ms, 0.80 ms, 1.0 ms, 1.3 ms, 1.5 ms, 
and 2.0 ms were designed for the pectin of tobacco stem 
sample. Combined with 13C DP/MAS ssNMR spectra, the 
differences between MultiCP and DP spectra at the C-6 peak 
of pectin were compared (three representative spectra were 
selected with tp of 0.10 ms, 1.0 ms, and 1.3 ms, respectively), 
as depicted in Fig. (5). At 180-165 ppm, the peak intensity 
under tp at 0.10 ms was weak, and there was a large differ-
ence compared with the DP spectra. As tp increased, the peak 
intensity subsequently increased, and the difference with the 
DP spectrum lessened. When tp increased to 1.0 ms, the 
spectrum agreed well with the DP spectrum. However, when 
tp increased to 1.3 ms, the signal intensity did not significant-
ly enhance. As tp lengthens, the polarization transfer effi-
ciency due to the spin-lattice relaxation of the 1H nucleus in 
the rotational coordinate system decreases, which leads to 
the weakening of the 13C signal intensity. Considering all 
factors, tp of 1.0 ms is appropriate for pectin of different 
types of tobacco samples, including tobacco stem. 

 
Fig. (5). 13C MultiCP/MAS ssNMR spectra and 13C DP/MAS 
ssNMR spectrum of tobacco stem samples. (A higher resolution / 
colour version of this figure is available in the electronic copy of 
the article). 

 

 The crucial innovation of the MultiCP approach is re-
peated blocks of CP separated by periods of duration tz, dur-
ing which the 1H magnetization can recover to a near-
equilibrium value [33]. Therefore, the setting of tz is needed 
to ensure that most of the 1H magnetization is restored to the 
thermodynamic equilibrium state while minimizing the de-
cay of the 13C magnetization. In addition, the setting of tz 
directly affects the experiment time of MultiCP, so the set-
ting of tz should not be too long. Since, typically tz�2T1,H, at 
which time about 63%~86% of 1H magnetization relaxation 
is recovered [70]. The T1,H of tobacco pectin was measured, 
and the curve was fitted using the� I(t)=I(0)+P exp(-x/T1,H� 
function� and the result is shown in Fig. (6). T1,H=21 ms was 
measured, so tz was set to 50 ms for this experiment. 

 The final optimized parameters determined in this work 
are tp of 1.0 ms and tz of 50 ms. 2048 scans and 10 CP blocks 
were chosen to obtain the spectra within 1.0 h. Under the 
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optimal parameters, the measurement time is greatly short-
ened compared to DP/MAS with high SNR. 

 
Fig. (6). Triple exponential T1,H fitting of pectin. R2=0.9979, 
T1,H=21 ms. (A higher resolution / colour version of this figure is 
available in the electronic copy of the article). 

 

3.3. Attribution of Pectin 13C MultiCP/MAS ssNMR 
Spectra 

 Under optimized conditions of instrumental parameters, 
the standard sample of polygalacturonic acid and the pectin 
sample extracted from tobacco stems were analyzed using 
13C MultiCP/MAS ssNMR. The spectra are obtained as 
shown in Fig. (7). The signal peaks of the spectra were at-
tributed. Among them, 19 ppm is the signal after acetylation 

of O-2 and O-3, and 54 ppm is the signal of carboxyl methyl 
esterification of pectin. 65-75 ppm is the C-2,3,5 peaks of 
pectin, 78 ppm is the signal of the C-4 peak of pectin, 102 
ppm is the signal of the C-1 peak, and the C-6 peak region of 
pectin at the chemical shift of 180-165 ppm [71]. 

 Of these, the carboxyl C-6 carbons of galacturonic units 
are present as carboxylic acid (COOH), ester (COOCH3), 
and carboxylate anion (COO-) [72]. The difference in chemi-
cal shifts of these peaks is significantly less than the sum of 
their half-width, so the resonance signals overlap. To obtain 
quantitative and qualitative information, a split-peak fit to 
the C-6 region of pectin is required. This process requires 
deconvolution of the spectra using Mestrenova14.3.3 soft-
ware. In this experiment, several hybrid Lorentz-Gaussian 
functions were mainly used as fitting models for split-peak 
fitting of the C-6 peaks [73]. The fitting results are shown in 
Fig. (8), which decompose the signal in the region of 180-
165 ppm into three spectra with different displacements, 
namely -COO- (ẟ175-173 ppm, FIT1), -COOCH3 (ẟ~172 
ppm, FIT2), -COOH (ẟ~169 ppm, FIT3). The DM of pectin 
was calculated by the ratio of the integrated area of COOCH3 
to the total integrated area of the C-6 peak. Three sets of 
deconvolution treatments of extracted pectin from tobacco 
stem samples were done in parallel in the experiment, and 
the results are shown in Table 1 (Table S4 for deconvolution 
parameters), which shows that the DM of the tobacco stem 
pectin is less than 50%, and it is a low methyl esterified 
(LM) pectin. 

3.4. Quantitative Analysis of Pectin 

 The C-6 peak position of pectin is stable and less inter-
fering, and a strong linear correlation exists between the 
peak area and the galacturonic acid content of the pectin 
molecule. Quantitative analysis can be effectively achieved 

 
Fig. (7). 13 C MultiCP/MAS ssNMR spectra of polygalacturonic acid (PGA) and pectin extracted from tobacco stems. (A higher resolution / 
colour version of this figure is available in the electronic copy of the article). 
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by adding an internal reference to the NMR sample. The 
properties required of suitable internal reference in NMR are 
as follows: (1) favorable chemical inertness and stability; (2) 
suitable chemical shift in a vacant region of the spectrum for 
avoiding peak overlaps; (3) small line width, even a small 
amount of internal reference can produce a considerable in-
tensity; (4) good relaxation characteristics[74]. Based on the 
above criteria, some possible internal reference compounds 
were screened out: TMSP (T1 =4.0 s), L-alanine (T1 >3.5 s), 
adamantane (T1 =1.9 s), and DMS (T1 =0.17 s). These com-
pounds have good signal resolution and fulfill the above cri-
teria[75]. In this study, the signals from TMSP and DM on 
spectra were examined (Fig. (S2)). The spectrum for DMS 
shows a signal sharp peak at 42.5 ppm, whereas TMSP has 
signal peaks at both 0 ppm and 180 ppm [52, 76]. Since the 
signal peak of TMSP partially overlaps with the C-6 region, 
it may affect the quantification of the C-6 peak. Therefore, 
DMS was chosen as the internal reference for the experi-
ment. 

 
Fig. (8). Deconvolution spectrum of the C-6 spectral region of to-
bacco stem pectin. (A higher resolution / colour version of this 
figure is available in the electronic copy of the article). 

 

Table 1. Deconvolution analysis and DM of pectin samples 
from tobacco stems. 

Sample 
Area a, 103 

DM (%) 
AC-6 tol ACOOCH3 ACOOH ACOO- 

1 35.0 16.7 6.3 12.0 47.7 

2 33.3 15.5 6.7 11.1 46.5 

3 30.5 14.2 5.6 10.7 46.6 

Note: a: Peak area of spectral peak. 
 

 In this work, the standard curve method, in addition to an 
internal reference, was used to obtain more accurate quanti-
tative results. The standard curve is reported in Fig. (9), and 
the curve equation is y= 0.1528x-0.2905 (R2=0.9944). The 
limit of detection (LOD) and limit of quantification (LOQ) 
of pectin were 0.41 mg/g and 0.91 mg/g at 3 times and 10 
times SNR, respectively. 

 
Fig. (9). NMR quantitative standard curve of tobacco pectin. (A 
higher resolution / colour version of this figure is available in the 
electronic copy of the article). 
 
 To assess the precision of the 13C MultiCP/MAS ssNMR 
method for the determination of tobacco pectin content, the 
measurement was repeated 6 times with a pectin sample ex-
tracted from tobacco stem, and the results are shown in Table 
2. The mean value of the six measurements was 11.6% with 
an RSD (n=6) of 2.18%. This indicates that the method has 
good precision. In addition, to evaluate the accuracy of the 
method, two levels of polygalacturonic acid standard sam-
ples were added to each of the two sets of tobacco stem pec-
tin samples, which were then analyzed by 13C MultiCP/MAS 
ssNMR. The determination of galacturonic acid content was 
repeated three times for each sample, and the results are 
shown in Table 3. The recoveries of the tobacco pectin 
ranged from 100.6% to 107.3%, indicating that 13C Mul-
tiCP/MAS ssNMR was an accurate method for the determi-
nation of tobacco pectin content. 

Table 2. Precision of the quantitative method of 13C 
MultiCP/MAS ssNMR. 

No. 

Pectin 

NMR Method 
(%) 

Colorimetric Method 
(%) 

Relative Error 
(%) 

1 11.5 

11.7 

-1.71 

2 11.3 -3.42 

3 11.5 -1.71 

4 12.0 2.56 

5 11.5 -1.71 

6 11.8 0.85 

3.5. Analysis of Different Types of Tobacco Pectin 

 A fairly accurate 13C MultiCP/MAS ssNMR method has 
been applied to analyze the pectin of five varieties of tobacco 
samples and the obtained spectra are shown in Fig. (10). The 
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Fig. (10). 13C MultiCP/MAS ssNMR spectra�of different types of tobacco samples. (A higher resolution / colour version of this figure is 
available in the electronic copy of the article). 

 

Table 3. Accuracy of 13CMultiCP/MAS ssNMR quantification 
methods. 

No. 
Pectin 

Content 
(%) 

Spiking 
Level (mg) 

RSD 
(%) 

Recovery 
(%) 

Average 
Recovery 

(%) 

1# 11.6 
7.9 1.17 105.1 

104.7 
14.6 1.57 107.3 

2# 11.8 
6.4 4.30 106.0 

12.0 2.66 100.6 

 
spectra of different types of tobacco samples showed similar-
ity to tobacco stem sample, in which the C-6 peaks of the 
pectin all had good resolution. The pectin content and DM of 
the four tobacco samples determined by the 13C Mul-
tiCP/MAS ssNMR method (Table S5 for details of deconvo-
lution parameters) and the pectin content determined by the 
colorimetric method are listed in Table 4. It can be seen that 
the measurements of ssNMR and colorimetric methods are 
consistent, with relative errors ranging from -3.53% to 
2.15%. The DM of the four samples was higher for flue-
cured tobacco and reconstituted tobacco and lower for burley 
and oriental tobacco, indicating a significant difference in the 

DM of different types of tobacco pectin. Some researchers 
have used gas chromatography-mass spectrometry to deter-
mine the DM of soluble pectin in flue-cured tobacco, burley 
tobacco, and oriental tobacco, and the results showed that the 
DM of pectin was higher in flue-cured tobacco and lowest in 
burley tobacco [77], which was consistent with the results of 
this work. 

Table 4. Comparison of the quantitative results of 13C Mul-
tiCP/MAS ssNMR method and colorimetric method 
for different types of tobacco samples. 

Samples 

Pectin 

NMR 
Method 

(%) 

Colorimetric 
Method (%) 

Relative 
Error 
(%) 

DM 
(%) 

Reconstituted 
tobacco 

8.2±0.4 8.5 -3.53 57.0 

Oriental tobacco 7.8±0.2 7.9 -1.26 40.3 

Burley tobacco 9.5±0.4 9.3 2.15 39.0 

Flue-cured to-
bacco 

9.7±0.4 10.0 -3.00 53.9 
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CONCLUSION 

 In this study, a method of ultrasonic-assisted ionic liquid 
extraction of pectin is developed, which is more environmen-
tally friendly and efficient than the conventional method. 
The 13C MultiCP/MAS ssNMR technique is also optimized 
to analyze the content and structure of tobacco pectin. The 
detection time of the method is only one-thirtieth of DP. 
Compared with CP, the method is more sensitive and can 
obtain quantitative information using DMS as the internal 
reference, eliminating the effects of signal fluctuation and 
thus improving the quantitative accuracy. The method has 
the advantages of being green, fast, and accurate and pro-
vides a new tool for determining pectin content and structure 
in tobacco. 
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