Skip to content
2000
image of Preparation and Evaluation of Amorphous Solid Dispersion of Etoricoxib, Employing A Fast Approach for Polymer Selection

Abstract

Background

Nonsteroidal anti-inflammatory drugs (NSAIDs) are commonly used to manage pain and inflammation but are associated with gastrointestinal and cardiovascular risks, especially with COX-2 inhibitors. Topical delivery systems offer a safer alternative by minimizing systemic exposure; however, poor solubility and limited skin penetration remain challenges. Enhancing solubility through solid dispersion and incorporating it into a gel formulation may improve permeability and therapeutic effectiveness, addressing the need for safer and more efficient topical NSAID delivery.

Introduction

This investigation aimed to enhance the solubility and dissolution rate of poorly water-soluble etoricoxib through the development of solid dispersions using the kneading method.

Methods

A suitable carrier was selected from a pool of candidates based on polarised microscopy analysis. The influence of a solubilizer on amorphization was evaluated. Solid dispersions of Etoricoxib and its corresponding physical mixtures, incorporating or excluding the solubilizer, were prepared at varying drug-to-carrier ratios. Yield, drug content, saturation solubility, and dissolution profiles of these formulations were determined. Solid-state characterization using Fourier Transform-Infrared (FTIR), X-ray diffraction (XRD), Scanning electron microscopy (SEM), and differential scanning calorimetry (DSC) techniques was conducted.

Results

FTIR spectra indicated the formation of intermolecular hydrogen bonds within the dispersions. XRD, SEM, and DSC analysis confirmed the amorphous transition of crystalline etoricoxib in all the prepared solid dispersions. In comparison to pure etoricoxib and its physical mixes, the produced solid dispersions showed significantly improved dissolution and solubility,

Discussion

Solid dispersion technology effectively enhanced the solubility and dissolution of poorly water-soluble etoricoxib. Polarised microscopy also proved valuable for rapid excipient screening. However, the study was limited by the narrow range of solubilizers tested. While Poloxamer 407 was selected for its availability and untapped potential, broader screening of advanced solubilizers could offer improved outcomes.

Conclusion

The solubility increased from 99.08 to 296.8 μg/ml and the dissolution rose from 69.32% to 98.07%. These findings suggest that the kneading method and Poloxamer successfully produced amorphous solid dispersions of etoricoxib with significantly enhanced solubility and dissolution properties, potentially improving its bioavailability.

Loading

Article metrics loading...

/content/journals/aiamc/10.2174/0118715230357451250812171047
2025-09-01
2025-10-18
Loading full text...

Full text loading...

References

  1. Saharan V. Kukka V. Kataria M. Gera M. Choudhury P. Dissolution enhancement of drugs. Part II: Effect of carriers. Int. J. Health. Res. 2009 2 3 207 223
    [Google Scholar]
  2. Ain S. Ain Q. Parveen S. An overview on various approaches used for solubilization of poorly soluble drugs. Pharm. Res. 2009 2 84 104
    [Google Scholar]
  3. Amidon G.L. Lennernäs H. Shah V.P. Crison J.R. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res. 1995 12 3 413 420 10.1023/a:1016212804288 7617530
    [Google Scholar]
  4. Vemula V.R. Lagishetty V. Lingala S. Solubility enhancement techniques. Int. J. Pharm. Sci. Rev. Res. 2010 5 1 41 51
    [Google Scholar]
  5. Chiou W.L. Riegelman S. Pharmaceutical applications of solid dispersion systems. J. Pharm. Sci. 1971 60 9 1281 1302 10.1002/jps.2600600902 4935981
    [Google Scholar]
  6. Dhirendra K. Lewis S. Udupa N. Atin K. Solid dispersions: A review. Pak. J. Pharm. Sci. 2009 22 2 234 246 19339238
    [Google Scholar]
  7. Leclercq P. Malaise M.G. Drug of the month. Etoricoxib (Arcoxia). Rev. Med. Liege 2004 59 5 345 349 15270001
    [Google Scholar]
  8. Sareen S. Joseph L. Mathew G. Improvement in solubility of poor water-soluble drugs by solid dispersion. Int. J. Pharm. Investig. 2012 2 1 12 17 10.4103/2230‑973X.96921 23071955
    [Google Scholar]
  9. Patro N.M. Sultana A. Terao K. Nakata D. Jo A. Urano A. Ishida Y. Gorantla R.N. Pandit V. Devi K. Rohit S. Grewal B.K. Sophia E.M. Suresh A. Ekbote V.K. Suresh S. Comparison and correlation of in vitro, in vivo and in silico evaluations of alpha, beta and gamma cyclodextrin complexes of curcumin. J. Incl. Phenom. Macrocycl. Chem. 2014 78 1-4 471 483 10.1007/s10847‑013‑0322‑1
    [Google Scholar]
  10. Leclercq P. Malaise M.G. Etoricoxib (Arcoxia). Rev. Med. Liege 2004 59 5 345 349 15270001
    [Google Scholar]
  11. Cochrane D.J. Jarvis B. Keating G.M. Etoricoxib. Drugs 2002 62 18 2637 2651 10.2165/00003495‑200262180‑00006 12466002
    [Google Scholar]
  12. Patel D.M. Patel M.M. Optimization of fast dissolving etoricoxib tablets prepared by sublimation technique. Indian J. Pharm. Sci. 2008 70 1 71 76 10.4103/0250‑474X.40335 20390084
    [Google Scholar]
  13. Patel H. Suhagia B. Shah S. Rathod I. Parmar V. Preparation and characterization of etoricoxib-β-cyclodextrin complexes prepared by the kneading method. Acta Pharm. 2007 57 3 351 359 10.2478/v10007‑007‑0028‑2 17878114
    [Google Scholar]
  14. AlKhalidi M.M. Enhancement of aqueous solubility and dissolution rate of etoricoxib by solid dispersion technique. Iraqi J. Pharm Sci. 2020 29 1 76 87 10.31351/vol29iss1pp76‑87
    [Google Scholar]
  15. Gupta P. Kakumanu V.K. Bansal A.K. Stability and solubility of celecoxib-PVP amorphous dispersions: A molecular perspective. Pharm. Res. 2004 21 10 1762 1769 10.1023/B:PHAM.0000045226.42859.b8 15553220
    [Google Scholar]
  16. Nayak A.K. Panigrahi P.P. Solubility enhancement of etoricoxib by cosolvency approach. ISRN Physical Chemistry 2012 2012 1 5 10.5402/2012/820653
    [Google Scholar]
  17. Brooks P. Kubler P. Etoricoxib for arthritis and pain management. Ther. Clin. Risk Manag. 2006 2 1 45 57 18360581
    [Google Scholar]
  18. Huang W.N. Tso T.K. Etoricoxib improves osteoarthritis pain relief, joint function, and quality of life in the extreme elderly. Bosn. J. Basic Med. Sci. 2018 18 1 87 94 10.17305/bjbms.2017.2214 28954205
    [Google Scholar]
  19. Birbara C.A. Puopolo A.D. Munoz D.R. Sheldon E.A. Mangione A. Bohidar N.R. Geba G.P. Treatment of chronic low back pain with etoricoxib, a new cyclo-oxygenase-2 selective inhibitor: improvement in pain and disability—A randomized, placebo-controlled, 3-month trial. J. Pain 2003 4 6 307 315 10.1016/S1526‑5900(03)00633‑3 14622687
    [Google Scholar]
  20. Muralidhar S. Rao S.D. Ramesh R. Narayana T.V. Studies to enhance dissolution properties of etoricoxib. Int. J. Pharm. Res. Dev. 2011 2 4
    [Google Scholar]
  21. Suhagia B.N. Patel H.M. Shah S.A. Rathod I. Parmar V.K. Preparation and characterization of etoricoxib-polyethylene glycol 4000 plus polyvinylpyrrolidone K30 solid dispersions. Acta Pharm. 2006 56 3 285 298 19831278
    [Google Scholar]
  22. Karekar P. Vyas V. Shah M. Sancheti P. Pore Y. Physicochemical investigation of the solid dispersion systems of etoricoxib with poloxamer 188. Pharm. Dev. Technol. 2009 14 4 373 379 10.1080/10837450802683974 19552551
    [Google Scholar]
  23. Dha S.M. Rao G.D. Reddy B.M. Narayana T.V. Fast dissolving etoricoxib tablets containing solid dispersion of etoricoxib. Int. J. Drug Formul Res. 2010 1 3 309 323
    [Google Scholar]
  24. Das A. Nayak A.K. Mohanty B. Panda S. Solubility and dissolution enhancement of etoricoxib by solid dispersion technique using sugar carriers. ISRN Pharm. 2011 2011 1 8 10.5402/2011/819765 22389861
    [Google Scholar]
  25. Chowdary K.P.R. Rao K.S.P. Madhuri D. A factorial study on the effects of cyclodextrins, poloxamer 407 and PVP on the solubility and dissolution rate of etoricoxib. Int. J. Chem. Sci. 2011 9 677 686
    [Google Scholar]
  26. Sapkal S.B. Adhao V.S. Thenge R.R. Darakhe R.A. Shinde S.A. Shrikhande V.N. Formulation and characterization of solid dispersions of etoricoxib using natural polymers. Turk J. Pharm. Sci. 2020 17 1 7 19 10.4274/tjps.galenos.2018.04880 32454755
    [Google Scholar]
  27. Polarised light microscopy. 2024 Available from: https://myscope.training/LFM_Polarised_light_microscopy
  28. Lange N. Caffeine crystals in polarized light under the microscope 100x. 2024 Available from: https://www.123rf.com/photo_154981047_caffeine-crystals-in-polarized-light-under-the-microscope-100x.html
    [Google Scholar]
  29. Role of excipients in amorphous solid dispersions. 2018 Available from: https://www.youtube.com/watch?v=vXw6nfnjbPk
  30. Enose A.A. Dasan P.K. Sivaramakrishnan H. Shah S.M. Formulation and characterization of solid dispersion prepared by hot melt mixing: A fast screening approach for polymer selection. J. Pharm. 2014 2014 1 13 10.1155/2014/105382 26556187
    [Google Scholar]
  31. Anupama K. Neena B. Formulation and evaluation of mouth dissolving tablets of oxcarbazepine. Int. J. Pharm. Pharm. Sci. 2009 1 12 23
    [Google Scholar]
  32. Chavan R.B. Lodagekar A. Yadav B. Shastri N.R. Amorphous solid dispersion of nisoldipine by solvent evaporation technique: Preparation, characterization, in vitro, in vivo evaluation, and scale up feasibility study. Drug Deliv. Transl. Res. 2020 10 4 903 918 10.1007/s13346‑020‑00775‑8 32378174
    [Google Scholar]
  33. Raj A.L. Kumar Y.S. Preparation and evaluation of solid dispersion of nebivolol using solvent evaporation method. Int. J. Pharm. Sci. Drug Res. 2018 10 4 322 328 10.25004/IJPSDR.2018.100418
    [Google Scholar]
  34. Sharma A. Jain C.P. Preparation and characterization of solid dispersions of carvedilol with PVP K30. Res. Pharm. Sci. 2010 5 1 49 56 21589768
    [Google Scholar]
  35. Okoye E. Ezenwa C. Aburime O. Ekweogu A. Comparative evaluation of coprecipitation, solvent evaporation, and kneading as techniques to improve solubility and dissolution profiles of a BCS class IV drug. Egypt Pharm. J. 2017 16 2 121 10.4103/epj.epj_7_17
    [Google Scholar]
  36. Amorphous solid dispersion — An ideal formulation approach to improve developability 2024 Available from: https://www.youtube.com/watch?v=oUZXcH77I-I
  37. kalia, A.; Poddar, M. Solid dispersions: An approach towards enhancing dissolution rate. Int. J. Pharm. Pharm. Sci. 2011 3 9 19
    [Google Scholar]
  38. Baboota S. Dhaliwal M. Kohli K. Physicochemical characterization, in vitro dissolution behavior, and pharmacodynamic studies of rofecoxib-cyclodextrin inclusion compounds. Preparation and properties of rofecoxib hydroxypropyl β-cyclodextrin inclusion complex: A technical note. AAPS PharmSciTech 2005 6 1 E83 E90 10.1208/pt060114 16353967
    [Google Scholar]
  39. Sapkal S. Natural polymers: Best carriers for improving bioavailability of poorly water. Marmara Pharm. J. 2013 2 17 65 72 10.12991/201317375
    [Google Scholar]
  40. Abd-El Bary A. Olmesartan medoxomil surface solid dispersion-based orodispersible tablets: Formulation and in vitro characterization. J. Drug Deliv. Sci. Technol. 2014 24 6 665 672 10.1016/S1773‑2247(14)50134‑7
    [Google Scholar]
  41. de França Almeida Moreira C.D.L. de Oliveira Pinheiro J.G. da Silva-Júnior W.F. Barbosa E.G. Lavra Z.M.M. Pereira E.W.M. Resende M.M. de Azevedo E.P. Quintans-Júnior L.J. de Souza Araújo A.A. de Souza Siqueira Quintans J. de Lima Á.A.N. Amorphous solid dispersions of hecogenin acetate using different polymers for enhancement of solubility and improvement of anti-hyperalgesic effect in neuropathic pain model in mice. Biomed. Pharmacother. 2018 97 870 879 10.1016/j.biopha.2017.10.161 29136763
    [Google Scholar]
  42. Kumar A. Globale P. Sahoo S.K. Review on solubility enhancement techniques for hydrophobic drugs. Int. J. Pharma Sci. 2011 3 3
    [Google Scholar]
  43. Patel V. Patel R. Shah H. Purohit S. Pawar M. Pathan A. Solubility enhancement of azithromycin by solid dispersion technique using mannitol and β-cyclodextrin. Acta. Scientific Pharmaceutical Sciences 2021 5 4 48 54 10.31080/ASPS.2021.05.0701
    [Google Scholar]
  44. Latsch S. Selzer T. Fink L. Kreuter J. Determination of the physical state of norethindrone acetate containing transdermal drug delivery systems by isothermal microcalorimetry, X-ray diffraction, and optical microscopy. Eur. J. Pharm. Biopharm. 2004 57 2 383 395 10.1016/S0939‑6411(03)00158‑9 15019000
    [Google Scholar]
  45. Usui F. Maeda K. Kusai A. Nishimura K. Keiji Yamamoto, Inhibitory effects of water-soluble polymers on precipitation of RS-8359. Int. J. Pharm. 1997 154 1 59 66 10.1016/S0378‑5173(97)00129‑4
    [Google Scholar]
  46. Suzuki H. Sunada H. Influence of water-soluble polymers on the dissolution of nifedipine solid dispersions with combined carriers. Chem. Pharm. Bull. 1998 46 3 482 487 10.1248/cpb.46.482 9549890
    [Google Scholar]
  47. Oh M.J. The dissolution property of raloxifene HCl solid dispersion using hydroxypropyl methylcellulose. Macromol. Res. 2012 20 8 835 841 10.1007/s13233‑012‑0127‑x
    [Google Scholar]
  48. Gao P. Morozowich W. Development of supersaturatable self-emulsifying drug delivery system formulations for improving the oral absorption of poorly soluble drugs. Expert Opin. Drug Deliv. 2006 3 1 97 110 10.1517/17425247.3.1.97 16370943
    [Google Scholar]
  49. Yamashita K. Nakate T. Okimoto K. Ohike A. Tokunaga Y. Ibuki R. Higaki K. Kimura T. Establishment of new preparation method for solid dispersion formulation of tacrolimus. Int. J. Pharm. 2003 267 1-2 79 91 10.1016/j.ijpharm.2003.07.010 14602386
    [Google Scholar]
  50. Fan N. He Z. Ma P. Wang X. Li C. Sun J. Sun Y. Li J. Impact of HPMC on inhibiting crystallization and improving permeability of curcumin amorphous solid dispersions. Carbohydr. Polym. 2018 181 543 550 10.1016/j.carbpol.2017.12.004 29254005
    [Google Scholar]
  51. Hadgraft J. Lane M.E. Drug crystallization - Implications for topical and transdermal delivery. Expert Opin. Drug Deliv. 2016 13 6 817 830 10.1517/17425247.2016.1140146 26766744
    [Google Scholar]
  52. Al-Shboul T. Sagala F. Nassar N.N. Role of surfactants, polymers, nanoparticles, and its combination in inhibition of wax deposition and precipitation: A review. Adv. Colloid Interface Sci. 2023 315 102904 4 10.1016/j.cis.2023.102904 37084545
    [Google Scholar]
  53. Eerdenbrugh B. Taylor L.S. Small scale screening to determine the ability of different polymers to inhibit drug crystallization upon rapid solvent evaporation. Mol. Pharm. 2010 7 4 1328 10.1021/mp1001153 20536263
    [Google Scholar]
  54. Fakhreeva A.V. Nosov V.V. Voloshin A.I. Dokichev V.A. Polysaccharides as effective and environmentally friendly inhibitors of scale deposition from aqueous solutions in technological processes. Polymers 2023 15 6 1478 8 10.3390/polym15061478 36987258
    [Google Scholar]
  55. Wong W.F. Kuan P.A. Sethi G. Recent advancement of medical patch for transdermal drug delivery. Medicina 2023 59 4 778 8 10.3390/medicina59040778 37109736
    [Google Scholar]
  56. Tahir M.A. Ali M.E. Lamprecht A. Nanoparticle formulations as recrystallization inhibitors in transdermal patches. Int. J. Pharm. 2020 575 118886 10.1016/j.ijpharm.2019.118886 31790804
    [Google Scholar]
  57. Mackellar A.J. Buckton G. Newton J.M. Orr C.A. The controlled crystallisation of a model powder: 2. Investigation into the mechanism of action of poloxamers in changing crystal properties. Int. J. Pharm. 1994 112 1 79 85 10.1016/0378‑5173(94)90263‑1
    [Google Scholar]
  58. Oleksy M. Dynarowicz K. Aebisher D. Advances in biodegradable polymers and biomaterials for medical applications-A review. Molecules 2023 28 17 6213 10.3390/molecules28176213 37687042
    [Google Scholar]
  59. Wang Y. Chen G. Zhang H. Zhao C. Sun L. Zhao Y. Emerging functional biomaterials as medical patches. ACS Nano 2021 15 4 5977 6007 10.1021/acsnano.0c10724 33856205
    [Google Scholar]
  60. Overhoff K.A. McConville J.T. Yang W. Johnston K.P. Peters J.I. Williams R.O. Effect of stabilizer on the maximum degree and extent of supersaturation and oral absorption of tacrolimus made by ultra-rapid freezing. Pharm. Res. 2008 25 1 167 175 10.1007/s11095‑007‑9417‑y 17968635
    [Google Scholar]
  61. Nandiyanto A.B.D. Ragadhita R. Fiandini M. Interpretation of fourier transform infrared spectra (FTIR): A practical approach in the polymer/plastic thermal decomposition. Indones J. Sci. Technol 2022 8 1 113 126 10.17509/ijost.v8i1.53297
    [Google Scholar]
  62. Rosiak N. Tykarska E. Cielecka-Piontek J. The study of amorphous kaempferol dispersions involving FT-IR Spectroscopy. Int. J. Mol. Sci. 2023 24 24 17155 10.3390/ijms242417155 38138984
    [Google Scholar]
  63. Veiga M.D. Díaz P.J. Ahsan F. Interactions of griseofulvin with cyclodextrins in solid binary systems. J. Pharm. Sci. 1998 87 7 891 900 10.1021/js970233x 9649360
    [Google Scholar]
  64. Dumortier G. Grossiord J.L. Agnely F. Chaumeil J.C. A review of poloxamer 407 pharmaceutical and pharmacological characteristics. Pharm. Res. 2006 23 12 2709 2728 10.1007/s11095‑006‑9104‑4 17096184
    [Google Scholar]
  65. Veiga M.D. Ahsan F. Study of tolbutamide-hydroxypropyl-gamma-cyclodextrin interaction in solution and solid state. Chem. Pharm. Bull. 2000 48 6 793 797 10.1248/cpb.48.793 10866138
    [Google Scholar]
  66. Appa Rao B. Shivalingam M.R. Kishore Reddy Y.V. Rao S. Rajesh K. Sunitha N. Formulation and evaluation of aceclofenac solid dispersions for dissolution rate enhancement. Int. J. Pharm. Sci. Drug Res. 2010 2 2 146 150
    [Google Scholar]
  67. Ahuja N. Katare O.P. Singh B. Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers. Eur. J. Pharm. Biopharm. 2007 65 1 26 38 10.1016/j.ejpb.2006.07.007 16962750
    [Google Scholar]
  68. Abdelkader H. Abdalla O.Y. Salem H. Formulation of controlled-release baclofen matrix tablets: Influence of some hydrophilic polymers on the release rate and in vitro evaluation. AAPS PharmSciTech 2007 8 4 E100 10.1208/pt0804100 18181521
    [Google Scholar]
  69. Roni M. Effects of poloxamer and HPMC on the dissolution of clonazepam-polyethylene glycol solid dispersions and tablets. Indian J. Pharm. Educ. Res. 2011 45 2 139 144
    [Google Scholar]
/content/journals/aiamc/10.2174/0118715230357451250812171047
Loading
/content/journals/aiamc/10.2174/0118715230357451250812171047
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Solid dispersions ; kneading method ; etoricoxib ; solubility ; dissolution rate ; amorphization
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test