Skip to content
2000
Volume 18, Issue 2
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

Background: Rapid evolution of drug resistance and side effects of currently used drugs develop more efficacious and newer antimicrobial agents. Further, for the management of Type II Diabetes, α-gulcosidase and α-amylase inhibitors play a very important role by inhibiting the postprandial hyperglycemia. Objectives: The objective of this study was to synthesize N-aryl/N,N-dimethyl sulphonamides, investigate their antihyperglycemic and antimicrobial potential, develop QSAR model for identifying molecular descriptors and predict their binding modes and in silico ADMET properties. Methods: Synthesized derivatives were subjected to in vitro studies for their antidiabetic activity against α-glucosidase and α-amylase enzymes and antimicrobial activity. Molecular docking studies were carried out to find out molecular binding interactions of the ligand molecules with their respective targets. QSAR studies were carried out to identify structural determinants responsible for antimicrobial activity. Results: Antidiabetic study demonstrated the potent activity of two compounds 2 and 6 as α- glucosidase and α-amylase inhibitors, as well as compound 1 and 2, exhibited potent antimicrobial activity against all the tested microbes. All the compounds have more antifungal potential against Candida albicans. QSAR studies confirmed the role of molecular connectivity indices (valence first order and second order) in controlling the antimicrobial activity. Molecular docking studies supported the observed in vitro biological activities of the synthesized compounds. Conclusion: The compounds with 2,3-dimethyl substitution were found to be antidiabetic agents and molecules having bromo and 2,3-dimethyl substituents on phenyl ring have established themselves as potent antimicrobial agents. The role of valence first and 2nd order molecular connectivity indices as molecular properties were identified for antimicrobial activity and various electrostatic, hydrogen bonding and hydrophobic interactions were found to be prominent in the binding of molecules at the target site.

Loading

Article metrics loading...

/content/journals/aia/10.2174/2211352517666190902130014
2020-06-01
2025-12-05
Loading full text...

Full text loading...

/content/journals/aia/10.2174/2211352517666190902130014
Loading

  • Article Type:
    Research Article
Keyword(s): ADMET studies; antidiabetic; antimicrobial; molecular docking; QSAR; Sulphonamides
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test