Skip to content
2000
Volume 23, Issue 5
  • ISSN: 2211-3525
  • E-ISSN: 2211-3533

Abstract

Carbapenem-resistant Enterobacteriaceae represent a crucial global public health issue. The challenges associated with carbapenem-resistant Enterobacteriaceae are multifaceted. This review article aims to explore and comprehend the emerging challenges and the latest developments in the management of carbapenem-resistant Enterobacteriaceae infections. A comprehensive literature search was conducted using databases such as PubMed, Cochrane Library, and Embase. Studies published from database inception until May 2024 were included. Articles were selected based on relevance, study design, and quality. Data from clinical trials, observational studies, and reviews were synthesized to provide a detailed overview of the current state of knowledge on carbapenem-resistant Enterobacteriaceae. The review identifies key epidemiological trends, including geographic variations and risk factors associated with carbapenem-resistant Enterobacteriaceae. Mechanisms of resistance are elucidated, focusing on carbapenemase production and other related factors. Current treatment options are assessed, with an emphasis on newer antibiotic combinations such as ceftazidime/avibactam, meropenem/vaborbactam, ceftolozane/tazobactam, and cefepime/enmetazobactam. The review also highlights emerging therapeutic approaches, including novel antibiotics and non-traditional approaches like phage therapy, fecal microbiota transplantation, probiotics, antimicrobial peptides, vaccines, and herbal drugs. Additionally, the review also reflects on effective infection prevention and control strategies. While research efforts to explore newer combinations and alternate approaches to treat carbapenem-resistant Enterobacteriaceae infections are crucial, the importance of stringent infection prevention and control strategies cannot be overstated. This dual focus is essential to address both the immediate and long-term challenges posed by carbapenem-resistant Enterobacteriaceae.

Loading

Article metrics loading...

/content/journals/aia/10.2174/0122113525347025241015053800
2024-11-12
2025-10-30
Loading full text...

Full text loading...

References

  1. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis.Lancet201939910325629655
    [Google Scholar]
  2. WHO publishes list of bacteria for which new antibiotics are urgently needed.Available from: https://www.ecdc.europa.eu/en/news-events/who-publishes-list-bacteria-which-new-antibiotics-are-urgently-needed#:~:text=%E2%80%8BThe%20World%20Health%20Organization,with%20existing%20public%20health%20needs.2017
  3. WHO Global research agenda for antimicrobial resistance in human health.Available from: https://www.who.int/citations/m/item/global-research-agenda-for-antimicrobial-resistance-in-humanhealth 2023
  4. CDCEnterobacterales (carbapenem-resistant).Available from: https://www.cdc.gov/cre/about/index.html#:~:text=Enterobacterales%20are%20a%20group%20of,or%20several%20antibiotics%20called%20carbapenems.2024
  5. TompkinsK. van DuinD. Treatment for carbapenem-resistant Enterobacterales infections: Recent advances and future directions.Eur. J. Clin. Microbiol. Infect. Dis.202140102053206810.1007/s10096‑021‑04296‑1 34169446
    [Google Scholar]
  6. Papp-WallaceK.M. EndimianiA. TaracilaM.A. BonomoR.A. Carbapenems: Past, present, and future.Antimicrob. Agents Chemother.201155114943496010.1128/AAC.00296‑11 21859938
    [Google Scholar]
  7. PerezF. El ChakhtouraN.G. Papp-WallaceK.M. WilsonB.M. BonomoR.A. Treatment options for infections caused by carbapenem-resistant Enterobacteriaceae: Can we apply “precision medicine” to antimicrobial chemotherapy?Expert Opin. Pharmacother.201617676178110.1517/14656566.2016.1145658 26799840
    [Google Scholar]
  8. ZilberbergM.D. NathansonB.H. SulhamK. FanW. ShorrA.F. Carbapenem resistance, inappropriate empiric treatment and outcomes among patients hospitalized with Enterobacteriaceae urinary tract infection, pneumonia and sepsis.BMC Infect. Dis.201717127910.1186/s12879‑017‑2383‑z 28415969
    [Google Scholar]
  9. BonomoR.A. BurdE.M. ConlyJ. LimbagoB.M. PoirelL. SegreJ.A. WestbladeL.F. Carbapenemase-producing organisms: A global scourge.Clin. Infect. Dis.20186681290129710.1093/cid/cix893 29165604
    [Google Scholar]
  10. YooE.H. HongH.L. KimE.J. Epidemiology and mortality analysis related to carbapenem-resistant enterobacterales in patients after admission to intensive care units: An observational study.Infect. Drug Resist.20231618920010.2147/IDR.S391409 36644658
    [Google Scholar]
  11. SalomãoM.C. FreireM.P. BoszczowskiI. RaymundoS.F. GuedesA.R. LevinA.S. Increased risk for Carbapenem-resistant Enterobacteriaceae colonization in intensive care units after hospitalization in emergency department.Emerg. Infect. Dis.20202661156116310.3201/eid2606.190965 32267827
    [Google Scholar]
  12. ZongZ. FengY. McNallyA. Carbapenem and colistin resistance in Enterobacter: Determinants and clones.Trends Microbiol.202129647347610.1016/j.tim.2020.12.009 33431326
    [Google Scholar]
  13. Tolou-GhamariZ. Preliminary study of antibiotics susceptibility testing and pathogens associated with nosocomial infections in a tertiary hospital.Antiinfect. Agents2024222e27102322286510.2174/0122113525259607231020063637
    [Google Scholar]
  14. Global Antimicrobial Resistance and Use Surveillance System (GLASS) ReportAvailable from: https://www.who.int/citations/i/item/9789240027336 2021
  15. SaderH.S. CarvalhaesC.G. ArendsS.J.R. CastanheiraM. MendesR.E. Aztreonam/avibactam activity against clinical isolates of Enterobacterales collected in Europe, Asia and Latin America.J. Antimicrob. Chemother.202176365966610.1093/jac/dkaa504 33276387
    [Google Scholar]
  16. FupinH.U. YanG.U.O. DemeiZ.H.U. FuW.A.N.G. XiaofeiJ.I.A.N.G. YingchunX.U. XiaojiangZ.H.A.N.G. ZhaoxiaZ.H.A.N.G. PingJ.I. CHINET surveillance of bacterial resistance: Results of 2020.Chine. J.Infec. Chemother.2021214377387
    [Google Scholar]
  17. MalchioneM.D. TorresL.M. HartleyD.M. KochM. GoodmanJ.L. Carbapenem and colistin resistance in Enterobacteriaceae in Southeast Asia: Review and mapping of emerging and overlapping challenges.Int. J. Antimicrob. Agents201954438139910.1016/j.ijantimicag.2019.07.019 31369812
    [Google Scholar]
  18. JoshiD.N. ShenoyB. MvB. AdhikaryR. ShamaraoS. MahalingamA. Prevalence of Carbapenem-resistant Enterobacteriaceae and the genes responsible for Carbapenemase production in a Tertiary Care Hospital in South India.Eur. Med. J.202310.33590/emj/10300425
    [Google Scholar]
  19. SharmaM. ChetiaP. PuzariM. NeogN. PhukanU. BorahA. Carbapenem resistance among common Enterobacteriaceae clinical isolates in part of North-East India.Antiinfect. Agents2021194e13062119084410.2174/2211352519999210128174853
    [Google Scholar]
  20. Annual Report Antimicrobial Resistance Research and Surveillance Network.Available from: https://main.icmr.nic.in/sites/default/files/upload_documents/AMRSN_Annual_Report_2022.pdf 2022
  21. PandaS. DashA. ChhotrayP. NayakB. MouliT.C. MishraS.B. Risk factors and clinical outcomes of carbapenem-resistant Klebsiella pneumonia infection in intensive care unit.Int. J. Crit. Illn. Inj. Sci.202212421722110.4103/ijciis.ijciis_34_22 36779211
    [Google Scholar]
  22. ZhangY. WangQ. YinY. ChenH. JinL. GuB. XieL. YangC. MaX. LiH. LiW. ZhangX. LiaoK. ManS. WangS. WenH. LiB. GuoZ. TianJ. PeiF. LiuL. ZhangL. ZouC. HuT. CaiJ. YangH. HuangJ. JiaX. HuangW. CaoB. WangH. Epidemiology of Carbapenem-resistant Enterobacteriaceae infections: Report from the China CRE Network.Antimicrob. Agents Chemother.2018622e01882e1710.1128/AAC.01882‑17 29203488
    [Google Scholar]
  23. KangJ.S. YiJ. KoM.K. LeeS.O. LeeJ.E. KimK.H. Prevalence and risk factors of Carbapenem-resistant Enterobacteriaceae Acquisition in an emergency intensive care unit in a tertiary hospital in Korea: A case-control study.J. Korean Med. Sci.20193418e14010.3346/jkms.2019.34.e140 31074254
    [Google Scholar]
  24. TammaP.D. KazmiA. BergmanY. GoodmanK.E. EkunseitanE. AmoahJ. SimnerP.J. The likelihood of developing a Carbapenem-resistant Enterobacteriaceae Infection during a hospital stay.Antimicrob. Agents Chemother.2019638e00757e1910.1128/AAC.00757‑19 31138574
    [Google Scholar]
  25. WilsonJ.E. SandersonW. WestgateP.M. WinterK. ForsterD. Risk factors of carbapenemase-producing Enterobacterales acquisition among adult intensive care unit patients at a Kentucky academic medical center.Infect. Prev. Pract.20235410031010.1016/j.infpip.2023.100310 37767313
    [Google Scholar]
  26. LingM.L. TeeY.M. TanS.G. AminI.M. HowK.B. TanK.Y. LeeL.C. Risk factors for acquisition of carbapenem resistant Enterobacteriaceae in an acute tertiary care hospital in Singapore.Antimicrob. Resist. Infect. Control2015412610.1186/s13756‑015‑0066‑3 26106476
    [Google Scholar]
  27. DoumithM. EllingtonM.J. LivermoreD.M. WoodfordN. Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK.J. Antimicrob. Chemother.200963465966710.1093/jac/dkp029 19233898
    [Google Scholar]
  28. TranQ.T. WilliamsS. FaridR. ErdemliG. PearlsteinR. The translocation kinetics of antibiotics through porin OmpC: Insights from structure‐based solvation mapping using WaterMap.Proteins201381229129910.1002/prot.24185 23011778
    [Google Scholar]
  29. GhaiI. GhaiS. Understanding antibiotic resistance via outer membrane permeability.Infect. Drug Resist.20181152353010.2147/IDR.S156995 29695921
    [Google Scholar]
  30. TängdénT. AdlerM. CarsO. SandegrenL. LöwdinE. Frequent emergence of porin-deficient subpopulations with reduced carbapenem susceptibility in ESBL-producing Escherichia coli during exposure to ertapenem in an in vitro pharmacokinetic model.J. Antimicrob. Chemother.20136861319132610.1093/jac/dkt044 23478794
    [Google Scholar]
  31. HuangJ. HuX. ZhaoY. ShiY. DingH. XvJ. RenJ. WuR. ZhaoZ. Genetic factors associated with enhanced blaKPC expression in Tn 3/Tn 4401 Chimeras.Antimicrob. Agents Chemother.2020643e01836e1910.1128/AAC.01836‑19 31844015
    [Google Scholar]
  32. LomovskayaO. ZgurskayaH.I. TotrovM. WatkinsW.J. Waltzing transporters and ‘the dance macabre’ between humans and bacteria.Nat. Rev. Drug Discov.200761566510.1038/nrd2200 17159924
    [Google Scholar]
  33. ForsbergK.J. ReyesA. WangB. SelleckE.M. SommerM.O.A. DantasG. The shared antibiotic resistome of soil bacteria and human pathogens.Science201233760981107l11110.1126/science.1220761
    [Google Scholar]
  34. MmatliM. MbelleN.M. ManingiN.E. Osei SekyereJ. Emerging transcriptional and genomic mechanisms mediating Carbapenem and Polymyxin resistance in Enterobacteriaceae: A systematic review of current reports.mSystems202056e00783e2010.1128/mSystems.00783‑20 33323413
    [Google Scholar]
  35. MeletisG. ExindariM. VavatsiN. SofianouD. DizaE. Mechanisms responsible for the emergence of carbapenem resistance in Pseudomonas aeruginosa.Hippokratia2012164303307 23935307
    [Google Scholar]
  36. PartridgeS.R. KwongS.M. FirthN. JensenS.O. Mobile genetic nlms associated with antimicrobial resistance.Clin. Microbiol. Rev.2018314e00088e1710.1128/CMR.00088‑17 30068738
    [Google Scholar]
  37. AbdiS.N. GhotaslouR. GanbarovK. MobedA. TanomandA. YousefiM. AsgharzadehM. KafilH.S. Acinetobacter baumannii Efflux Pumps and Antibiotic Resistance.Infect. Drug Resist.20201342343410.2147/IDR.S228089 32104014
    [Google Scholar]
  38. Pérez-VarelaM. CorralJ. ArandaJ. BarbéJ. Roles of efflux pumps from different superfamilies in the surface-associated motility and virulence of Acinetobacter baumannii ATCC 17978.Antimicrob. Agents Chemother.2019633e02190e1810.1128/AAC.02190‑18 30642939
    [Google Scholar]
  39. AurilioC. SansoneP. BarbarisiM. PotaV. GiaccariL.G. CoppolinoF. BarbarisiA. PassavantiM.B. PaceM.C. Mechanisms of action of Carbapenem resistance.Antibiotics202211342110.3390/antibiotics11030421 35326884
    [Google Scholar]
  40. CodjoeF. DonkorE. Carbapenem resistance: A review.Med. Sci.201761110.3390/medsci6010001 29267233
    [Google Scholar]
  41. BirnbaumJ. KahanF.M. KroppH. MacdonaldJ.S. Carbapenems, a new class of beta-lactam antibiotics.Am. J. Med.198578632110.1016/0002‑9343(85)90097‑X 3859213
    [Google Scholar]
  42. AmblerR.P. The structure of β-lactamases.Philos. Trans. R. Soc. Lond. B Biol. Sci.1980289103632133110.1098/rstb.1980.0049 6109327
    [Google Scholar]
  43. PitoutJ.D.D. PeiranoG. KockM.M. StrydomK.A. MatsumuraY. The global ascendency of OXA-48-Type Carbapenemases.Clin. Microbiol. Rev.2019331e00102e0011910.1128/CMR.00102‑19 31722889
    [Google Scholar]
  44. YigitH. QueenanA.M. AndersonG.J. Domenech-SanchezA. BiddleJ.W. StewardC.D. AlbertiS. BushK. TenoverF.C. Novel carbapenem-hydrolyzing β-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae.Antimicrob. Agents Chemother.20014541151116110.1128/AAC.45.4.1151‑1161.2001 11257029
    [Google Scholar]
  45. QiY. WeiZ. JiS. DuX. ShenP. YuY. ST11, the dominant clone of KPC-producing Klebsiella pneumoniae in China.J. Antimicrob. Chemother.201166230731210.1093/jac/dkq431 21131324
    [Google Scholar]
  46. WoodfordN. TiernoP.M.Jr YoungK. TysallL. PalepouM.F.I. WardE. PainterR.E. SuberD.F. ShunguD. SilverL.L. InglimaK. KornblumJ. LivermoreD.M. Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A β-lactamase, KPC-3, in a New York Medical Center.Antimicrob. Agents Chemother.200448124793479910.1128/AAC.48.12.4793‑4799.2004 15561858
    [Google Scholar]
  47. WoodfordN. ZhangJ. WarnerM. KaufmannM.E. MatosJ. MacDonaldA. BrudneyD. SompolinskyD. Navon-VeneziaS. LivermoreD.M. Arrival of Klebsiella pneumoniae producing KPC carbapenemase in the United Kingdom.J. Antimicrob. Chemother.20086261261126410.1093/jac/dkn396 18812425
    [Google Scholar]
  48. ThyrumP.T. YehC. BirminghamB. LasseterK. Pharmacokinetics of meropenem in patients with liver disease.Clin. Infect. Dis.199724Suppl. 2S184S19010.1093/clinids/24.Supplement_2.S184 9126692
    [Google Scholar]
  49. NordmannP. NaasT. PoirelL. Global spread of Carbapenemase-producing Enterobacteriaceae.Emerg. Infect. Dis.201117101791179810.3201/eid1710.110655 22000347
    [Google Scholar]
  50. DieneS.M. RolainJ.M. Carbapenemase genes and genetic platforms in Gram-negative bacilli: Enterobacteriaceae, Pseudomonas and Acinetobacter species.Clin. Microbiol. Infect.201420983183810.1111/1469‑0691.12655 24766097
    [Google Scholar]
  51. QueenanA.M. BushK. Carbapenemases: The Versatile β-Lactamases.Clin. Microbiol. Rev.200720344045810.1128/CMR.00001‑07 17630334
    [Google Scholar]
  52. AliA. GuptaD. SrivastavaG. sharmaA. KhanA.U. Molecular and computational approaches to understand resistance of New Delhi metallo β-lactamase variants (NDM-1, NDM-4, NDM-5, NDM-6, NDM-7)-producing strains against carbapenems.J. Biomol. Struct. Dyn.20193782061207110.1080/07391102.2018.1475261 29749296
    [Google Scholar]
  53. YangL. LinY. LuL. XueM. MaH. GuoX. WangK. LiP. DuX. QiK. LiP. SongH. Coexistence of two blaNDM-5 genes carried on IncX3 and IncFII plasmids in an Escherichia coli isolate revealed by Illumina and Nanopore sequencing.Front. Microbiol.20201119510.3389/fmicb.2020.00195 32117184
    [Google Scholar]
  54. SanthiyaK. JayanthiK. AnanthasubramanianM. AppaLa-rajuB. Coexistence of Metallo Beta Lactamase resistant gene variants among clinical isolates in Tertiary Care Hospital.Antiinfect. Agents202118442943610.2174/2211352518666200121144301
    [Google Scholar]
  55. SegawaT. SekizukaT. SuzukiS. ShibayamaK. MatsuiM. KurodaM. The plasmid-encoded transcription factor ArdK contributes to the repression of the IMP-6 metallo-β-lactamase gene blaIMP-6, leading to a carbapenem-susceptible phenotype in the blaIMP-6-positive Escherichia coli strain A56-1S.PLoS One20181312e020897610.1371/journal.pone.0208976 30533034
    [Google Scholar]
  56. LeeY.L. KoW.C. HsuehP.R. Geographic Patterns of Carbapenem-Resistant Pseudomonas aeruginosa in the Asia-pacific region: Results from the Antimicrobial Testing Leadership and Surveillance (ATLAS) Program, 2015-2019.Antimicrob. Agents Chemother.2022662e02000e0202110.1128/AAC.02000‑21 34807753
    [Google Scholar]
  57. AbdelGhaniS. ThomsonG.K. SnyderJ.W. ThomsonK.S. Comparison of the Carba NP, modified Carba NP, and updated Rosco Neo-Rapid Carb Kit tests for Carbapenemase detection.J. Clin. Microbiol.201553113539354210.1128/JCM.01631‑15 26311862
    [Google Scholar]
  58. MaJ. SongX. LiM. YuZ. ChengW. YuZ. ZhangW. ZhangY. ShenA. SunH. LiL. Global spread of carbapenem-resistant Enterobacteriaceae: Epidemiological features, resistance mechanisms, detection and therapy.Microbiol. Res.202326612724910.1016/j.micres.2022.127249 36356348
    [Google Scholar]
  59. FangR. LiuH. ZhangX. DongG. LiJ. TianX. WuZ. ZhouJ. CaoJ. ZhouT. Difference in biofilm formation between carbapenem-resistant and carbapenem-sensitive Klebsiella pneumoniae based on analysis of mrkH distribution.Microb. Pathog.202115210474310.1016/j.micpath.2021.104743 33484812
    [Google Scholar]
  60. WangG. ZhaoG. ChaoX. XieL. WangH. The characteristic of virulence, biofilm and antibiotic resistance of Klebsiella pneumoniae.Int. J. Environ. Res. Public Health20201717627810.3390/ijerph17176278 32872324
    [Google Scholar]
  61. SharmaD. GargA. KumarM. RashidF. KhanA.U. Down-regulation of Flagellar, Fimbriae, and Pili proteins in Carbapenem-resistant Klebsiella pneumoniae (NDM-4) Clinical isolates: A novel linkage to drug resistance.Front. Microbiol.201910286510.3389/fmicb.2019.02865 31921045
    [Google Scholar]
  62. RanjitkarS. ReckF. KeX. ZhuQ. McEnroeG. LopezS.L. DeanC.R. Identification of mutations in the mrdA gene encoding PBP2 that reduce Carbapenem and Diazabicyclooctane susceptibility of Escherichia coli clinical isolates with mutations in ftsI (PBP3) and which carry blaNDM-1.MSphere201944e00074e1910.1128/mSphere.00074‑19 31270174
    [Google Scholar]
  63. LangeF. PfennigwerthN. HöfkenL.M. GatermannS.G. KaaseM. Characterization of mutations in Escherichia coli PBP2 leading to increased carbapenem MICs.J. Antimicrob. Chemother.201974357157610.1093/jac/dky476 30496417
    [Google Scholar]
  64. O’HaraL.M. NguyenM.H. CalfeeD.P. MillerL.G. PinelesL. MagderL.S. JohnsonJ.K. MorganD.J. RaskoD.A. HarrisA.D. Risk factors for transmission of carbapenem-resistant Enterobacterales to healthcare personnel gloves and gowns in the USA.J. Hosp. Infect.2021109586410.1016/j.jhin.2020.12.012 33358930
    [Google Scholar]
  65. HallK.K. Shoemaker-HuntS. HoffmanL. Making healthcare safer III: A critical analysis of existing and emerging patient safety Practices. http://europepmc.org/books/NBK555526
  66. PalmoreT.N. HendersonD.K. Managing transmission of carbapenem-resistant enterobacteriaceae in healthcare settings: a view from the trenches.Clin. Infect. Dis.201357111593159910.1093/cid/cit531 23934166
    [Google Scholar]
  67. MartinA. FahrbachK. ZhaoQ. LodiseT. Association between Carbapenem resistance and mortality among adult, hospitalized patients with serious infections due to Enterobacteriaceae: Results of a systematic literature review and meta-analysis.Open Forum Infect. Dis.201857ofy15010.1093/ofid/ofy150 30046639
    [Google Scholar]
  68. ChenX. ZhouM. YanQ. JianZ. LiuW. LiH. Risk factors for carbapenem‐resistant Enterobacterales infection among hospitalized patients with previous colonization.J. Clin. Lab. Anal.20223611e2471510.1002/jcla.24715 36181301
    [Google Scholar]
  69. So-ngernA. OsaithaiN. MeesingA. ChumpangernW. Mortality rate and factors associated with mortality of carbapenem-resistant Enterobacteriaceae infection.Drug Target Insights20231712012510.33393/dti.2023.2622 38028024
    [Google Scholar]
  70. JimenezA. FennieK. Munoz-PriceL.S. IbrahimouB. PekovicV. AbboL.M. MartinezO. RoselloG. SposatoK. DoiY. TrepkaM.J. Duration of carbapenemase-producing Enterobacteriales carriage among ICU patients in Miami, FL: A retrospective cohort study.Am. J. Infect. Control202149101281128610.1016/j.ajic.2021.06.006 34146625
    [Google Scholar]
  71. VladN.D. CernatR.C. CarpS. MitanR. DumitruA. NemetC. VoidăzanS. RuginăS. DumitruI.M. Predictors of carbapenem-resistant Enterobacteriaceae (CRE) strains in patients with COVID-19 in the ICU ward: A retrospective case-control study.J. Int. Med. Res.2022501010.1177/03000605221129154 36259133
    [Google Scholar]
  72. LashariY. RochmantiM. PurbaA.K.R. NotobrotoH.B. SarassariR. KuntamanK. The economic impact of Carbapenem resistant-non lactose fermenter and Enterobacteriaceae infections on hospital costs in Dr. Soetomo General Academic Hospital Surabaya, Indonesia.Antibiotics (Basel)202211569410.3390/antibiotics11050694 35625338
    [Google Scholar]
  73. BartschS.M. McKinnellJ.A. MuellerL.E. MillerL.G. GohilS.K. HuangS.S. LeeB.Y. Potential economic burden of carbapenem-resistant Enterobacteriaceae (CRE) in the United States.Clin. Microbiol. Infect.201723148.e948.e1610.1016/j.cmi.2016.09.003 27642178
    [Google Scholar]
  74. CaiY. HooG.S.R. LeeW. TanB.H. YoongJ. TeoY.Y. GravesN. LyeD. KwaA.L. Estimating the economic cost of carbapenem resistant Enterobacterales healthcare associated infections in Singapore acute-care hospitals.PLOS Glob. Public Health2022212e000131110.1371/journal.pgph.0001311 36962882
    [Google Scholar]
  75. HuangW. QiaoF. ZhangY. HuangJ. DengY. LiJ. ZongZ. In-hospital medical costs of infections caused by Carbapenem-resistant Klebsiella pneumoniae.Clin. Infect. Dis.201867Suppl. 2S225S23010.1093/cid/ciy642 30423052
    [Google Scholar]
  76. AmbrettiS. BassettiM. ClericiP. PetrosilloN. TumiettoF. VialeP. RossoliniG.M. Screening for carriage of carbapenem-resistant Enterobacteriaceae in settings of high endemicity: A position paper from an Italian working group on CRE infections.Antimicrob. Resist. Infect. Control20198113610.1186/s13756‑019‑0591‑6 31423299
    [Google Scholar]
  77. EvansS.R. HarrisA.D. Methods and issues in studies of CRE.Virulence20178445345910.1080/21505594.2016.1213473 27470534
    [Google Scholar]
  78. GirlichD. PoirelL. NordmannP. Value of the modified Hodge test for detection of emerging carbapenemases in Enterobacteriaceae J.Clin. Microbiol.201250247747910.1128/JCM.05247‑11 22116154
    [Google Scholar]
  79. PoirelL. NordmannP. Rapidec carba np test for rapid detection of Carbapenemase producers.J. Clin. Microbiol.20155393003300810.1128/JCM.00977‑15 26085619
    [Google Scholar]
  80. SeverE.A. AybakanE. BeşliY. KaratunaO. KocagozT. A novel rapid bioluminescence-based antimicrobial susceptibility testing method based on adenosine triphosphate consumption.Front. Microbiol.202415135768010.3389/fmicb.2024.1357680 38404596
    [Google Scholar]
  81. SinghalN. KumarM. KanaujiaP.K. VirdiJ.S. MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis.Front. Microbiol.2015679110.3389/fmicb.2015.00791 26300860
    [Google Scholar]
  82. ZhouM. YangQ. KudinhaT. SunL. ZhangR. LiuC. YuS. XiaoM. KongF. ZhaoY. XuY.C. An improved in-house MALDI-TOF MS protocol for direct cost-effective identification of pathogens from blood Cultures.Front. Microbiol.20178182410.3389/fmicb.2017.01824 29033904
    [Google Scholar]
  83. FalconeM. DaikosG.L. TiseoG. BassoulisD. GiordanoC. GalfoV. LeonildiA. TagliaferriE. BarniniS. SaniS. FarcomeniA. GhiadoniL. MenichettiF. Efficacy of Ceftazidime-avibactam Plus Aztreonam in patients with bloodstream infections caused by Metallo-β-lactamase-producing Enterobacterales.Clin. Infect. Dis.202172111871187810.1093/cid/ciaa586 32427286
    [Google Scholar]
  84. MonteiroJ. WidenR.H. PignatariA.C.C. KubasekC. SilbertS. Rapid detection of carbapenemase genes by multiplex real-time PCR.J. Antimicrob. Chemother.201267490690910.1093/jac/dkr563 22232516
    [Google Scholar]
  85. HatrongjitR. ChopjittP. BoueroyP. KerdsinA. Multiplex PCR detection of common Carbapenemase genes and identification of clinically relevant Escherichia coli and Klebsiella pneumoniae Complex.Antibiotics20221217610.3390/antibiotics12010076 36671277
    [Google Scholar]
  86. PoirierA.C. KuangD. SiedlerB.S. BorahK. MehatJ.W. LiuJ. TaiC. WangX. van VlietA.H.M. MaW. JenkinsD.R. ClarkJ. La RagioneR.M. QuJ. McFaddenJ. Development of loop-mediated isothermal amplification rapid diagnostic assays for the detection of Klebsiella pneumoniae and Carbapenemase genes in clinical samples.Front. Mol. Biosci.2022879496110.3389/fmolb.2021.794961 35223985
    [Google Scholar]
  87. SongY. DouF. HeS. ZhouY. LiuQ. Laboratory and clinical evaluation of DNA microarray for the detection of Carbapenemase genes in gram-negative bacteria from hospitalized patients.BioMed Res. Int.2019201911310.1155/2019/8219748 31214618
    [Google Scholar]
  88. TammaP.D. AitkenS.L. BonomoR.A. MathersA.J. van DuinD. ClancyC.J. Infectious diseases society of America 2023 guidance on the treatment of antimicrobial resistant gram-negative infections.Clin. Infect. Dis.2023ciad42810.1093/cid/ciad428 37463564
    [Google Scholar]
  89. Gomez-SimmondsA. NelsonB. EirasD.P. LooA. JenkinsS.G. WhittierS. CalfeeD.P. SatlinM.J. KubinC.J. FuruyaE.Y. Combination regimens for treatment of carbapenem-resistant Klebsiella pneumoniae bloodstream infections.Antimicrob. Agents Chemother.20166063601360710.1128/AAC.03007‑15 27044555
    [Google Scholar]
  90. LeeG.C. BurgessD.S. Treatment of Klebsiella pneumoniae Carbapenemase (KPC) infections: A review of published case series and case reports.Ann. Clin. Microbiol. Antimicrob.20121113210.1186/1476‑0711‑11‑32 23234297
    [Google Scholar]
  91. LivermoreD.M. WarnerM. MushtaqS. DoumithM. ZhangJ. WoodfordN. What remains against carbapenem-resistant Enterobacteriaceae? Evaluation of chloramphenicol, ciprofloxacin, colistin, fosfomycin, minocycline, nitrofurantoin, temocillin and tigecycline.Int. J. Antimicrob. Agents201137541541910.1016/j.ijantimicag.2011.01.012 21429716
    [Google Scholar]
  92. FalagasM.E. KastorisA.C. KapaskelisA.M. KarageorgopoulosD.E. Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum β-lactamase producing, Enterobacteriaceae infections: A systematic review.Lancet Infect. Dis.2010101435010.1016/S1473‑3099(09)70325‑1 20129148
    [Google Scholar]
  93. SheuC.C. ChangY.T. LinS.Y. ChenY.H. HsuehP.R. Infections Caused by Carbapenem-Resistant Enterobacteriaceae: An Update on Therapeutic Options.Front. Microbiol.2019108010.3389/fmicb.2019.00080 30761114
    [Google Scholar]
  94. Durante-MangoniE. AndiniR. ZampinoR. Management of carbapenem-resistant Enterobacteriaceae infections.Clin. Microbiol. Infect.201925894395010.1016/j.cmi.2019.04.013 31004767
    [Google Scholar]
  95. DoiY. Treatment options for carbapenem-resistant gram-negative bacterial infections.Clin. Infect. Dis.201969Suppl. 7S565S57510.1093/cid/ciz830 31724043
    [Google Scholar]
  96. ChatterjeeS. ChakrabortyD.S. ChoudhuryS. LahiryS. Cefiderocol: A new antimicrobial for Complicated Urinary Tract Infection (CUTI) caused by carbapenem-resistant Enterobacteriaceae (CRE).Curr. Drug Res. Rev.2022141202310.2174/2589977513666211206100749 34872487
    [Google Scholar]
  97. CarmeliY. ArmstrongJ. LaudP.J. NewellP. StoneG. WardmanA. GasinkL.B. Ceftazidime-avibactam or best available therapy in patients with ceftazidime-resistant Enterobacteriaceae and Pseudomonas aeruginosa complicated urinary tract infections or complicated intra-abdominal infections (REPRISE): a randomised, pathogen-directed, phase 3 study.Lancet Infect. Dis.201616666167310.1016/S1473‑3099(16)30004‑4 27107460
    [Google Scholar]
  98. WagenlehnerF.M. SobelJ.D. NewellP. ArmstrongJ. HuangX. StoneG.G. YatesK. GasinkL.B. Ceftazidime-avibactam versus doripenem for the treatment of complicated urinary tract infections, including acute pyelonephritis: Recapture, a phase 3 randomized trial program.Clin. Infect. Dis.201663675476210.1093/cid/ciw378 27313268
    [Google Scholar]
  99. KayeK.S. BhowmickT. MetallidisS. BleasdaleS.C. SaganO.S. StusV. VazquezJ. ZaitsevV. BidairM. ChorvatE. DragoescuP.O. FedosiukE. HorcajadaJ.P. MurtaC. SarychevY. StoevV. MorganE. FusaroK. GriffithD. LomovskayaO. AlexanderE.L. LoutitJ. DudleyM.N. Giamarellos-BourboulisE.J. Effect of Meropenem-Vaborbactam vs Piperacillin-Tazobactam on clinical cure or improvement and microbial eradication in complicated urinary tract infection.JAMA2018319878879910.1001/jama.2018.0438 29486041
    [Google Scholar]
  100. PortsmouthS. van VeenhuyzenD. EcholsR. MachidaM. FerreiraJ.C.A. AriyasuM. TenkeP. NagataT.D. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: A phase 2, randomised, double-blind, non-inferiority trial.Lancet Infect. Dis.201818121319132810.1016/S1473‑3099(18)30554‑1 30509675
    [Google Scholar]
  101. SimsM. MariyanovskiV. McLerothP. AkersW. LeeY.C. BrownM.L. DuJ. PedleyA. KartsonisN.A. PaschkeA. Prospective, randomized, double-blind, Phase 2 dose-ranging study comparing efficacy and safety of imipenem/cilastatin plus relebactam with imipenem/cilastatin alone in patients with complicated urinary tract infections.J. Antimicrob. Chemother.20177292616262610.1093/jac/dkx139 28575389
    [Google Scholar]
  102. BassettiM. EcholsR. MatsunagaY. AriyasuM. DoiY. FerrerR. LodiseT.P. NaasT. NikiY. PatersonD.L. PortsmouthS. Torre-CisnerosJ. ToyoizumiK. WunderinkR.G. NagataT.D. Efficacy and safety of cefiderocol or best available therapy for the treatment of serious infections caused by carbapenem-resistant Gram-negative bacteria (CREDIBLE-CR): A randomised, open-label, multicentre, pathogen-focused, descriptive, phase 3 trial.Lancet Infect. Dis.202121222624010.1016/S1473‑3099(20)30796‑9 33058795
    [Google Scholar]
  103. MendesR.E. CastanheiraM. WoosleyL.N. StoneG.G. BradfordP.A. FlammR.K. Molecular β-Lactamase characterization of aerobic gram-negative pathogens recovered from patients enrolled in the ceftazidime-avibactam phase 3 trials for complicated intra-abdominal infections, with efficacies analyzed against susceptible and resistant subsets.Antimicrob. Agents Chemother.2017616e02447e1610.1128/AAC.02447‑16 28348155
    [Google Scholar]
  104. SolomkinJ. HershbergerE. MillerB. PopejoyM. FriedlandI. SteenbergenJ. YoonM. CollinsS. YuanG. BarieP.S. EckmannC. Ceftolozane/Tazobactam plus Metronidazole for complicated intra-abdominal infections in an era of multidrug resistance: Results from a randomized, double-blind, phase 3 trial (ASPECT-cIAI).Clin. Infect. Dis.201560101462147110.1093/cid/civ097 25670823
    [Google Scholar]
  105. LucastiC. HershbergerE. MillerB. YankelevS. SteenbergenJ. FriedlandI. SolomkinJ. Multicenter, double-blind, randomized, phase II trial to assess the safety and efficacy of ceftolozane-tazobactam plus metronidazole compared with meropenem in adult patients with complicated intra-abdominal infections.Antimicrob. Agents Chemother.20145895350535710.1128/AAC.00049‑14 24982069
    [Google Scholar]
  106. EckmannC. MontraversP. BassettiM. BodmannK.F. HeizmannW.R. Sánchez GarcíaM. GuiraoX. CapparellaM.R. SimoneauD. DupontH. Efficacy of tigecycline for the treatment of complicated intra-abdominal infections in real-life clinical practice from five European observational studies.J. Antimicrob. Chemother.201368Suppl. 2ii25ii3510.1093/jac/dkt142 23772043
    [Google Scholar]
  107. HuangD. YuB. DiepJ.K. SharmaR. DudleyM. MonteiroJ. KayeK.S. PogueJ.M. AbboudC.S. RaoG.G. In vitro Assessment of combined Polymyxin B and Minocycline therapy against Klebsiella pneumoniae Carbapenemase (KPC)-producing K. pneumoniae.Antimicrob. Agents Chemother.2017617e00073e1710.1128/AAC.00073‑17 28438930
    [Google Scholar]
  108. HeilE.L. BorkJ.T. AbboL.M. BarlamT.F. CosgroveS.E. DavisA. HaD.R. JenkinsT.C. KayeK.S. LewisJ.S.II OrtwineJ.K. PogueJ.M. SpivakE.S. StevensM.P. VaeziL. TammaP.D. Optimizing the management of uncomplicated gram-negative bloodstream infections: Consensus guidance using a modified delphi process.Open Forum Infect. Dis.2021810ofab43410.1093/ofid/ofab434 34738022
    [Google Scholar]
  109. AmerW.H. ElshweikhS.A.R. HablasN.A. MontasserK.A. KhalilH.S. Comparison of the in vitro activities of Ceftazidime/Avibactam with other drugs used to treat carbapenem-resistant Enterobacteriaceae.Antiinfect. Agents2021195122010.2174/2211352518999201102194703
    [Google Scholar]
  110. WilsonG.M. FitzpatrickM.A. SudaK.J. SmithB.M. GonzalezB. JonesM. SchweizerM.L. EvansM. EvansC.T. Comparative effectiveness of antibiotic therapy for carbapenem-resistant Enterobacterales (CRE) bloodstream infections in hospitalized US veterans.JAC Antimicrob. Resist.202245dlac10610.1093/jacamr/dlac106 36320448
    [Google Scholar]
  111. SaderH.S. FlammR.K. CarvalhaesC.G. CastanheiraM. Comparison of ceftazidime-avibactam and ceftolozane-tazobactam in vitro activities when tested against gram-negative bacteria isolated from patients hospitalized with pneumonia in United States medical centers (2017-2018).Diagn. Microbiol. Infect. Dis.202096311483310.1016/j.diagmicrobio.2019.05.005 31924426
    [Google Scholar]
  112. BelatiA. BavaroD.F. DiellaL. De GennaroN. Di GennaroF. SaracinoA. Meropenem/Vaborbactam plus Aztreonam as a possible treatment strategy for bloodstream infections caused by Ceftazidime/Avibactam-resistant Klebsiella pneumoniae: A retrospective case series and literature review.Antibiotics202211337310.3390/antibiotics11030373 35326836
    [Google Scholar]
  113. LuQ. LuoR. BodinL. YangJ. ZahrN. AubryA. GolmardJ.L. RoubyJ.J. Efficacy of high-dose nebulized colistin in ventilator-associated pneumonia caused by multidrug-resistant Pseudomonas aeruginosa and Acinetobacter baumannii.Anesthesiology201211761335134710.1097/ALN.0b013e31827515de 23132092
    [Google Scholar]
  114. PatersonD.L. BassettiM. MotylM. JohnsonM.G. CastanheiraM. JensenE.H. HuntingtonJ.A. YuB. WolfD.J. BrunoC.J. Ceftolozane/tazobactam for hospital-acquired/ventilator-associated bacterial pneumonia due to ESBL-producing Enterobacterales: A subgroup analysis of the ASPECT-NP clinical trial.J. Antimicrob. Chemother.20227792522253110.1093/jac/dkac184 35781341
    [Google Scholar]
  115. LingZ. FarleyA.J.M. LankapalliA. ZhangY. Premchand-BrankerS. CookK. BaranA. Gray-HammertonC. Orbegozo RubioC. SunaE. MathiasJ. BremJ. SandsK. Nieto-RosadoM. TrushM.M. RakhiN.N. MartinsW. ZhouY. SchofieldC.J. WalshT. The triple combination of meropenem, avibactam, and a metallo-β-lactamase inhibitor optimizes antibacterial coverage against different β-Lactamase producers.Engineering (Beijing)20243812413210.1016/j.eng.2024.02.010
    [Google Scholar]
  116. Macareño-CastroJ. Solano-SalazarA. DongL.T. MohiuddinM. EspinozaJ.L. Fecal microbiota transplantation for carbapenem-resistant Enterobacteriaceae: A systematic review.J. Infect.202284674975910.1016/j.jinf.2022.04.028 35461908
    [Google Scholar]
  117. WoodworthM.H. HaydenM.K. YoungV.B. KwonJ.H. The role of fecal microbiota transplantation in reducing intestinal colonization with antibiotic-resistant organisms: The current landscape and future directions.Open Forum Infect. Dis.201967ofz28810.1093/ofid/ofz288 31363779
    [Google Scholar]
  118. Bar-YosephH. CarassoS. ShklarS. KorytnyA. Even DarR. DaoudH. NassarR. MaharshakN. HusseinK. GeffenY. ChowersY. Geva-ZatorskyN. PaulM. Oral capsulized fecal microbiota transplantation for eradication of carbapenemase-producing Enterobacteriaceae colonization with a metagenomic perspective.Clin. Infect. Dis.2021731e166e17510.1093/cid/ciaa737 32511695
    [Google Scholar]
  119. LeeJ.J. YongD. SukK.T. KimD.J. WooH.J. LeeS.S. KimB.S. Alteration of gut microbiota in carbapenem-resistant Enterobacteriaceae carriers during fecal microbiota transplantation according to decolonization periods.Microorganisms20219235210.3390/microorganisms9020352 33578974
    [Google Scholar]
  120. KortrightK.E. ChanB.K. KoffJ.L. TurnerP.E. Phage therapy: A renewed approach to combat antibiotic-resistant bacteria.Cell Host Microbe201925221923210.1016/j.chom.2019.01.014 30763536
    [Google Scholar]
  121. HesseS. MalachowaN. PorterA.R. FreedmanB. KobayashiS.D. GardnerD.J. ScottD.P. AdhyaS. DeLeoF.R. Bacteriophage treatment rescues mice infected with multidrug-resistant Klebsiella pneumoniae ST258.MBio2021121e00034e2110.1128/mBio.00034‑21 33622728
    [Google Scholar]
  122. CuiZ. GuoX. FengT. LiL. Exploring the whole standard operating procedure for phage therapy in clinical practice.J. Transl. Med.201917137310.1186/s12967‑019‑2120‑z 31727099
    [Google Scholar]
  123. Broncano-LavadoA. Santamaría-CorralG. EstebanJ. García-QuintanillaM. Advances in bacteriophage therapy against relevant multidrug-resistant pathogens.Antibiotics202110667210.3390/antibiotics10060672 34199889
    [Google Scholar]
  124. ÖrmäläA.M. JalasvuoriM. Phage therapy.Bacteriophage201331e2421910.4161/bact.24219 23819105
    [Google Scholar]
  125. KunishimaH. IshibashiN. WadaK. OkaK. TakahashiM. YamasakiY. AoyagiT. TakemuraH. KitagawaM. KakuM. The effect of gut microbiota and probiotic organisms on the properties of extended spectrum beta-lactamase producing and carbapenem resistant Enterobacteriaceae including growth, beta-lactamase activity and gene transmissibility.J. Infect. Chemother.2019251189490010.1016/j.jiac.2019.04.021 31178280
    [Google Scholar]
  126. TajdozianH. SeoH. KimS. RahimM.A. LeeS. SongH.Y. Efficacy of Lactobacillus fermentum isolated from the Vagina of a healthy woman against Carbapenem-resistant Klebsiella infections in vivo.J. Microbiol. Biotechnol.202131101383139210.4014/jmb.2103.03014 34489374
    [Google Scholar]
  127. HungY.P. LeeC.C. LeeJ.C. TsaiP.J. HsuehP.R. KoW.C. The potential of probiotics to eradicate gut carriage of pathogenic or antimicrobial-resistant Enterobacterales.Antibiotics2021109108610.3390/antibiotics10091086 34572668
    [Google Scholar]
  128. LeeJ.H. ShinJ. ParkS.H. ChaB. HongJ.T. LeeD.H. KwonK.S. Role of probiotics in preventing carbapenem-resistant Enterobacteriaceae colonization in the intensive care unit: Risk factors and microbiome analysis study.Microorganisms20231112297010.3390/microorganisms11122970 38138114
    [Google Scholar]
  129. Maria, I Prevention and decolonization of multidrug-resistant bacteria with probiotics.Patent NCT039673012019
  130. KangH.K. SeoC.H. LuchianT. ParkY. Pse-T2, an antimicrobial peptide with high-level, broad-spectrum antimicrobial potency and skin biocompatibility against multidrug-resistant pseudomonas aeruginosa infection.Antimicrob. Agents Chemother.20186212e01493e1810.1128/AAC.01493‑18 30323036
    [Google Scholar]
  131. XuanJ. FengW. WangJ. WangR. ZhangB. BoL. ChenZ.S. YangH. SunL. Antimicrobial peptides for combating drug-resistant bacterial infections.Drug Resist. Updat.20236810095410.1016/j.drup.2023.100954 36905712
    [Google Scholar]
  132. YangS. WangH. ZhaoD. ZhangS. HuC. Polymyxins: Recent advances and challenges.Front. Pharmacol.202415142476510.3389/fphar.2024.1424765 38974043
    [Google Scholar]
  133. TilahunM. kassaY. GedefieA. BeleteM.A. Emerging carbapenem-resistant Enterobacteriaceae infection, its epidemiology and novel treatment options: A review.Infect. Drug Resist.2021144363437410.2147/IDR.S337611 34707380
    [Google Scholar]
  134. MehmoodA. NaseerS. AliA. FatimahH. RehmanS. KianiA.K. Identification of novel vaccine candidates against carbapenem resistant Klebsiella pneumoniae: A systematic reverse proteomic approach.Comput. Biol. Chem.20208910738010.1016/j.compbiolchem.2020.107380 32992120
    [Google Scholar]
  135. IsmailS. AhmadS. AzamS.S. Vaccinomics to design a novel single chimeric subunit vaccine for broad-spectrum immunological applications targeting nosocomial Enterobacteriaceae pathogens.Eur. J. Pharm. Sci.202014610525810.1016/j.ejps.2020.105258 32035109
    [Google Scholar]
  136. AnandU. NandyS. MundhraA. DasN. PandeyD.K. DeyA. A review on antimicrobial botanicals, phytochemicals and natural resistance modifying agents from Apocynaceae family: Possible therapeutic approaches against multidrug resistance in pathogenic microorganisms.Drug Resist. Updat.20205110069510.1016/j.drup.2020.100695 32442892
    [Google Scholar]
  137. EldinA.B. EzzatM. AfifiM. SabryO. CaprioliG. Herbal medicine: The magic way crouching microbial resistance.Nat. Prod. Res.202337244280428910.1080/14786419.2023.2172009 36719419
    [Google Scholar]
  138. ShriramV. KhareT. BhagwatR. ShuklaR. KumarV. Inhibiting Bacterial Drug Efflux Pumps via Phyto-Therapeutics to Combat Threatening Antimicrobial Resistance.Front. Microbiol.20189299010.3389/fmicb.2018.02990 30619113
    [Google Scholar]
  139. JadimurthyR. JagadishS. NayakS.C. KumarS. MohanC.D. RangappaK.S. Phytochemicals as invaluable sources of potent antimicrobial agents to combat antibiotic resistance.Life202313494810.3390/life13040948 37109477
    [Google Scholar]
  140. DwivediG.R. UpadhyayH.C. YadavD.K. SinghV. SrivastavaS.K. KhanF. DarmwalN.S. DarokarM.P. 4-Hydroxy-α-tetralone and its derivative as drug resistance reversal agents in multi drug resistant Escherichia coli.Chem. Biol. Drug Des.201483448249210.1111/cbdd.12263 24267788
    [Google Scholar]
  141. BoberekJ.M. StachJ. GoodL. Genetic evidence for inhibition of bacterial division protein FtsZ by berberine.PLoS One2010510e1374510.1371/journal.pone.0013745 21060782
    [Google Scholar]
  142. LiuB. ZhouC. ZhangZ. RolandJ.D. LeeB.P. Antimicrobial property of halogenated catechols.Chem. Eng. J.202140312634010.1016/j.cej.2020.126340 32848507
    [Google Scholar]
  143. BagA. ChattopadhyayR.R. Efflux-pump inhibitory activity of a gallotannin from Terminalia chebula fruit against multidrug-resistant uropathogenic Escherichia coli.Nat. Prod. Res.201428161280128310.1080/14786419.2014.895729 24620744
    [Google Scholar]
  144. MauryaA. DwivediG.R. DarokarM.P. SrivastavaS.K. Antibacterial and synergy of clavine alkaloid lysergol and its derivatives against nalidixic acid-resistant Escherichia coli.Chem. Biol. Drug Des.201381448449010.1111/cbdd.12103 23290001
    [Google Scholar]
  145. DwivediG.R. MauryaA. YadavD.K. KhanF. DarokarM.P. SrivastavaS.K. Drug resistance reversal potential of ursolic acid derivatives against Nalidixic acid‐ and multidrug‐resistant Escherichia coli.Chem. Biol. Drug Des.201586327228310.1111/cbdd.12491 25476148
    [Google Scholar]
  146. FuY. LiuW. LiuM. ZhangJ. YangM. WangT. QianW. In vitro anti-biofilm efficacy of sanguinarine against carbapenem-resistant Serratia marcescens.Biofouling202137334135110.1080/08927014.2021.1919649 33947279
    [Google Scholar]
  147. StefaniT. Garza-GonzálezE. Rivas-GalindoV.M. RiosM.Y. AlvarezL. Camacho-CoronaM.R. Hechtia glomerata Zucc: Phytochemistry and activity of its extracts and major constituents against resistant bacteria.Molecules20192419343410.3390/molecules24193434 31546651
    [Google Scholar]
  148. AshrafM.V. PantS. KhanM.A.H. ShahA.A. SiddiquiS. JeridiM. AlhamdiH.W.S. AhmadS. Phytochemicals as antimicrobials: Prospecting himalayan medicinal plants as source of alternate medicine to combat antimicrobial resistance.Pharmaceuticals202316688110.3390/ph16060881 37375828
    [Google Scholar]
  149. ShriramV. JahagirdarS. LathaC. KumarV. PuranikV. RojatkarS. DhakephalkarP.K. ShitoleM.G. A potential plasmid-curing agent, 8-epidiosbulbin E acetate, from Dioscorea bulbifera L. against multidrug-resistant bacteria.Int. J. Antimicrob. Agents200832540541010.1016/j.ijantimicag.2008.05.013 18718743
    [Google Scholar]
  150. DwivediG.R. MauryaA. YadavD.K. SinghV. KhanF. GuptaM.K. SinghM. DarokarM.P. SrivastavaS.K. Synergy of clavine alkaloid ‘chanoclavine’ with tetracycline against multi-drug-resistant E. coli.J. Biomol. Struct. Dyn.20193751307132510.1080/07391102.2018.1458654 29595093
    [Google Scholar]
  151. NeetuN. KatikiM. DevA. GaurS. TomarS. KumarP. Structural and biochemical analyses reveal that chlorogenic acid inhibits the shikimate pathway.J. Bacteriol.202020218e00248e2010.1128/JB.00248‑20 32661075
    [Google Scholar]
  152. de Jesús Dzul-BehA. Uc-CachónA.H. González-SánchezA.A. Dzib-BaakH.E. Ortiz-AndradeR. Barrios-GarcíaH.B. Jiménez-DelgadilloB. Molina-SalinasG.M. Antimicrobial potential of the Mayan medicine plant Matayba oppositifolia (A. Rich.) Britton against antibiotic-resistant priority pathogens.J. Ethnopharmacol.202330011573810.1016/j.jep.2022.115738 36165961
    [Google Scholar]
  153. GülenD. ŞafakB. ErdalB. GünaydınB. Curcumin-meropenem synergy in carbapenem resistant Klebsiella pneumoniae curcumin-meropenem synergy.Iran. J. Microbiol.202113334535110.18502/ijm.v13i3.6397 34540173
    [Google Scholar]
  154. DaiC. LinJ. LiH. ShenZ. WangY. VelkovT. ShenJ. The natural product curcumin as an antibacterial agent: Current achievements and problems.Antioxidants202211345910.3390/antiox11030459 35326110
    [Google Scholar]
  155. VirzìN.F. FallicaA.N. RomeoG. GreishK. AlghamdiM.A. PatanèS. MazzagliaA. ShahidM. PittalàV. Curcumin I-SMA nanomicelles as promising therapeutic tool to tackle bacterial infections.RSC Advances20231344310593106610.1039/D3RA04885C 37881762
    [Google Scholar]
  156. SundaramoorthyN.S. SivasubramanianA. NagarajanS. Simultaneous inhibition of MarR by salicylate and efflux pumps by curcumin sensitizes colistin resistant clinical isolates of Enterobacteriaceae.Microb. Pathog.202014810444510.1016/j.micpath.2020.104445 32814143
    [Google Scholar]
  157. EtemadiS. BarhaghiM.H.S. LeylabadloH.E. MemarM.Y. MohammadiA.B. GhotaslouR. The synergistic effect of turmeric aqueous extract and chitosan against multidrug-resistant bacteria.New Microbes New Infect.20214110086110.1016/j.nmni.2021.100861 33898041
    [Google Scholar]
  158. SadikuN. GID, OKS, & SBA. bioactivity of Khaya Senegalensis (Desr.) A. Juss. and Tamarindus indica L. extracts on selected pathogenic microbes.Arabian J. Med. Aroma. Plants2020622941
    [Google Scholar]
  159. Al-MijalliS.H. MrabtiH.N. El HachlafiN. El KamiliT. ElbouzidiA. AbdallahE.M. FlouchiR. AssaggafH. QasemA. ZenginG. BouyahyaA. ChahdiF.O. Integrated analysis of antimicrobial, antioxidant, and phytochemical properties of Cinnamomum verum: A comprehensive in vitro and in silico study.Biochem. Syst. Ecol.202311010470010.1016/j.bse.2023.104700
    [Google Scholar]
  160. Raja YahyaM.F.Z. Anti-biofilm potential and mode of action of Malaysian plant species: A review.Science Letters20201423410.24191/sl.v14i2.9541
    [Google Scholar]
  161. QianW. ZhangJ. WangW. WangT. LiuM. YangM. SunZ. LiX. LiY. Antimicrobial and antibiofilm activities of paeoniflorin against carbapenem‐resistant Klebsiella pneumoniae.J. Appl. Microbiol.2020128240141310.1111/jam.14480 31602708
    [Google Scholar]
  162. European centre for disease prevention and control. carbapenem-resistant Enterobacterales (CRE).Available from: https://www.ecdc.europa.eu/en/citations-data/directory-guidance-prevention-and-control/prevention-and-control-infections-1 2019
  163. MagiorakosA.P. BurnsK. Rodríguez BañoJ. BorgM. DaikosG. DumpisU. LucetJ.C. MoroM.L. TacconelliE. SimonsenG.S. SzilágyiE. VossA. WeberJ.T. Infection prevention and control measures and tools for the prevention of entry of carbapenem-resistant Enterobacteriaceae into healthcare settings: Guidance from the European centre for disease prevention and control.Antimicrob. Resist. Infect. Control20176111310.1186/s13756‑017‑0259‑z 29163939
    [Google Scholar]
  164. Antimicrobial Stewardship.Available from: https://apic.org/professional-practice/practice-resources/antimicrobial-stewardship/#:~:text=Antimicrobial%20stewardship%20is%20a%20coordinated,caused%20by%20multidrug%2Dresistant%20organisms.2012
  165. Core nlms of antibiotic stewardship.Available from: https://www.cdc.gov/antibiotic-use/hcp/core-nlms/index.html 2024
  166. Antibiotic stewardship resources.Available from: https://www.jointcommission.org/resources/patient-safety-topics/infection-prevention-and-control/antibiotic-stewardship/ 2023
/content/journals/aia/10.2174/0122113525347025241015053800
Loading
/content/journals/aia/10.2174/0122113525347025241015053800
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test