Skip to content
2000
Volume 25, Issue 13
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

PIM (Proviral Integration site for Moloney Murine Leukemia virus) kinases are members of the class of kinase family serine/threonine kinases, which play a crucial role in cancer development. As there is no drug in the market against PIM-1, kinase has transpired as a budding and captivating target for discovering new anticancer agents targeting PIM-1 kinase.

Aim

The current research pondered the development of new PIM-1 kinase inhibitors by applying a ligand-based and structure-based drug discovery approach involving 3D QSAR, molecular docking, and dynamics simulation.

Methods

In this study, association allying the structural properties and biological activity was undertaken using 3D-QSAR analysis. The 3D-QSAR model was generated with the help of 35 compounds from which the best model manifested an appreciated cross-validation coefficient (q2) of and conventional correlation coefficient (r2) of respectively and the predicted correlation coefficient (r2) was obtained as .

Results

The molecular docking analysis demonstrated that the analogs under analysis occupied the active site of the PIM-1 kinase receptor and interactions with Lys67 in the catalytic region, Asp186 in the DFG motif, and Glu171 were noticed with numerous compounds.

Discussion

Furthermore, the molecular dynamics simulation study stated that the ligand portrayed strong conformational stability within the active site of PIM-1 kinase protein, forming two hydrogen bonds until 100 ns, respectively.

Conclusion

Overall outcomes of the study revealed that applications of the ligand-based drug discovery approach and structure-based drug discovery strategy conceivably applied to discovering new PIM-1 kinase inhibitors as anticancer agents.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/1871520622666220820090353
2025-02-24
2025-09-02
Loading full text...

Full text loading...

References

  1. HassanpourS.H. DehghaniM. Review of cancer from perspective of molecular.J. Cancer Res. Pract.20174412712910.1016/j.jcrpr.2017.07.001
    [Google Scholar]
  2. SiegelR.L. MillerK.D. JemalA. Cancer statistics, 2020.CA Cancer J. Clin.202070173010.3322/caac.21590 31912902
    [Google Scholar]
  3. AtfiA. LepageK. AllardP. ChapdelaineA. ChevalierS. Activation of a serine/threonine kinase signaling pathway by transforming growth factor type beta.Proc. Natl. Acad. Sci. USA19959226121101211410.1073/pnas.92.26.12110 8618854
    [Google Scholar]
  4. SwordsR. KellyK. CarewJ. NawrockiS. MahalingamD. SarantopoulosJ. BearssD. GilesF. The Pim kinases: New targets for drug development.Curr. Drug Targets201112142059206610.2174/138945011798829447 21777193
    [Google Scholar]
  5. WalhekarV. BagulC. KumarD. MuthalA. AchaiahG. KulkarniR. Topical advances in PIM kinases and their inhibitors: Medicinal chemistry perspectives.Biochim. Biophys. Acta Rev. Cancer20221877318872510.1016/j.bbcan.2022.188725 35367531
    [Google Scholar]
  6. PeperzakV. VeraarE.A. KellerA.M. XiaoY. BorstJ. The Pim kinase pathway contributes to survival signaling in primed CD8+ T cells upon CD27 costimulation.J. Immunol.2010185116670667810.4049/jimmunol.1000159 21048108
    [Google Scholar]
  7. Narlik-GrassowM. Blanco-AparicioC. CeciliaY. PeregrinaS. Garcia-SereldeB. Muñoz-GalvanS. CañameroM. CarneroA. The essential role of PIM kinases in sarcoma growth and bone invasion.Carcinogenesis20123381479148610.1093/carcin/bgs176 22623646
    [Google Scholar]
  8. SantioN.M. LandorS.K. VahteraL. Ylä-PeltoJ. PaloniemiE. ImanishiS.Y. CorthalsG. VarjosaloM. ManoharanG.B. UriA. LendahlU. SahlgrenC. KoskinenP.J. Phosphorylation of Notch1 by Pim kinases promotes oncogenic signaling in breast and prostate cancer cells.Oncotarget2016728432204323810.18632/oncotarget.9215 27281612
    [Google Scholar]
  9. WuJ. ChuE. KangY. PIM kinases in multiple myeloma.Cancers20211317430410.3390/cancers13174304 34503111
    [Google Scholar]
  10. LeB.T. KumarasiriM. AdamsJ.R. YuM. MilneR. SykesM.J. WangS. Targeting PIM kinases for cancer treatment: Opportunities and challenges.Future Med. Chem.201571355310.4155/fmc.14.145 25582332
    [Google Scholar]
  11. LuszczakS. KumarC. SathyadevanV.K. SimpsonB.S. GatelyK.A. WhitakerH.C. HeaveyS. PIM kinase inhibition: Co-targeted therapeutic approaches in prostate cancer.Signal Transduct. Target. Ther.202051710.1038/s41392‑020‑0109‑y 32296034
    [Google Scholar]
  12. KulkarniR. MitkariU. AchaiahG. LauferS. BikshaptiD.V.R.N. ChandrashekarV.M. GuravP.B. JoshiS.J. ChipadeV.D. Substituted benzamides from anti-inflammatory and p38 kinase inhibitors to antitubercular activity: Design, synthesis and screening.Mini Rev. Med. Chem.201818171486149710.2174/1389557517666170707105416 28685700
    [Google Scholar]
  13. DomaA. KulkarniR. PalakodetyR. SastryG.N. SridharaJ. GarlapatiA. Pyrazole derivatives as potent inhibitors of c-Jun N-terminal kinase: Synthesis and SAR studies.Bioorg. Med. Chem.201422216209621910.1016/j.bmc.2014.08.028 25261929
    [Google Scholar]
  14. KulkarniR.G. LauferS. MangannavarC. GarlapatiA. Design, synthesis and characterization of N′, N"-diaryl ureas as p38 kinase inhibitors.Med. Chem.20139221322110.2174/1573406411309020006 22946566
    [Google Scholar]
  15. KulkarniR.G. LauferS.A. MC.V. GarlapatiA. Synthesis, p38 kinase inhibitory and anti-inflammatory activity of new substituted benzimidazole derivatives.Med. Chem.201391919910.2174/157340613804488440 22946527
    [Google Scholar]
  16. KulkarniR. KompalliK. GaddamN. MangannavarC.V. DarnaB. GarlapatiA. KumarD. MachhaB. Synthesis, characterization, antitubercular and anti-inflammatory activity of new pyrazolo[3, 4-d] pyrimidines.Comb. Chem. High Throughput Screen.20212481300130810.2174/1386207323999200918114905 32957875
    [Google Scholar]
  17. Martínez-GonzálezS. Rodríguez-ArísteguiS. Gómez de la OlivaC.A. HernándezA.I. González CantalapiedraE. VarelaC. GarcíaA.B. RabalO. OyarzabalJ. BischoffJ.R. KlettJ. AlbarránM.I. CebriáA. AjenjoN. García-SereldeB. Gómez-CaseroE. Cuadrado-UrbanoM. CebriánD. Blanco-AparicioC. PastorJ. Discovery of novel triazolo[4,3-b]pyridazin-3-yl-quinoline derivatives as PIM inhibitors.Eur. J. Med. Chem.20191688710910.1016/j.ejmech.2019.02.022 30802730
    [Google Scholar]
  18. GolbraikhA. TropshaA. Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection.J. Comput. Aided Mol. Des.200054231243 12489684
    [Google Scholar]
  19. HalgrenT.A. Merck molecular force field. III. Molecular geometries and vibrational frequencies for MMFF94.J. Comput. Chem.1996175‐655358610.1002/(SICI)1096‑987X(199604)17:5/6>553::AID‑JCC3>3.0.CO;2‑T
    [Google Scholar]
  20. AjmaniS. KulkarniS.A. A dual‐response partial least squares regression QSAR model and its application in design of dual activators of PPARα and PPARγ.QSAR Comb. Sci.20082711‐121291130410.1002/qsar.200810023
    [Google Scholar]
  21. AjmaniS. JadhavK. KulkarniS.A. Three-dimensional QSAR using the k-nearest neighbor method and its interpretation.J. Chem. Inf. Model.2006461243110.1021/ci0501286 16426036
    [Google Scholar]
  22. GhoshP. BagchiM.C. Comparative QSAR studies of nitrofuranyl amide derivatives using theoretical structural properties.Mol. Simul.200935141185120010.1080/08927020903033141
    [Google Scholar]
  23. BhatiaM.S. PakhareK.D. ChoudhariP.B. JadhavS.D. DhavaleR.P. BhatiaN.M. Pharmacophore modeling and 3D QSAR studies of aryl amine derivatives as potential lumazine synthase inhibitors.Arab. J. Chem.20171010010410.1016/j.arabjc.2012.05.008
    [Google Scholar]
  24. GolbraikhA. TropshaA. Beware of q2!J. Mol. Graph. Model.200220426927610.1016/S1093‑3263(01)00123‑1 11858635
    [Google Scholar]
  25. MakhijaM.T. KulkarniV.M. 3D-QSAR and molecular modeling of HIV-1 integrase inhibitors.J. Comput. Aided Mol. Des.200216318120010.1023/A:1020137802155 12363217
    [Google Scholar]
  26. FriesnerR.A. BanksJ.L. MurphyR.B. HalgrenT.A. KlicicJ.J. MainzD.T. RepaskyM.P. KnollE.H. ShelleyM. PerryJ.K. ShawD.E. FrancisP. ShenkinP.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy.J. Med. Chem.20044771739174910.1021/jm0306430 15027865
    [Google Scholar]
  27. FriesnerR.A. MurphyR.B. RepaskyM.P. FryeL.L. GreenwoodJ.R. HalgrenT.A. SanschagrinP.C. MainzD.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes.J. Med. Chem.200649216177619610.1021/jm051256o 17034125
    [Google Scholar]
  28. ModiS.J. KulkarniV.M. Discovery of VEGFR-2 inhibitors exerting significant anticancer activity against CD44+ and CD133+ cancer stem cells (CSCs): Reversal of TGF-β induced epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma.Eur. J. Med. Chem.202020711285110.1016/j.ejmech.2020.112851 33002846
    [Google Scholar]
  29. SchrödingerL. DeLanoW. The PyMOL Molecular Graphics System Schrödinger Version 2.1.1.Schrödinger, LLC2020
    [Google Scholar]
  30. Dassault Systèmes Biovia Discovery Studio Visualizer 4.52020
    [Google Scholar]
  31. ŠaliA. BlundellT.L. Comparative protein modelling by satisfaction of spatial restraints.J. Mol. Biol.1993234377981510.1006/jmbi.1993.1626 8254673
    [Google Scholar]
  32. MachaB. KulkarniR. BagulC. GarigeA.K. AkkinepallyR. GarlapatiA. Molecular hybridization based design and synthesis of new benzo[5, 6] chromeno[2, 3-b]-quinolin-13 (14H)-one analogs as cholinesterase inhibitors.Med. Chem. Res.202130368570110.1007/s00044‑020‑02670‑w
    [Google Scholar]
  33. HessB. KutznerC. van der SpoelD. LindahlE. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation.J. Chem. Theory Comput.20084343544710.1021/ct700301q 26620784
    [Google Scholar]
  34. AbrahamM.J. MurtolaT. SchulzR. PállS. SmithJ.C. HessB. LindahlE. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers.SoftwareX20151192510.1016/j.softx.2015.06.001
    [Google Scholar]
  35. SchmidN. EichenbergerA.P. ChoutkoA. RinikerS. WingerM. MarkA.E. van GunsterenW.F. Definition and testing of the GROMOS force-field versions 54A7 and 54B7.Eur. Biophys. J.201140784385610.1007/s00249‑011‑0700‑9 21533652
    [Google Scholar]
  36. StroetM. CaronB. VisscherK.M. GeerkeD.P. MaldeA.K. MarkA.E. Automated topology builder version 3.0: Prediction of solvation free enthalpies in water and hexane.J. Chem. Theory Comput.201814115834584510.1021/acs.jctc.8b00768 30289710
    [Google Scholar]
  37. PronkS. PállS. SchulzR. LarssonP. BjelkmarP. ApostolovR. ShirtsM.R. SmithJ.C. KassonP.M. van der SpoelD. HessB. LindahlE. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit.Bioinformatics201329784585410.1093/bioinformatics/btt055 23407358
    [Google Scholar]
  38. PastorJ. OyarzabalJ. SalusteG. AlvarezR.M. RiveroV. RamosF. CendónE. Blanco-AparicioC. AjenjoN. CebriáA. AlbarránM.I. CebriánD. CorrioneroA. FominayaJ. MontoyaG. MazzoranaM. Hit to lead evaluation of 1,2,3-triazolo[4,5-b]pyridines as PIM kinase inhibitors.Bioorg. Med. Chem. Lett.20122241591159710.1016/j.bmcl.2011.12.130 22266039
    [Google Scholar]
  39. QianK.C. WangL. HickeyE.R. StudtsJ. BarringerK. PengC. KronkaitisA. LiJ. WhiteA. MischeS. FarmerB. Structural basis of constitutive activity and a unique nucleotide binding mode of human PIM-1 kinase.J. Biol. Chem.200528076130613710.1074/jbc.M409123200 15525646
    [Google Scholar]
/content/journals/acamc/10.2174/1871520622666220820090353
Loading
/content/journals/acamc/10.2174/1871520622666220820090353
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): 3D QSAR; molecular docking; molecular dynamics; PIM-1 kinase; PLS analysis; prostate cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test