Skip to content
2000
image of FN-1501 Synergistically Enhances Almonertinib Efficacy in EGFR-TKI-Resistant Lung Adenocarcinoma through Ferroptosis Induction

Abstract

Introduction

The emergence of acquired resistance to Epidermal Growth Factor Receptor-Tyrosine Kinase Inhibitors (EGFR-TKIs) presents a significant barrier to effective treatment in lung adenocarcinoma. This study investigates the antitumor efficacy of FN-1501 and its potential synergistic interaction with Almonertinib (Alm) to combat this resistance.

Methods

The impact of FN-1501 on lung adenocarcinoma and its synergistic effects with Almonertinib (Alm) were assessed through flow cytometry, Western blot analysis, CCK-8 assays, and clonogenic formation assays. Additionally, transcriptome analysis and network pharmacology were employed to elucidate the functional mechanisms by which FN-1501 may reverse EGFR-TKI acquired resistance.

Results

FN-1501 demonstrated the ability to inhibit cell proliferation, induce apoptosis, and arrest the cell cycle. The combination of Alm and FN-1501 restored sensitivity in resistant cell lines. Mechanistic investigations indicated that this combination triggered ferroptosis the FOXO1-mediated upregulation of NCOA4. experiments showed that the Alm+FN-1501 combination significantly inhibited tumor growth compared to either treatment alone.

Discussion

These results provide compelling evidence that targeting ferroptosis pathways could be a viable approach to overcoming resistance to EGFR-TKIs. The FOXO1/NCOA4 axis emerges as a critical component in this process, enhancing our understanding of the mechanisms underlying resistance. While these findings are promising, further research is needed to evaluate toxicity, pharmacokinetics, and the applicability of this strategy in a broader context of resistance. Identifying predictive biomarkers could help refine patient selection for this treatment approach.

Conclusion

FN-1501 exhibits significant antitumor activity and, when combined with Alm, effectively reverses EGFR-TKI resistance by inducing ferroptosis, highlighting its potential for clinical application.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206437150251113065146
2025-11-25
2026-01-31
Loading full text...

Full text loading...

References

  1. Wang M. Herbst R.S. Boshoff C. Toward personalized treatment approaches for non-small-cell lung cancer. Nat. Med. 2021 27 8 1345 1356 10.1038/s41591‑021‑01450‑2 34385702
    [Google Scholar]
  2. Tian Y. Xu L. Li X. Li H. Zhao M. SMARCA4: Current status and future perspectives in non-small-cell lung cancer. Cancer Lett. 2023 554 216022 10.1016/j.canlet.2022.216022 36450331
    [Google Scholar]
  3. Meyer M.L. Fitzgerald B.G. Paz-Ares L. Cappuzzo F. Jänne P.A. Peters S. Hirsch F.R. New promises and challenges in the treatment of advanced non-small-cell lung cancer. Lancet 2024 404 10454 803 822 10.1016/S0140‑6736(24)01029‑8 39121882
    [Google Scholar]
  4. Zhou H. Zheng Z. Fan C. Zhou Z. Mechanisms and strategies of immunosenescence effects on non-small cell lung cancer (NSCLC) treatment: A comprehensive analysis and future directions. Semin. Cancer Biol. 2025 109 44 66 10.1016/j.semcancer.2025.01.001 39793777
    [Google Scholar]
  5. Imyanitov E.N. Iyevleva A.G. Levchenko E.V. Molecular testing and targeted therapy for non-small cell lung cancer: Current status and perspectives. Crit. Rev. Oncol. Hematol. 2021 157 103194 10.1016/j.critrevonc.2020.103194 33316418
    [Google Scholar]
  6. da Cunha Santos G. Shepherd F.A. Tsao M.S. EGFR mutations and lung cancer. Annu. Rev. Pathol. 2011 6 1 49 69 10.1146/annurev‑pathol‑011110‑130206 20887192
    [Google Scholar]
  7. Le X Nilsson M Goldman J Reck M Nakagawa K. Kato T. Dual EGFR-VEGF pathway inhibition: A promising strategy for patients with EGFR-mutant NSCLC. J. Thorac Oncol. 2021 16 2 205 215 10.1016/j.jtho.2020.10.006
    [Google Scholar]
  8. Corvaja C. Passaro A. Attili I. Aliaga P.T. Spitaleri G. Signore E.D. de Marinis F. Advancements in fourth-generation EGFR TKIs in EGFR-mutant NSCLC: Bridging biological insights and therapeutic development. Cancer Treat Rev. 2024 130 102824 10.1016/j.ctrv.2024.102824 39366135
    [Google Scholar]
  9. Aldea M. Andre F. Marabelle A. Dogan S. Barlesi F. Soria J.C. Overcoming resistance to tumor-targeted and immune-targeted therapies. Cancer Discov. 2021 11 4 874 899 10.1158/2159‑8290.CD‑20‑1638 33811122
    [Google Scholar]
  10. Dias M.P. Moser S.C. Ganesan S. Jonkers J. Understanding and overcoming resistance to PARP inhibitors in cancer therapy. Nat. Rev. Clin. Oncol. 2021 18 12 773 791 10.1038/s41571‑021‑00532‑x 34285417
    [Google Scholar]
  11. Wu SG Shih JY Management of acquired resistance to EGFR TKI-targeted therapy in advanced non-small cell lung cancer. Mol. Cancer 2018 17 1 38 10.1186/s12943‑018‑0777‑1
    [Google Scholar]
  12. Westover D. Zugazagoitia J. Cho B.C. Lovly C.M. Paz-Ares L. Mechanisms of acquired resistance to first- and second-generation EGFR tyrosine kinase inhibitors. Ann. Oncol. 2018 29 Suppl. 1 i10 i19 10.1093/annonc/mdx703 29462254
    [Google Scholar]
  13. Dong R.F. Zhu M.L. Liu M.M. Xu Y.T. Yuan L.L. Bian J. Xia Y.Z. Kong L.Y. EGFR mutation mediates resistance to EGFR tyrosine kinase inhibitors in NSCLC: From molecular mechanisms to clinical research. Pharmacol. Res. 2021 167 105583 10.1016/j.phrs.2021.105583 33775864
    [Google Scholar]
  14. Morgillo F. Della Corte C.M. Fasano M. Ciardiello F. Mechanisms of resistance to EGFR-targeted drugs: Lung cancer. ESMO Open 2016 1 3 000060 10.1136/esmoopen‑2016‑000060 27843613
    [Google Scholar]
  15. Yu H.A. Goldberg S.B. Le X. Piotrowska Z. Goldman J.W. De Langen A.J. Okamoto I. Cho B.C. Smith P. Mensi I. Ambrose H. Kraljevic S. Maidment J. Chmielecki J. Li-Sucholeiki X. Doughton G. Patel G. Jewsbury P. Szekeres P. Riess J.W. Biomarker-directed phase II platform study in patients with egfr sensitizing mutation-positive advanced/metastatic non-small cell lung cancer whose disease has progressed on first-line osimertinib therapy (ORCHARD). Clin. Lung Cancer 2021 22 6 601 606 10.1016/j.cllc.2021.06.006 34389237
    [Google Scholar]
  16. Lim S.M. Syn N.L. Cho B.C. Soo R.A. Acquired resistance to EGFR targeted therapy in non-small cell lung cancer: Mechanisms and therapeutic strategies. Cancer Treat. Rev. 2018 65 1 10 10.1016/j.ctrv.2018.02.006 29477930
    [Google Scholar]
  17. Lu X. Yu L. Zhang Z. Ren X. Smaill J.B. Ding K. Targeting EGFR L858R/T790M and EGFR L858R/T790M/C797S resistance mutations in NSCLC: Current developments in medicinal chemistry. Med. Res. Rev. 2018 38 5 1550 1581 10.1002/med.21488 29377179
    [Google Scholar]
  18. Zhou Q. Zhao H. Lu S. Cheng Y. Liu Y. Zhao M. Yu Z. Hu C. Zhang L. Yang F. Zhao J. Guo R. Ma R. Du Y. Dong X. Cui J. Tan D.S.W. Ahn M.J. Tsuboi M. Maggie Liu S.Y. Mok T.S. Wu Y.L. Consensus on the lung cancer management after third-generation EGFR-TKI resistance. Lancet Reg. Health West. Pac. 2024 53 101260 10.1016/j.lanwpc.2024.101260 39759798
    [Google Scholar]
  19. Cooper A.J. Sequist L.V. Lin J.J. Third-generation EGFR and ALK inhibitors: Mechanisms of resistance and management. Nat. Rev. Clin. Oncol. 2022 19 8 499 514 10.1038/s41571‑022‑00639‑9 35534623
    [Google Scholar]
  20. Zhang X. Maity T.K. Ross K.E. Qi Y. Cultraro C.M. Bahta M. Pitts S. Keswani M. Gao S. Nguyen K.D.P. Cowart J. Kirkali F. Wu C. Guha U. Alterations in the global proteome and phosphoproteome in third generation egfr tki resistance reveal drug targets to circumvent resistance. Cancer Res. 2021 81 11 3051 3066 10.1158/0008‑5472.CAN‑20‑2435 33727228
    [Google Scholar]
  21. Wang S. Cang S. Liu D. Third-generation inhibitors targeting EGFR T790M mutation in advanced non-small cell lung cancer. J. Hematol. Oncol. 2016 9 1 34 10.1186/s13045‑016‑0268‑z 27071706
    [Google Scholar]
  22. Vaid A. Gupta A. Momi G. Overall survival in stage IV EGFR mutation positive NSCLC: Comparing first, second and third generation EGFR TKIs (Review). Int. J. Oncol. 2021 58 2 171 184 10.3892/ijo.2021.5168 33491758
    [Google Scholar]
  23. Patel H. Pawara R. Ansari A. Surana S. Recent updates on third generation EGFR inhibitors and emergence of fourth generation EGFR inhibitors to combat C797S resistance. Eur. J. Med. Chem. 2017 142 32 47 10.1016/j.ejmech.2017.05.027 28526474
    [Google Scholar]
  24. Occhipinti M. Imbimbo M. Ferrara R. Simeon V. Fiscon G. Marchal C. Skoetz N. Viscardi G. Adjuvant epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) for the treatment of people with resected stage I to III non-small-cell lung cancer and EGFR mutation. Cochrane Libr. 2025 2025 5 CD015140 10.1002/14651858.CD015140.pub2 40421698
    [Google Scholar]
  25. Lu S. Dong X. Jian H. Chen J. Chen G. Sun Y. Ji Y. Wang Z. Shi J. Lu J. Chen S. Lv D. Zhang G. Liu C. Li J. Yu X. Lin Z. Yu Z. Wang Z. Cui J. Xu X. Fang J. Feng J. Xu Z. Ma R. Hu J. Yang N. Zhou X. Wu X. Hu C. Zhang Z. Lu Y. Hu Y. Jiang L. Wang Q. Guo R. Zhou J. Li B. Hu C. Tong W. Zhang H. Ma L. Chen Y. Jie Z. Yao Y. Zhang L. Jie W. Li W. Xiong J. Ye X. Duan J. Yang H. Sun M. Sun C. Wei H. Li C. Ali S.M. Miller V.A. Wu Q. AENEAS: A randomized phase III trial of aumolertinib versus gefitinib as first-line therapy for locally advanced or metastaticnon–small-cell lung cancer with egfr exon 19 deletion or L858R mutations. J. Clin. Oncol. 2022 40 27 3162 3171 10.1200/JCO.21.02641 35580297
    [Google Scholar]
  26. Yang J.C.H. Camidge D.R. Yang C.T. Zhou J. Guo R. Chiu C.H. Chang G.C. Shiah H.S. Chen Y. Wang C.C. Berz D. Su W.C. Yang N. Wang Z. Fang J. Chen J. Nikolinakos P. Lu Y. Pan H. Maniam A. Bazhenova L. Shirai K. Jahanzeb M. Willis M. Masood N. Chowhan N. Hsia T.C. Jian H. Lu S. Safety, efficacy, and pharmacokinetics of almonertinib (HS-10296) in pretreated patients with egfr-mutated advanced nsclc: A multicenter, open-label, phase 1 trial. J. Thorac. Oncol. 2020 15 12 1907 1918 10.1016/j.jtho.2020.09.001 32916310
    [Google Scholar]
  27. Lu S. Dong X. Jian H. Chen J. Chen G. Sun Y. Ji Y. Wang Z. Shi J. Lu J. Chen S. Lv D. Zhang G. Liu C. Li J. Yu X. Lin Z. Yu Z. Wang Z. Cui J. Xu X. Fang J. Feng J. Xu Z. Ma R. Hu J. Yang N. Zhou X. Wu X. Hu C. Zhang Z. Lu Y. Hu Y. Jiang L. wang, Q.; Guo, R.; Zhou, J.; Li, B.; Hu, C.; Tong, W.; Zhang, H.; Ma, L.; Chen, Y.; Jie, Z.; Yao, Y.; Zhang, L.; Weng, J.; Li, W.; Xiong, J.; Ye, X.; Duan, J.; Yang, H.; Sun, M.; Wei, H.; Wei, J.; Zhang, Z.; Wu, Q. Central nervous system efficacy of aumolertinib versus gefitinib in patients with untreated, EGFR ‐mutated, advanced non‐small cell lung cancer: Data from a randomized phase III trial (AENEAS). Cancer Commun. 2024 44 9 1005 1017 10.1002/cac2.12594 39016053
    [Google Scholar]
  28. Wang Y. Zhi Y. Jin Q. Lu S. Lin G. Yuan H. Yang T. Wang Z. Yao C. Ling J. Guo H. Li T. Jin J. Li B. Zhang L. Chen Y. Lu T. Discovery of 4-((7 H -Pyrrolo[2,3- d]pyrimidin-4-yl)amino)- N -(4-((4-methylpiperazin-1-yl)methyl)phenyl)-1 H -pyrazole-3-carboxamide (FN-1501), an FLT3- and CDK-kinase inhibitor with potentially high efficiency against acute myelocytic leukemia. J. Med. Chem. 2018 61 4 1499 1518 10.1021/acs.jmedchem.7b01261 29357250
    [Google Scholar]
  29. Yang J. Friedman R. Synergy and antagonism between azacitidine and FLT3 inhibitors. Comput. Biol. Med. 2024 169 107889 10.1016/j.compbiomed.2023.107889 38199214
    [Google Scholar]
  30. Lin B. Li Y. Wang T. Qiu Y. Chen Z. Zhao K. Lu N. CRMP2 is a therapeutic target that suppresses the aggressiveness of breast cancer cells by stabilizing RECK. Oncogene 2020 39 37 6024 6040 10.1038/s41388‑020‑01412‑x 32778769
    [Google Scholar]
  31. Richardson G.E. Al-Rajabi R. Uprety D. Hamid A. Williamson S.K. Baranda J. Mamdani H. Lee Y.L. Nitika; Li, L.; Wang, X.; Dong, X. A multicenter, open-label, phase I/II study of fn-1501 in patients with advanced solid tumors. Cancers 2023 15 9 2553 10.3390/cancers15092553 37174019
    [Google Scholar]
  32. Zhang M. Huang M.N. Dong X.D. Cui Q.B. Yan Y. She M.L. Feng W.G. Zhao X.S. Wang D.T. Overexpression of ABCB1 confers resistance to FLT3 inhibitor FN-1501 in cancer cells: In vitro and in vivo characterization. Am. J. Cancer Res. 2023 13 12 6026 6037 38187048
    [Google Scholar]
  33. Hendriks L.E.L. Remon J. Faivre-Finn C. Garassino M.C. Heymach J.V. Kerr K.M. Tan D.S.W. Veronesi G. Reck M. Non-small-cell lung cancer. Nat. Rev. Dis. Primers. 2024 10 1 71 10.1038/s41572‑024‑00551‑9 39327441
    [Google Scholar]
  34. Paudel K.R. Rajput R. De Rubis G. Raju Allam V.S.R. Williams K.A. Singh S.K. Gupta G. Salunke P. Hansbro P.M. Gerlach J. Dua K. In vitro anti-cancer activity of a polyherbal preparation, VEDICINALS®9, against A549 human lung adenocarcinoma cells. Pathol. Res. Pract. 2023 250 154832 10.1016/j.prp.2023.154832 37774532
    [Google Scholar]
  35. Shi L. Zhao J. Wei Z. Wu H. Sheng M. Radiomics in distinguishing between lung adenocarcinoma and lung squamous cell carcinoma: A systematic review and meta-analysis. Front. Oncol. 2024 14 1381217 10.3389/fonc.2024.1381217 39381037
    [Google Scholar]
  36. Tan A.C. Tan D.S.W. Targeted therapies for lung cancer patients with oncogenic driver molecular alterations. J. Clin. Oncol. 2022 40 6 611 625 10.1200/JCO.21.01626 34985916
    [Google Scholar]
  37. Martínez-Jiménez F. Muiños F. Sentís I. Deu-Pons J. Reyes-Salazar I. Arnedo-Pac C. Mularoni L. Pich O. Bonet J. Kranas H. Gonzalez-Perez A. Lopez-Bigas N. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 2020 20 10 555 572 10.1038/s41568‑020‑0290‑x 32778778
    [Google Scholar]
  38. Nussinov R. Tsai C.J. Jang H. Anticancer drug resistance: An update and perspective. Drug Resist. Updat. 2021 59 100796 10.1016/j.drup.2021.100796 34953682
    [Google Scholar]
  39. Levantini E. Maroni G. Del Re M. Tenen D.G. EGFR signaling pathway as therapeutic target in human cancers. Semin. Cancer Biol. 2022 85 253 275 10.1016/j.semcancer.2022.04.002 35427766
    [Google Scholar]
  40. Passaro A. Jänne P.A. Mok T. Peters S. Overcoming therapy resistance in EGFR-mutant lung cancer. Nat. Cancer 2021 2 4 377 391 10.1038/s43018‑021‑00195‑8 35122001
    [Google Scholar]
  41. Ramani S. Samant S. Manohar S.M. The story of EGFR: From signaling pathways to a potent anticancer target. Future Med. Chem. 2022 14 17 1267 1288 10.4155/fmc‑2021‑0343 35880513
    [Google Scholar]
  42. Fu K. Xie F. Wang F. Fu L. Therapeutic strategies for EGFR-mutated non-small cell lung cancer patients with osimertinib resistance. J. Hematol. Oncol. 2022 15 1 173 10.1186/s13045‑022‑01391‑4 36482474
    [Google Scholar]
  43. Wang Y. Wei J. Feng L. Li O. Huang L. Zhou S. Xu Y. An K. Zhang Y. Chen R. He L. Wang Q. Wang H. Du Y. Liu R. Huang C. Zhang X. Yang Y. Kan Q. Tian X. Aberrant m5C hypermethylation mediates intrinsic resistance to gefitinib through NSUN2/YBX1/QSOX1 axis in EGFR-mutant non-small-cell lung cancer. Mol. Cancer. 2023 22 1 81 10.1186/s12943‑023‑01780‑4 37161388
    [Google Scholar]
  44. He J. Huang Z. Han L. Gong Y. Xie C. Mechanisms and management of 3rd generation EGFR TKI resistance in advanced non small cell lung cancer (Review). Int. J. Oncol. 2021 59 5 90 10.3892/ijo.2021.5270 34558640
    [Google Scholar]
  45. Du X. Yang B. An Q. Assaraf Y.G. Cao X. Xia J. Acquired resistance to third-generation EGFR-TKIs and emerging next-generation EGFR inhibitors. Innovation 2021 2 2 100103 10.1016/j.xinn.2021.100103 34557754
    [Google Scholar]
  46. Matthews H.K. Bertoli C. de Bruin R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol. 2022 23 1 74 88 10.1038/s41580‑021‑00404‑3 34508254
    [Google Scholar]
  47. Li C. Liu Y. Luo S. Yang M. Li L. Sun L. A review of CDKL: An underestimated protein kinase family. Int. J. Biol. Macromol. 2024 277 Pt 1 133604 10.1016/j.ijbiomac.2024.133604 38964683
    [Google Scholar]
  48. Nilmani; D’costa, M; Bothe, A; Das, S; Udhaya Kumar, S; Gnanasambandan, R; George Priya Doss, C CDK regulators-Cell cycle progression or apoptosis-Scenarios in normal cells and cancerous cells. Adv. Protein Chem. Struct. Biol. 2023 135 125 177 10.1016/bs.apcsb.2022.11.008
    [Google Scholar]
  49. Arora M. Moser J. Hoffman T.E. Watts L.P. Min M. Musteanu M. Rong Y. Ill C.R. Nangia V. Schneider J. Sanclemente M. Lapek J. Nguyen L. Niessen S. Dann S. VanArsdale T. Barbacid M. Miller N. Spencer S.L. Rapid adaptation to CDK2 inhibition exposes intrinsic cell-cycle plasticity. Cell 2023 186 12 2628 2643.e21 10.1016/j.cell.2023.05.013 37267950
    [Google Scholar]
  50. Bertheloot D. Latz E. Franklin B.S. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell. Mol. Immunol. 2021 18 5 1106 1121 10.1038/s41423‑020‑00630‑3 33785842
    [Google Scholar]
  51. Xu J. Hashino T. Tanaka R. Kawaguchi K. Yoshida H. Kataoka T. The BCL-2 family protein BCL-RAMBO interacts and cooperates with GRP75 to promote its apoptosis signaling pathway. Sci. Rep. 2023 13 1 14041 10.1038/s41598‑023‑41196‑0 37640805
    [Google Scholar]
  52. Glaviano A. Foo A.S.C. Lam H.Y. Yap K.C.H. Jacot W. Jones R.H. Eng H. Nair M.G. Makvandi P. Geoerger B. Kulke M.H. Baird R.D. Prabhu J.S. Carbone D. Pecoraro C. Teh D.B.L. Sethi G. Cavalieri V. Lin K.H. Javidi-Sharifi N.R. Toska E. Davids M.S. Brown J.R. Diana P. Stebbing J. Fruman D.A. Kumar A.P. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023 22 1 138 10.1186/s12943‑023‑01827‑6 37596643
    [Google Scholar]
  53. Yu L. Wei J. Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin. Cancer Biol. 2022 85 69 94 10.1016/j.semcancer.2021.06.019 34175443
    [Google Scholar]
  54. Khezri M.R. Jafari R. Yousefi K. Zolbanin N.M. The PI3K/AKT signaling pathway in cancer: Molecular mechanisms and possible therapeutic interventions. Exp. Mol. Pathol. 2022 127 104787 10.1016/j.yexmp.2022.104787 35644245
    [Google Scholar]
  55. Fontana F. Giannitti G. Marchesi S. Limonta P. The PI3K/Akt pathway and glucose metabolism: A dangerous liaison in cancer. Int. J. Biol. Sci. 2024 20 8 3113 3125 10.7150/ijbs.89942 38904014
    [Google Scholar]
  56. Leiphrakpam P. Are C. PI3K/Akt/mTOR signaling pathway as a target for colorectal cancer treatment. Int. J. Mol. Sci. 2024 25 6 3178 10.3390/ijms25063178 38542151
    [Google Scholar]
  57. Orea-Soufi A. Paik J. Bragança J. Donlon T.A. Willcox B.J. Link W. FOXO transcription factors as therapeutic targets in human diseases. Trends Pharmacol. Sci. 2022 43 12 1070 1084 10.1016/j.tips.2022.09.010 36280450
    [Google Scholar]
  58. Song J. Li Z. Zhou L. Chen X. Sew W.Q.G. Herranz H. Ye Z. Olsen J.V. Li Y. Nygaard M. Christensen K. Tong X. Bohr V.A. Rasmussen L.J. Dai F. FOXO-regulated OSER1 reduces oxidative stress and extends lifespan in multiple species. Nat. Commun. 2024 15 1 7144 10.1038/s41467‑024‑51542‑z 39164296
    [Google Scholar]
  59. Liu Y. Ao X. Jia Y. Li X. Wang Y. Wang J. The FOXO family of transcription factors: Key molecular players in gastric cancer. J. Mol. Med. 2022 100 7 997 1015 10.1007/s00109‑022‑02219‑x 35680690
    [Google Scholar]
  60. Dilmac S. Kuscu N. Caner A. Yildirim S. Yoldas B. Farooqi A.A. Tanriover G. SIRT1/FOXO signaling pathway in breast cancer progression and metastasis. Int. J. Mol. Sci. 2022 23 18 10227 10.3390/ijms231810227 36142156
    [Google Scholar]
  61. Stallings C.E. Kapali J. Evans B.W. McGee S.R. Ellsworth B.S. FOXO transcription factors are required for normal somatotrope function and growth. Endocrinology 2022 163 2 bqab263 10.1210/endocr/bqab263 34971379
    [Google Scholar]
  62. Calissi G. Lam E.W.F. Link W. Therapeutic strategies targeting FOXO transcription factors. Nat. Rev. Drug Discov. 2021 20 1 21 38 10.1038/s41573‑020‑0088‑2 33173189
    [Google Scholar]
  63. Chen Y. Liu H. Han R. Lin J. Yang J. Guo M. Yang Z. Song L. Analyzing how SiMiao Wan regulates ferroptosis to prevent RA-ILD using metabolomics and cyberpharmacology. Phytomedicine 2024 133 155912 10.1016/j.phymed.2024.155912 39068761
    [Google Scholar]
  64. Wang X. Wu L. Yu M. Wang H. He L. Hu Y. Li Z. Zheng Y. Peng B. Exploring the molecular mechanism of Epimedium for the treatment of ankylosing spondylitis based on network pharmacology, molecular docking, and molecular dynamics simulations. Mol. Divers. 2025 29 1 591 606 10.1007/s11030‑024‑10877‑x 38734868
    [Google Scholar]
  65. Xu H. Huang J. Zeng Y. Wang X. Lian H. Zhang S. Guo R. Network pharmacology and molecular analysis of mechanisms underlying the therapeutic effects of Rhubarb in treating atherosclerosis and abdominal aortic aneurysm. Heliyon 2025 11 4 41906 10.1016/j.heliyon.2025.e41906 40028580
    [Google Scholar]
  66. Ma Z. Chen X. Xiong M. Wang H. Sun C. Tang W. Li J. Li X. Ma H. Ye X. Cyberpharmacology uncover the mechanism of the total Rhizoma Coptidis extracts ameliorate chronic atrophic gastritis. J. Ethnopharmacol 2024 335 118644 10.1016/j.jep.2024.118644 39094758
    [Google Scholar]
  67. Liu J. Song X. Song X. Fu X. Niu S. Chang H. Shi S. Yang M. Zhao R. Wang P. Qi J. Bai W. Bibliometrics-guided cyberpharmacology and transcriptomics for multidimensional analysis of the antihepatic fibrosis mechanism of kaempferol. Front. Mol. Biosci. 2025 12 1607103 10.3389/fmolb.2025.1607103 40950574
    [Google Scholar]
  68. Li J. Yang S. Pan J. Qin Y. Ye H. Liao S. Shao Z. Rong G. Xia Z. Sun J. Shao Y. Network pharmacology, experimental validation explored kakkalide to ameliorate endothelial cell dysfunction and inflammatory response. J. Inflamm. Res. 2025 18 11737 11753 10.2147/JIR.S519660 40904724
    [Google Scholar]
  69. Liu R. Chen Y. Liu G. Li C. Song Y. Cao Z. Li W. Hu J. Lu C. Liu Y. PI3K/AKT pathway as a key link modulates the multidrug resistance of cancers. Cell. Death Dis. 2020 11 9 797 10.1038/s41419‑020‑02998‑6 32973135
    [Google Scholar]
  70. Zhang J. Qu Z. Xiao X. Adelson D.L. Wang F. Wei A. Harata-Lee Y. Cui J. He D. Xie L. Sun L. Li J. Huang Z. Aung T. Yao H. Lin L. A novel sensitizer reduces EGFR-TKI resistance by regulating the PI3K/Akt/mTOR pathway and autophagy. Heliyon 2025 11 1 41104 10.1016/j.heliyon.2024.e41104 39844968
    [Google Scholar]
  71. Li K. Quan L. Huang F. Li Y. Shen Z. ADAM12 promotes the resistance of lung adenocarcinoma cells to EGFR-TKI and regulates the immune microenvironment by activating PI3K/Akt/mTOR and RAS signaling pathways. Int. Immunopharmacol. 2023 122 110580 10.1016/j.intimp.2023.110580 37418984
    [Google Scholar]
  72. Wang W. Xia X. Chen K. Chen M. Meng Y. Lv D. Yang H. Reduced PHLPP expression leads to EGFR-TKI resistance in lung cancer by activating PI3K-AKT and MAPK-ERK dual signaling. Front. Oncol. 2021 11 665045 10.3389/fonc.2021.665045 34168988
    [Google Scholar]
  73. Yonesaka K. Tanizaki J. Maenishi O. Haratani K. Kawakami H. Tanaka K. Hayashi H. Sakai K. Chiba Y. Tsuya A. Goto H. Otsuka E. Okida H. Kobayashi M. Yoshimoto R. Funabashi M. Hashimoto Y. Hirotani K. Kagari T. Nishio K. Nakagawa K. HER3 augmentation via blockade of EGFR/AKT signaling enhances anticancer activity of HER3-targeting patritumab deruxtecan in EGFR-mutated non–small cell lung cancer. Clin. Cancer Res. 2022 28 2 390 403 10.1158/1078‑0432.CCR‑21‑3359 34921025
    [Google Scholar]
  74. Tian X. Gu T. Lee M.H. Dong Z. Challenge and countermeasures for EGFR targeted therapy in non-small cell lung cancer. Biochim. Biophys. Acta Rev. Cancer 2022 1877 1 188645 10.1016/j.bbcan.2021.188645 34793897
    [Google Scholar]
  75. Chen S. Zhong M. Wang X. Su Y. Zhao Y. Wang S. Liu S. Yongshan Z. Zhang Y. Fan X. Liu Z. Jia L. Bao X. Cui W. Yang J. Wu C. Chen G. Wang L. Activation of epigenetic reprogramming via crotonylation overcomes resistance to EGFR-TKI therapy in lung cancer. Proc Natl Acad. Sci. USA 2025 122 40 2509255122 10.1073/pnas.2509255122 41026825
    [Google Scholar]
  76. Zhang C. Liu X. Jin S. Chen Y. Guo R. Ferroptosis in cancer therapy: A novel approach to reversing drug resistance. Mol. Cancer 2022 21 1 47 10.1186/s12943‑022‑01530‑y 35151318
    [Google Scholar]
  77. Zhang Y. Qian J. Fu Y. Wang Z. Hu W. Zhang J. Wang Y. Guo Y. Chen W. Zhang Y. Wang X. Xie Z. Ye H. Ye F. Zuo Z. Inhibition of DDR1 promotes ferroptosis and overcomes gefitinib resistance in non-small cell lung cancer. Biochim Biophys. Acta Mol. Basis Dis. 2024 1870 7 167447 10.1016/j.bbadis.2024.167447 39089636
    [Google Scholar]
  78. Ni Y. Liu J. Zeng L. Yang Y. Liu L. Yao M. Chai L. Zhang L. Li Y. Zhang L. Li W. Natural product manoalide promotes EGFR-TKI sensitivity of lung cancer cells by KRAS-ERK pathway and mitochondrial Ca2+ overload-induced ferroptosis. Front. Pharmacol. 2023 13 1109822 10.3389/fphar.2022.1109822 36712673
    [Google Scholar]
  79. Men B. Chen Z. Ge H. Yang Z. Yun L. Jiang J. Dian M. He Y. Zhou Z. Zhang R. Yan T. Li Z. Zhang Y. He Y. He J. Rao X. Rao S. Dauricine overcomes osimertinib resistance in lung cancer by inducing ferroptosis via stabilizing SAT1. Cancer Sci. 2025 116 8 2256 2269 10.1111/cas.70113 40485050
    [Google Scholar]
  80. Zhang C. Wang C. Yang Z. Bai Y. Shukuya T. Poh M.E. Ekman S. Li J. Xu Y. Deng S. Identification of GPX4 as a therapeutic target for lung adenocarcinoma after EGFR-TKI resistance. Transl. Lung Cancer Res. 2022 11 5 786 801 10.21037/tlcr‑22‑318 35693278
    [Google Scholar]
  81. Xu C. Jiang Z.B. Shao L. Zhao Z.M. Fan X.X. Sui X. Yu L.L. Wang X.R. Zhang R.N. Wang W.J. Xie Y.J. Zhang Y.Z. Nie X.W. Xie C. Huang J.M. Wang J. Wang J. Leung E.L.H. Wu Q.B. β-Elemene enhances erlotinib sensitivity through induction of ferroptosis by upregulating lncRNA H19 in EGFR-mutant non-small cell lung cancer. Pharmacol. Res. 2023 191 106739 10.1016/j.phrs.2023.106739 36948327
    [Google Scholar]
  82. Feng Y. He Y. Zuo R. Gong W. Gao Y. Wang Y. Yu W. Chen W. Chen L. Luo Y. Yuan D. Chen P. Guo H. 5-HT regulates resistance to aumolertinib by attenuating ferroptosis in lung adenocarcinoma. EMBO Mol. Med. 2025 17 10 2586 2611 10.1038/s44321‑025‑00293‑5 40897859
    [Google Scholar]
  83. Zhen S. Jia Y. Zhao Y. Wang J. Zheng B. Liu T. Duan Y. Lv W. Wang J. Xu F. Liu Y. Zhang Y. Liu L. NEAT1_1 confers gefitinib resistance in lung adenocarcinoma through promoting AKR1C1-mediated ferroptosis defence. Cell Death Discov. 2024 10 1 131 10.1038/s41420‑024‑01892‑w 38472205
    [Google Scholar]
  84. Lee W.C. Moi S.H. Yang S.F. Tseng H.H. Liu Y.P. Downregulation of AATK enhances susceptibility to ferroptosis by promoting endosome recycling in gefitinib‐resistant lung cancer cells. J. Pathol. 2025 265 4 422 436 10.1002/path.6393 39871626
    [Google Scholar]
  85. Rochette L. Dogon G. Rigal E. Zeller M. Cottin Y. Vergely C. Lipid peroxidation and iron metabolism: Two corner stones in the homeostasis control of ferroptosis. Int. J. Mol. Sci. 2022 24 1 449 10.3390/ijms24010449 36613888
    [Google Scholar]
  86. Wu H. Liu Q. Shan X. Gao W. Chen Q. ATM orchestrates ferritinophagy and ferroptosis by phosphorylating NCOA4. Autophagy 2023 19 7 2062 2077 10.1080/15548627.2023.2170960 36752571
    [Google Scholar]
  87. Huang G. Cai Y. Ren M. Zhang X. Fu Y. Cheng R. Wang Y. Miao M. Zhu L. Yan T. Salidroside sensitizes Triple-negative breast cancer to ferroptosis by SCD1-mediated lipogenesis and NCOA4-mediated ferritinophagy. J. Adv. Res. 2025 74 589 607 10.1016/j.jare.2024.09.027 39353532
    [Google Scholar]
  88. Zhu M. Peng L. Huo S. Peng D. Gou J. Shi W. Tao J. Jiang T. Jiang Y. Wang Q. Huang B. Men L. Li S. Lv J. Lin L. STAT3 signaling promotes cardiac injury by upregulating NCOA4-mediated ferritinophagy and ferroptosis in high-fat-diet fed mice. Free Radic. Biol. Med. 2023 201 111 125 10.1016/j.freeradbiomed.2023.03.003 36940731
    [Google Scholar]
  89. Li K. Chen B. Xu A. Shen J. Kaixuan L. Hao K. Hao R. Yang W. Jiang W. Zheng Y. Ge F. Wang Z. TRIM7 modulates NCOA4-mediated ferritinophagy and ferroptosis in glioblastoma cells. Redox Biol. 2022 56 102451 10.1016/j.redox.2022.102451 36067704
    [Google Scholar]
  90. Sun K. Hou L. Guo Z. Wang G. Guo J. Xu J. Zhang X. Guo F. JNK-JUN-NCOA4 axis contributes to chondrocyte ferroptosis and aggravates osteoarthritis via ferritinophagy. Free Radic. Biol. Med. 2023 200 87 101 10.1016/j.freeradbiomed.2023.03.008 36907253
    [Google Scholar]
  91. Dai Y. Zhu C. Xiao W. Huang K. Wang X. Shi C. Lin D. Zhang H. Liu X. Peng B. Gao Y. Liu C.H. Ge B. Kaufmann S.H.E. Feng C.G. Chen X. Cai Y. Mycobacterium tuberculosis hijacks host TRIM21- and NCOA4-dependent ferritinophagy to enhance intracellular growth. J. Clin. Invest. 2023 133 8 159941 10.1172/JCI159941 37066876
    [Google Scholar]
  92. Shen Z. Zhao L. Yoo S. Lin Z. Zhang Y. Yang W. Piao J. Emodin induces ferroptosis in colorectal cancer through NCOA4-mediated ferritinophagy and NF-κb pathway inactivation. Apoptosis 2024 29 9-10 1810 1823 10.1007/s10495‑024‑01973‑2 38704789
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206437150251113065146
Loading
/content/journals/acamc/10.2174/0118715206437150251113065146
Loading

Data & Media loading...

Supplements

The supplementary material can be accessed on the publisher’s website alongside the published article.


  • Article Type:
    Research Article
Keywords: LUAD ; FN-1501 ; EGFR-TKIs resistance ; Almonertinib ; FOXO1 ; NCOA4
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test