Skip to content
2000
image of Signalling Pathways and Inhibitors in Triple Negative Breast Cancer: Current Progress

Abstract

Introduction

Triple Negative Breast Cancer (TNBC), which makes up 15% of all breast cancers, is widely acknowledged as the most aggressive and challenging subtype of the disease. It is characterized by the absence of HER2 receptors, progesterone, and estrogen, which limits the options for targeted treatment and mainly affects younger women. It is associated with a poor prognosis due to its rapid progression, high recurrence rates, and risk of metastasizing into vital organs like the brain and lungs. These clinical challenges underscore the urgent need for personalized treatment plans and innovative therapeutic strategies.

Methods

Numerous studies have identified dysregulated signaling pathways in TNBC, including the PI3K/AKT/mTOR, JAK/STAT, Wnt/β-catenin, Notch, and MAPK/ERK pathways, which offer therapeutic targets.

Results

Recent developments in clinical and molecular research have presented potential treatment strategies. Pembrolizumab and other immune checkpoint inhibitors have demonstrated significant benefits when used in conjunction with chemotherapy for both early-stage and metastatic TNBC. In advanced patients, sacituzumab, govitecan, and other Antibody-Drug Conjugates (ADCs) have shown remarkable efficacy in delivering cytotoxic medications, improving progression-free survival. Significant obstacles still exist despite these developments, such as tumor heterogeneity and treatment resistance.

Discussion

This review highlights the beneficial effects of small molecule inhibitors and combination therapies in treating the deadliest type of breast cancer, as well as the therapeutic potential of targeting dysregulated signaling pathways and providing insight into potential avenues for developing new therapies.

Conclusion

To significantly enhance outcomes for TNBC patients, future research must concentrate on identifying predictive biomarkers and refining individualized therapy plans.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206402646251115102627
2026-01-21
2026-01-31
Loading full text...

Full text loading...

References

  1. Bizuayehu H.M. Dadi A.F. Hassen T.A. Ketema D.B. Ahmed K.Y. Kassa Z.Y. Amsalu E. Kibret G.D. Alemu A.A. Alebel A. Shifa J.E. Assefa Y. Tessema G.A. Sarich P. Gebremedhin A.F. Bore M.G. Global burden of 34 cancers among women in 2020 and projections to 2040: Population‐based data from 185 countries/territories. Int. J. Cancer 2024 154 8 1377 1393 10.1002/ijc.34809 38059753
    [Google Scholar]
  2. Luo C. Wang P. He S. Zhu J. Shi Y. Wang J. Progress and prospect of immunotherapy for triple-negative breast cancer. Front. Oncol. 2022 12 919072 10.3389/fonc.2022.919072 35795050
    [Google Scholar]
  3. Ilić I. Cvetković J. Ilić R. Cvetković L. Milićević A. Todorović S. Ranđelović P. Differences in histological subtypes of invasive lobular breast carcinoma according to immunohistochemical molecular classification. Diagnostics 2024 14 6 660 0 10.3390/diagnostics14060660 38535080
    [Google Scholar]
  4. Leon-Ferre R.A. Goetz M.P. Advances in systemic therapies for triple negative breast cancer. BMJ 2023 381 e071674 e4 10.1136/bmj‑2022‑071674 37253507
    [Google Scholar]
  5. van Barele M. Heemskerk-Gerritsen B.A.M. Louwers Y.V. Vastbinder M.B. Martens J.W.M. Hooning M.J. Jager A. Estrogens and progestogens in triple negative breast cancer: Do they harm? Cancers 2021 13 11 2506 10.3390/cancers13112506 34063736
    [Google Scholar]
  6. Lee J.S. Yost S.E. Yuan Y. Neoadjuvant treatment for triple negative breast cancer: Recent progresses and challenges. Cancers 2020 12 6 1404 10.3390/cancers12061404 32486021
    [Google Scholar]
  7. Medina M.A. Oza G. Sharma A. Arriaga L.G. Hernández Hernández J.M. Rotello V.M. Ramirez J.T. Triple-negative breast cancer: A review of conventional and advanced therapeutic strategies. Int. J. Environ. Res. Public Health 2020 17 6 2078 10.3390/ijerph17062078 32245065
    [Google Scholar]
  8. Maqbool M Bekele F Fekadu G Treatment strategies against triple-negative breast cancer: An updated review Breast Cancer 2023 15 24 Dec 31;
    [Google Scholar]
  9. Obidiro O. Battogtokh G. Akala E.O. Triple negative breast cancer treatment options and limitations: Future outlook. Pharmaceutics 2023 15 7 1796 10.3390/pharmaceutics15071796 37513983
    [Google Scholar]
  10. Gluz O. Liedtke C. Gottschalk N. Pusztai L. Nitz U. Harbeck N. Triple-negative breast cancer—current status and future directions. Ann. Oncol. 2009 20 12 1913 1927 10.1093/annonc/mdp492 19901010
    [Google Scholar]
  11. Liu L. Chen J. Cai X. Yao Z. Huang J. Progress in targeted therapeutic drugs for oral squamous cell carcinoma. Surg. Oncol. 2019 31 90 97 10.1016/j.suronc.2019.09.001 31550560
    [Google Scholar]
  12. Hafeez M.N. Celia C. Petrikaite V. Challenges towards targeted drug delivery in cancer nanomedicines. Processes 2021 9 9 1527 10.3390/pr9091527
    [Google Scholar]
  13. Webb M.J. Kukard C. A review of natural therapies potentially relevant in triple negative breast cancer aimed at targeting cancer cell vulnerabilities. Integr. Cancer Ther. 2020 19 1534735420975861 10.1177/1534735420975861 33243021
    [Google Scholar]
  14. Marra A. Viale G. Curigliano G. Recent advances in triple negative breast cancer: The immunotherapy era. BMC Med. 2019 17 1 90 10.1186/s12916‑019‑1326‑5 31068190
    [Google Scholar]
  15. Zagami P. Carey L.A. Triple negative breast cancer: Pitfalls and progress. NPJ Breast Cancer 2022 8 1 95 10.1038/s41523‑022‑00468‑0 35987766
    [Google Scholar]
  16. Altriche N. Gallant S. Augustine T.N. Xulu K.R. Navigating the intricacies of tumor heterogeneity: An insight into potential prognostic breast cancer biomarkers. Biomark. Insights 2024 19 11772719241256798 10.1177/11772719241256798 38895160
    [Google Scholar]
  17. Khadela A. Chavda V.P. Soni S. Megha K. Pandya A.J. Vora L. Anti-androgenic therapies targeting the luminal androgen receptor of a typical triple-negative breast cancer. Cancers 2022 15 1 233 10.3390/cancers15010233 36612226
    [Google Scholar]
  18. Lu B. Natarajan E. Balaji Raghavendran H.R. Markandan U.D. Molecular classification, treatment, and genetic biomarkers in triple-negative breast cancer: A review. Technol. Cancer Res. Treat. 2023 22 15330338221145246 10.1177/15330338221145246 36601658
    [Google Scholar]
  19. Coussy F. Lavigne M. de Koning L. Botty R.E. Nemati F. Naguez A. Bataillon G. Ouine B. Dahmani A. Montaudon E. Painsec P. Chateau-Joubert S. Laetitia F. Larcher T. Vacher S. Chemlali W. Briaux A. Melaabi S. Salomon A.V. Guinebretiere J.M. Bieche I. Marangoni E. Response to mTOR and PI3K inhibitors in enzalutamide-resistant luminal androgen receptor triple-negative breast cancer patient-derived xenografts. Theranostics 2020 10 4 1531 1543 10.7150/thno.36182 32042320
    [Google Scholar]
  20. Ghasemi Darestani N. Ghasemi Darestani R. Hshemi S. Rahimi Z. Janghorbanian Poodeh R. Hereditary breast and ovarian cancer syndromes. Asian Pac J. Environ. Cancer 2024 7 1 119 124 10.31557/apjec.2024.7.1.119‑124
    [Google Scholar]
  21. Larsson P. Pettersson D. Olsson M. Sarathchandra S. Abramsson A. Zetterberg H. Ittner E. Forssell-Aronsson E. Kovács A. Karlsson P. Helou K. Parris T.Z. Repurposing proteasome inhibitors for improved treatment of triple-negative breast cancer. Cell Death Discov. 2024 10 1 57 10.1038/s41420‑024‑01819‑5 38286854
    [Google Scholar]
  22. Klarica Gembić T. Grebić D. Gulić T. Golemac M. Avirović M. Predictive and prognostic values of glycoprotein 96, androgen receptors, and extranodal extension in sentinel lymph node-positive breast cancer: An immunohistochemical retrospective study. J. Clin. Med. 2024 13 24 7665 10.3390/jcm13247665 39768587
    [Google Scholar]
  23. Saretzki G. Cellular senescence in the development and treatment of cancer. Curr. Pharm. Des. 2010 16 1 79 100 10.2174/138161210789941874 20214620
    [Google Scholar]
  24. Changavi A.A. Shashikala A. Ramji A.S. Epidermal growth factor receptor expression in triple negative and nontriple negative breast carcinomas J. Lab. Physicians 2015 7 2 079 083 10.4103/0974‑2727.163129 26417156
    [Google Scholar]
  25. Li T. Xiong Y. Wang Q. Chen F. Zeng Y. Yu X. Wang Y. Zhou F. Zhou Y. Ribociclib (LEE011) suppresses cell proliferation and induces apoptosis of MDA-MB-231 by inhibiting CDK4/6-cyclin D-Rb-E2F pathway. Artif. Cells Nanomed. Biotechnol. 2019 47 1 4001 4011 10.1080/21691401.2019.1670670 31588803
    [Google Scholar]
  26. Dong C. Wu J. Chen Y. Nie J. Chen C. Activation of PI3K/AKT/mTOR pathway causes drug resistance in breast cancer. Front. Pharmacol. 2021 12 628690 10.3389/fphar.2021.628690 33790792
    [Google Scholar]
  27. Brandão R.O. Jiang X. Selvaraju S. Mohapatra P. Bispecific antibodies: An emerging concept in antibody-based cancer therapies. InAdvances in Immunology and Immuno-techniques: Updated Concepts and Recent Applications. Springer 2024 57 87
    [Google Scholar]
  28. Anand U. Dey A. Chandel A.K.S. Sanyal R. Mishra A. Pandey D.K. De Falco V. Upadhyay A. Kandimalla R. Chaudhary A. Dhanjal J.K. Dewanjee S. Vallamkondu J. Pérez de la Lastra J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023 10 4 1367 1401 10.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  29. Durocher D. Abstract MS1-1: CRISPR screens to identify novel DNA repair defects synthetic lethal therapies. Cancer Res. 2022 82 4 _Supplement MS1 MS1 Suppl. 10.1158/1538‑7445.SABCS21‑MS1‑1
    [Google Scholar]
  30. Kumar H. Gupta N.V. Jain R. Madhunapantula S.V. Babu C.S. Kesharwani S.S. Dey S. Jain V. A review of biological targets and therapeutic approaches in the management of triple-negative breast cancer. J. Adv. Res. 2023 54 271 292 10.1016/j.jare.2023.02.005 36791960
    [Google Scholar]
  31. Liang Y. Zhang H. Song X. Yang Q. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. Semin. Cancer Biol. 2020 60 31421262 14 27 10.1016/j.semcancer.2019.08.012 31421262
    [Google Scholar]
  32. Bou Zerdan M. Ghorayeb T. Saliba F. Allam S. Bou Zerdan M. Yaghi M. Bilani N. Jaafar R. Nahleh Z. Triple negative breast cancer: Updates on classification and treatment in 2021. Cancers 2022 14 5 1253 10.3390/cancers14051253 35267561
    [Google Scholar]
  33. Raghav P.K. Mann Z. Cancer stem cells targets and combined therapies to prevent cancer recurrence. Life Sci. 2021 277 119465 10.1016/j.lfs.2021.119465 33831426
    [Google Scholar]
  34. Pogoda K. Niwińska A. Sarnowska E. Nowakowska D. Jagiełło-Gruszfeld A. Siedlecki J. Nowecki Z. Effects of BRCA germline mutations on triple‐negative breast cancer prognosis. J. Oncol. 2020 2020 1 1 10 10.1155/2020/8545643 32322271
    [Google Scholar]
  35. Espinel W. Champine M. Hampel H. Jeter J. Sweet K. Pilarski R. Pearlman R. Shane K. Brock P. Westman J. Kipnis L. Sotelo J. Chittenden A. Culver S. Stopfer J. Schneider K. Sacca R. Koeller D. Gaonkar S. Vaccari E. Kane S. Michalski S. Yang S. Nielsen S. Bristow S. Lincoln S. Nussbaum R. Esplin E. Clinical impact of pathogenic variants in DNA damage repair genes beyond BRCA1 and BRCA2 in breast and ovarian cancer patients. Cancers 2022 14 10 2426 10.3390/cancers14102426 35626031
    [Google Scholar]
  36. Thomas A. Reis-Filho J.S. Geyer C.E. Wen H.Y. Rare subtypes of triple negative breast cancer: Current understanding and future directions. NPJ Breast Cancer 2023 9 1 55 10.1038/s41523‑023‑00554‑x 37353557
    [Google Scholar]
  37. Ma J. Shah R. Bell A.C. McDermott N. Pei X. Selenica P. Haseltine J. Delsite R. Khan A.J. Lok B.H. Ellis M.J. Increased synthetic cytotoxicity of combinatorial chemoradiation therapy in homologous recombination deficient tumors. Int. J. Radiat. Oncol. Biol. Phys. 2025 121 3 768 779 10.1016/j.ijrobp.2024.06.037
    [Google Scholar]
  38. Hu X. Yang P. Chen S. Wei G. Yuan L. Yang Z. Gong L. He L. Yang L. Peng S. Dong Y. He X. Bao G. Clinical and biological heterogeneities in triple-negative breast cancer reveals a non-negligible role of HER2-low. Breast Cancer Res. 2023 25 1 34 10.1186/s13058‑023‑01639‑y 36998014
    [Google Scholar]
  39. Wylaź M. Kaczmarska A. Pajor D. Hryniewicki M. Gil D. Dulińska-Litewka J. Exploring the role of PI3K/AKT/mTOR inhibitors in hormone-related cancers: A focus on breast and prostate cancer. Biomed. Pharmacother. 2023 168 115676 10.1016/j.biopha.2023.115676 37832401
    [Google Scholar]
  40. Zhang H. Jiang R. Zhu J. Sun K. Huang Y. Zhou H. Zheng Y. Wang X. PI3K/AKT/mTOR signaling pathway: An important driver and therapeutic target in triple-negative breast cancer. Breast Cancer 2024 31 4 539 551 10.1007/s12282‑024‑01567‑5 38630392
    [Google Scholar]
  41. Son B. Lee W. Kim H. Shin H. Park H.H. Targeted therapy of cancer stem cells: Inhibition of mTOR in pre-clinical and clinical research. Cell Death Dis. 2024 15 9 696 10.1038/s41419‑024‑07077‑8 39349424
    [Google Scholar]
  42. Khan M.A. Jain V.K. Rizwanullah M. Ahmad J. Jain K. PI3K/AKT/mTOR pathway inhibitors in triple-negative breast cancer: A review on drug discovery and future challenges. Drug Discov. Today 2019 24 11 2181 2191 10.1016/j.drudis.2019.09.001 31520748
    [Google Scholar]
  43. Almansour N.M. Triple-negative breast cancer: A brief review about epidemiology, risk factors, signaling pathways, treatment and role of artificial intelligence. Front. Mol. Biosci. 2022 9 836417 836417 10.3389/fmolb.2022.836417 35145999
    [Google Scholar]
  44. Guelfi S. Hodivala-Dilke K. Bergers G. Targeting the tumour vasculature: From vessel destruction to promotion. Nat. Rev. Cancer 2024 24 10 655 675 10.1038/s41568‑024‑00736‑0 39210063
    [Google Scholar]
  45. Lopes-Coelho F. Martins F. Pereira S.A. Serpa J. Anti-angiogenic therapy: Current challenges and future perspectives. Int. J. Mol. Sci. 2021 22 7 3765 10.3390/ijms22073765 33916438
    [Google Scholar]
  46. Gong S. Song Z. Spezia-Lindner D. Meng F. Ruan T. Ying G. Lai C. Wu Q. Liang Y. Novel insights into triple-negative breast cancer prognosis by comprehensive characterization of aberrant alternative splicing. Front. Genet. 2020 11 534 10.3389/fgene.2020.00534 32595697
    [Google Scholar]
  47. Vagia E. Mahalingam D. Cristofanilli M. The landscape of targeted therapies in TNBC. Cancers 2020 12 4 916 10.3390/cancers12040916 32276534
    [Google Scholar]
  48. Liu Z.L. Chen H.H. Zheng L.L. Sun L.P. Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct. Target. Ther. 2023 8 1 198 10.1038/s41392‑023‑01460‑1 37169756
    [Google Scholar]
  49. Sánchez-Martínez C. Grueso E. Calvo-López T. Martinez-Ortega J. Ruiz A. Almendral J.M. VEGF—virus interactions: Pathogenic mechanisms and therapeutic applications. Cells 2024 13 21 1815 10.3390/cells13211815 39513922
    [Google Scholar]
  50. Ghalehbandi S. Yüzügülen J. Pranjol M.Z.I. Pourgholami M.H. The role of VEGF in cancer-induced angiogenesis and research progress of drugs targeting VEGF. Eur. J. Pharmacol. 2023 949 175586 6 10.1016/j.ejphar.2023.175586 36906141
    [Google Scholar]
  51. Mekonnen N. Yang H. Shin Y.K. Homologous recombination deficiency in ovarian, breast, colorectal, pancreatic, non-small cell lung and prostate cancers, and the mechanisms of resistance to PARP inhibitors. Front. Oncol. 2022 12 880643 10.3389/fonc.2022.880643 35785170
    [Google Scholar]
  52. Miricescu D. Totan A. Stanescu-Spinu I.I. Badoiu S.C. Stefani C. Greabu M. PI3K/AKT/mTOR signaling pathway in breast cancer: From molecular landscape to clinical aspects. Int. J. Mol. Sci. 2020 22 1 173 10.3390/ijms22010173 33375317
    [Google Scholar]
  53. Witkiewicz A.K. Kumarasamy V. Sanidas I. Knudsen E.S. Cancer cell cycle dystopia: Heterogeneity, plasticity, and therapy. Trends Cancer 2022 8 9 711 725 10.1016/j.trecan.2022.04.006 35599231
    [Google Scholar]
  54. Khan M.M. Yalamarty S.S.K. Rajmalani B.A. Filipczak N. Torchilin V.P. Recent strategies to overcome breast cancer resistance. Crit. Rev. Oncol. Hematol. 2024 197 104351 1 10.1016/j.critrevonc.2024.104351
    [Google Scholar]
  55. Namagerdi A.A. Reactivation of the retinoblastoma family of proteins by cyclin-dependent kinase inhibitors in canine mammary tumors. Doctoral dissertation, University of Naples Federico II 2023
    [Google Scholar]
  56. Caldecott K.W. DNA single-strand break repair and human genetic disease. Trends Cell Biol. 2022 32 9 733 745 10.1016/j.tcb.2022.04.010 35643889
    [Google Scholar]
  57. Bianchini G. De Angelis C. Licata L. Gianni L. Treatment landscape of triple-negative breast cancer — expanded options, evolving needs. Nat. Rev. Clin. Oncol. 2022 19 2 91 113 10.1038/s41571‑021‑00565‑2 34754128
    [Google Scholar]
  58. Lin Z. Wang L. Xing Z. Wang F. Cheng X. Update on combination strategies of PARP inhibitors. Cancer Contr. 2024 31 10732748241298329 10.1177/10732748241298329 39500600
    [Google Scholar]
  59. Yadollahpour A. Yuan T.F. Machado S., Eds. Personalized medicine in neuroscience: Molecular to system approach. Lausanne Frontiers Media SA 2024
    [Google Scholar]
  60. Qin J.J. Yan L. Zhang J. Zhang W.D. STAT3 as a potential therapeutic target in triple negative breast cancer: A systematic review. J. Exp. Clin. Cancer Res. 2019 38 1 195 10.1186/s13046‑019‑1206‑z 31088482
    [Google Scholar]
  61. Capuozzo M. Celotto V. Santorsola M. Fabozzi A. Landi L. Ferrara F. Borzacchiello A. Granata V. Sabbatino F. Savarese G. Cascella M. Perri F. Ottaiano A. Emerging treatment approaches for triple-negative breast cancer. Med. Oncol. 2023 41 1 5 10.1007/s12032‑023‑02257‑6 38038783
    [Google Scholar]
  62. Wang Y. Wang Z. Li S. Ma J. Dai X. Lu J. Deciphering JAK/STAT signaling pathway: A multifaceted approach to tumorigenesis, progression and therapeutic interventions. Int. Immunopharmacol. 2024 131 111846 10.1016/j.intimp.2024.111846 38520787
    [Google Scholar]
  63. Bose S. Banerjee S. Mondal A. Chakraborty U. Pumarol J. Croley C.R. Bishayee A. Targeting the JAK/STAT signaling pathway using phytocompounds for cancer prevention and therapy. Cells 2020 9 6 1451 10.3390/cells9061451 32545187
    [Google Scholar]
  64. Kang Z. Li S. Li Y. Song J. Peng Y. Chen Y. Small molecular inhibitors and degraders targeting STAT3 for cancer therapy: An updated review (from 2022 to 2024). Chin. Chem. Lett. 2024 Sep 110447
    [Google Scholar]
  65. None Ravindra B. Triple Negative Breast Cancer (TNBC): Signalling pathways-Role of plant-based inhibitors J. Biol. Pharm 2024 10 2 028
    [Google Scholar]
  66. Guo Y.J. Pan W.W. Liu S.B. Shen Z.F. Xu Y. Hu L.L. ERK/MAPK signalling pathway and tumorigenesis. Exp. Ther. Med. 2020 19 3 1997 2007 32104259
    [Google Scholar]
  67. Kolch W. Berta D. Rosta E. Dynamic regulation of RAS and RAS signaling. Biochem. J. 2023 480 1 1 23 10.1042/BCJ20220234 36607281
    [Google Scholar]
  68. Bahar M.E. Kim H.J. Kim D.R. Targeting the RAS/RAF/MAPK pathway for cancer therapy: From mechanism to clinical studies. Signal Transduct. Target. Ther. 2023 8 1 455 10.1038/s41392‑023‑01705‑z 38105263
    [Google Scholar]
  69. Khan A.Q. Kuttikrishnan S. Siveen K.S. Prabhu K.S. Shanmugakonar M. Al- Naemi, H.A.; Haris, M.; Dermime, S.; Uddin, S. RAS-mediated oncogenic signaling pathways in human malignancies. Semin. Cancer Biol. 2019 54 1 13 10.1016/j.semcancer.2018.03.001 29524560
    [Google Scholar]
  70. Cordover E. Minden A. Signaling pathways downstream to receptor tyrosine kinases: Targets for cancer treatment J. Cancer Metastasis Treat 2020 10.20517/2394‑4722.2020.101
    [Google Scholar]
  71. Burgess A.W. Regulation of signaling from the epidermal growth factor family. J. Phys. Chem. B 2022 126 39 7475 7485 10.1021/acs.jpcb.2c04156 36169380
    [Google Scholar]
  72. Uribe M.L. Marrocco I. Yarden Y. EGFR in cancer: Signaling mechanisms, drugs, and acquired resistance. Cancers 2021 13 11 2748 10.3390/cancers13112748 34206026
    [Google Scholar]
  73. Kaufman N.E.M. Dhingra S. Jois S.D. Vicente M.G.H. Molecular targeting of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR). Molecules 2021 26 4 1076 10.3390/molecules26041076 33670650
    [Google Scholar]
  74. Raji L. Tetteh A. Amin A.R.M.R. Role of c-Src in carcinogenesis and drug resistance. Cancers 2023 16 1 32 2 10.3390/cancers16010032 38201459
    [Google Scholar]
  75. Pelaz S.G. Tabernero A. Src: Coordinating metabolism in cancer. Oncogene 2022 41 45 4917 4928 10.1038/s41388‑022‑02487‑4 36217026
    [Google Scholar]
  76. Ebrahimi N. Fardi E. Ghaderi H. Palizdar S. Khorram R. Vafadar R. Ghanaatian M. Rezaei-Tazangi F. Baziyar P. Ahmadi A. Hamblin M.R. Aref A.R. Receptor tyrosine kinase inhibitors in cancer. Cell. Mol. Life Sci. 2023 80 4 104 10.1007/s00018‑023‑04729‑4 36947256
    [Google Scholar]
  77. Santarosa M. Maestro R. The autophagic route of E-Cadherin and cell adhesion molecules in cancer progression. Cancers 2021 13 24 6328 10.3390/cancers13246328 34944948
    [Google Scholar]
  78. Zhang N. Häring M. Wolf F. Großhans J. Kong D. Dynamics and functions of E-cadherin complexes in epithelial cell and tissue morphogenesis. Mar. Life Sci. Technol. 2023 5 4 585 601 10.1007/s42995‑023‑00206‑w 38045551
    [Google Scholar]
  79. Klewer T. Bakic L. Müller-Reichert T. Kiewisz R. Jessberger G. Kiessling N. Roers A. Jessberger R. E‐Cadherin restricts mast cell degranulation in mice. Eur. J. Immunol. 2022 52 1 44 53 10.1002/eji.202049087 34606636
    [Google Scholar]
  80. Mustafa M. Abbas K. Alam M. Ahmad W. Moinuddin; Usmani, N.; Siddiqui, S.A.; Habib, S. Molecular pathways and therapeutic targets linked to triple-negative breast cancer (TNBC). Mol. Cell. Biochem. 2024 479 4 895 913 10.1007/s11010‑023‑04772‑6 37247161
    [Google Scholar]
  81. Rubtsova S.N. Zhitnyak I.Y. Gloushankova N.A. Dual role of E-cadherin in cancer cells. Tissue Barriers 2022 10 4 2005420 10.1080/21688370.2021.2005420 34821540
    [Google Scholar]
  82. Ye C.C. Wang J. E‐cadherin (CDH1) gene –160C/A polymorphism and the risk of colorectal cancer: A meta‐analysis involving 17,291 subjects. J. Gene Med. 2021 23 10 e3370 10.1002/jgm.3370 34097324
    [Google Scholar]
  83. Zhao H. Hu H. Chen B. Xu W. Zhao J. Huang C. Xing Y. Lv H. Nie C. Wang J. He Y. Wang S.Q. Chen X.B. Overview on the role of E-cadherin in gastric cancer: Dysregulation and clinical implications. Front. Mol. Biosci. 2021 8 689139 10.3389/fmolb.2021.689139 34422902
    [Google Scholar]
  84. Gogola S. Rejzer M. Bahmad H.F. Abou-Kheir W. Omarzai Y. Poppiti R. Epithelial-to-mesenchymal transition-related markers in prostate cancer: From bench to bedside. Cancers 2023 15 8 2309 10.3390/cancers15082309 37190236
    [Google Scholar]
  85. Nierengarten M.B. Molecular insights into triple‐negative breast cancer metastasis: Epithelial– mesenchymal transition. Cancer 2022 128 24 4174 4 10.1002/cncr.34546 36445103
    [Google Scholar]
  86. Nedeljković M. Damjanović A. Mechanisms of chemotherapy resistance in triple-negative breast cancer—How we can rise to the challenge. Cells 2019 8 9 957 10.3390/cells8090957 31443516
    [Google Scholar]
  87. Haseeb M. Pirzada R.H. Ain Q.U. Choi S. Wnt signaling in the regulation of immune cell and cancer therapeutics. Cells 2019 8 11 1380 10.3390/cells8111380 31684152
    [Google Scholar]
  88. Liu J. Xiao Q. Xiao J. Niu C. Li Y. Zhang X. Zhou Z. Shu G. Yin G. Wnt/β-catenin signalling: Function, biological mechanisms, and therapeutic opportunities. Signal Transduct. Target. Ther. 2022 7 1 3 10.1038/s41392‑021‑00762‑6 34980884
    [Google Scholar]
  89. Luke J.J. Bao R. Sweis R.F. Spranger S. Gajewski T.F. WNT/β-catenin pathway activation correlates with immune exclusion across human cancers. Clin. Cancer Res. 2019 25 10 3074 3083 10.1158/1078‑0432.CCR‑18‑1942 30635339
    [Google Scholar]
  90. Mahanujam A. The role of beta-catenin and the Wnt signalling pathway in breast cancer initiation, progression and metastasis: A literature review. Undergrad Res. Nat. Clin. Sci. Technol J. 2025 9 2 1 9 10.26685/urncst.715
    [Google Scholar]
  91. Oliveira L.F.S. Predes D. Borges H.L. Abreu J.G. Therapeutic potential of naturally occurring small molecules to target the wnt/β-catenin signaling pathway in colorectal cancer. Cancers 2022 14 2 403 10.3390/cancers14020403 35053565
    [Google Scholar]
  92. Nasser F. Moussa N. Helmy M.W. Haroun M. Dual targeting of notch and Wnt/β-catenin pathways: Potential approach in triple-negative breast cancer treatment. Naunyn Schmiedebergs Arch. Pharmacol. 2021 394 3 481 490 10.1007/s00210‑020‑01988‑x 33052427
    [Google Scholar]
  93. Lloyd-Lewis B. Mourikis P. Fre S. Notch signalling: Sensor and instructor of the microenvironment to coordinate cell fate and organ morphogenesis. Curr. Opin. Cell Biol. 2019 61 16 23 10.1016/j.ceb.2019.06.003 31323467
    [Google Scholar]
  94. Giuli M.V. Giuliani E. Screpanti I. Bellavia D. Checquolo S. Notch signaling activation as a hallmark for triple-negative breast cancer subtype. J. Oncol. 2019 2019 1 15 10.1155/2019/8707053 31379945
    [Google Scholar]
  95. You K.S. Yi Y.W. Cho J. Park J.S. Seong Y.S. Potentiating therapeutic effects of epidermal growth factor receptor inhibition in triple-negative breast cancer. Pharmaceuticals 2021 14 6 589 10.3390/ph14060589 34207383
    [Google Scholar]
  96. Takam Kamga P. Bazzoni R. Dal Collo G. Cassaro A. Tanasi I. Russignan A. Tecchio C. Krampera M. The role of notch and wnt signaling in MSC communication in normal and leukemic bone marrow niche. Front. Cell Dev. Biol. 2021 8 599276 10.3389/fcell.2020.599276 33490067
    [Google Scholar]
  97. Edwards A. Brennan K. Notch signalling in breast development and cancer. Front. Cell Dev. Biol. 2021 9 692173 10.3389/fcell.2021.692173 34295896
    [Google Scholar]
  98. Kaushik B. Pal D. Saha S. Gamma secretase inhibitor: Therapeutic target via NOTCH signaling in T cell acute lymphoblastic leukemia. Curr. Drug Targets 2021 22 15 1789 1798 10.2174/1389450122666210203192752 33538669
    [Google Scholar]
  99. Xue V.W. Chung J.Y.F. Córdoba C.A.G. Cheung A.H.K. Kang W. Lam E.W.F. Leung K.T. To K.F. Lan H.Y. Tang P.M.K. Transforming growth factor-β: A multifunctional regulator of cancer immunity. Cancers 2020 12 11 3099 9 10.3390/cancers12113099 33114183
    [Google Scholar]
  100. Trivedi T. Pagnotti G.M. Guise T.A. Mohammad K.S. The role of TGF-β in bone metastases. Biomolecules 2021 11 11 1643 10.3390/biom11111643 34827641
    [Google Scholar]
  101. Kalot R. Sentell Z. Kitzler T.M. Torban E. Primary cilia and actin regulatory pathways in renal ciliopathies. Front Nephrol 2024 3 1331847 10.3389/fneph.2023.1331847 38292052
    [Google Scholar]
  102. Li L. Li Y. Zhou X. Advancements in the research of GEF-H1: Biological functions and tumor associations. Curr. Mol. Pharmacol. 2024 17 e18761429274883 10.2174/0118761429274883231129103220 38389417
    [Google Scholar]
  103. Tyagi K. Roy A. Evaluating the current status of protein kinase C (PKC)-protein kinase D (PKD) signalling axis as a novel therapeutic target in ovarian cancer. Biochim. Biophys. Acta Rev. Cancer 2021 1875 1 188496 10.1016/j.bbcan.2020.188496 33383102
    [Google Scholar]
  104. Gutiérrez-Galindo E. Membrane trafficking in breast cancer progression: Protein kinase D comes into play Front Cell. Dev. Biol. 2023 11 1173387.May 24 10.3389/fcell.2023.1173387 37293129
    [Google Scholar]
  105. Fultang N. Chakraborty M. Peethambaran B. Regulation of cancer stem cells in triple negative breast cancer. Cancer Drug Resist. 2021 4 2 321 342 10.20517/cdr.2020.106 35582030
    [Google Scholar]
  106. Harrer D.C. Dörrie J. Schaft N. CSPG4 as target for CAR-T-cell therapy of various tumor entities–merits and challenges. Int. J. Mol. Sci. 2019 20 23 5942 10.3390/ijms20235942 31779130
    [Google Scholar]
  107. Kurokawa T. Imai K. Chondroitin sulfate proteoglycan 4: An attractive target for antibody-based immunotherapy. Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci. 2024 100 5 293 308 10.2183/pjab.100.019 38735753
    [Google Scholar]
  108. Chen B. Liu J. Prospects and challenges of CAR-T in the treatment of ovarian cancer. Int. Immunopharmacol. 2024 133 112112 2 10.1016/j.intimp.2024.112112 38640714
    [Google Scholar]
  109. Chen X. Habib S. Alexandru M. Chauhan J. Evan T. Troka J.M. Rahimi A. Esapa B. Tull T.J. Ng W.Z. Fitzpatrick A. Wu Y. Geh J.L.C. Lloyd-Hughes H. Palhares L.C.G.F. Adams R. Bax H.J. Whittaker S. Jacków-Malinowska J. Karagiannis S.N. Chondroitin sulfate proteoglycan 4 (CSPG4) as an emerging target for immunotherapy to treat melanoma. Cancers 2024 16 19 3260 10.3390/cancers16193260 39409881
    [Google Scholar]
  110. Hu Z.Y. Zheng C. Yang J. Ding S. Tian C. Xie N. Xue L. Wu M. Fu S. Rao Z. Price M.A. McCarthy J.B. Ouyang Q. Lin J. Deng X. Co-expression and combined prognostic value of CSPG4 and PDL1 in TP53 -aberrant triple-negative breast cancer. Front. Oncol. 2022 12 804466 10.3389/fonc.2022.804466 35280756
    [Google Scholar]
  111. Karaan M. Antibody engineering to evaluate binding, internalisation, and intracellular routing of tumour-targeting fusion proteins. Immuno-Oncol. Technol 2022 16 100290 10.1016/j.iotech.2022.100290
    [Google Scholar]
  112. Zhang Y. Beachy P.A. Cellular and molecular mechanisms of Hedgehog signalling. Nat. Rev. Mol. Cell Biol. 2023 24 9 668 687 10.1038/s41580‑023‑00591‑1 36932157
    [Google Scholar]
  113. Shan N.L. Shin Y. Yang G. Furmanski P. Suh N. Breast cancer stem cells: A review of their characteristics and the agents that affect them. Mol. Carcinog. 2021 60 2 73 100 10.1002/mc.23277 33428807
    [Google Scholar]
  114. Cao Z.J. You J. Fan Y.M. Yang J.Y. Sun J. Ma X. Zhang J. Li Z. Wang X. Feng Y.X. Noncanonical UPR factor CREB3L2 drives immune evasion of triple-negative breast cancer through Hedgehog pathway modulation in T cells. Sci. Adv. 2025 11 2 eads5434 10.1126/sciadv.ads5434 39792663
    [Google Scholar]
  115. Zakaria Z. Zulkifle M.F. Wan Hassan W.A.N.; Azhari, A.K.; Abdul Raub, S.H.; Eswaran, J.; Soundararajan, M.; Syed Husain, S.N.A. Epidermal growth factor receptor (EGFR) gene alteration and protein overexpression in Malaysian triple-negative breast cancer (TNBC) cohort. OncoTargets Ther. 2019 12 7749 7756 10.2147/OTT.S214611 31571924
    [Google Scholar]
  116. Demir Cetinkaya B. Biray Avci C. Molecular perspective on targeted therapy in breast cancer: A review of current status. Med. Oncol. 2022 39 10 149 10.1007/s12032‑022‑01749‑1 35834030
    [Google Scholar]
  117. Dayal S. Broekelmann T. Mecham R.P. Ramamurthi A. Targeting epidermal growth factor receptor to stimulate elastic matrix regenerative repair. Tissue Eng. Part A 2023 29 7-8 187 199 10.1089/ten.tea.2022.0170 36641641
    [Google Scholar]
  118. Mohan N. Luo X. Shen Y. Olson Z. Agrawal A. Endo Y. Rotstein D.S. Pelosof L.C. Wu W.J. A novel bispecific antibody targeting EGFR and VEGFR2 is effective against triple negative breast cancer via multiple mechanisms of action. Cancers 2021 13 5 1027 10.3390/cancers13051027 33804477
    [Google Scholar]
  119. Lau K.H. Tan A.M. Shi Y. New and emerging targeted therapies for advanced breast cancer. Int. J. Mol. Sci. 2022 23 4 2288 10.3390/ijms23042288 35216405
    [Google Scholar]
  120. Mir M.A. Qayoom H. Mehraj U. Nisar S. Bhat B. Wani N.A. Targeting different pathways using novel combination therapy in triple negative breast cancer. Curr. Cancer Drug Targets 2020 20 8 586 602 10.2174/1570163817666200518081955 32418525
    [Google Scholar]
  121. Baranova A. Krasnoselskyi M. Starikov V. Kartashov S. Zhulkevych I. Vlasenko V. Oleshko K. Bilodid O. Sadchikova M. Vinnyk Y. Triple-negative breast cancer: Current treatment strategies and factors of negative prognosis. J. Med. Life 2022 15 2 153 161 10.25122/jml‑2021‑0108 35419095
    [Google Scholar]
  122. Gupta G.K. Collier A.L. Lee D. Hoefer R.A. Zheleva V. Siewertsz van Reesema L.L. Tang-Tan A.M. Guye M.L. Chang D.Z. Winston J.S. Samli B. Jansen R.J. Petricoin E.F. Goetz M.P. Bear H.D. Tang A.H. Perspectives on triple-negative breast cancer: Current treatment strategies, unmet needs, and potential targets for future therapies. Cancers 2020 12 9 2392 10.3390/cancers12092392 32846967
    [Google Scholar]
  123. Rodrigues-Ferreira S. Moindjie H. Haykal M.M. Nahmias C. Predicting and overcoming taxane chemoresistance. Trends Mol. Med. 2021 27 2 138 151 10.1016/j.molmed.2020.09.007 33046406
    [Google Scholar]
  124. Silver D.P. Richardson A.L. Eklund A.C. Wang Z.C. Szallasi Z. Li Q. Juul N. Leong C.O. Calogrias D. Buraimoh A. Fatima A. Gelman R.S. Ryan P.D. Tung N.M. De Nicolo A. Ganesan S. Miron A. Colin C. Sgroi D.C. Ellisen L.W. Winer E.P. Garber J.E. Efficacy of neoadjuvant Cisplatin in triple-negative breast cancer. J. Clin. Oncol. 2010 28 7 1145 1153 10.1200/JCO.2009.22.4725 20100965
    [Google Scholar]
  125. Altundag K. Benefits of capecitabine in hormone receptor-positive compared to hormone receptor‐negative HER2 normal metastatic breast cancer. Med. Oncol. 2024 41 6 146 10.1007/s12032‑024‑02389‑3 38727767
    [Google Scholar]
  126. Keelan S. Flanagan M. Hill A.D.K. Evolving trends in surgical management of breast cancer: An analysis of 30 years of practice changing papers. Front. Oncol. 2021 11 622621 10.3389/fonc.2021.622621 34422626
    [Google Scholar]
  127. Jacobs A.T. Martinez Castaneda-Cruz D. Rose M.M. Connelly L. Targeted therapy for breast cancer: An overview of drug classes and outcomes. Biochem. Pharmacol. 2022 204 115209 10.1016/j.bcp.2022.115209 35973582
    [Google Scholar]
  128. Garcia-Tejedor A. Fernandez-Gonzalez S. Ortega R. Gil-Gil M. Perez-Montero H. Fernandez-Montolí E. Stradella A. Recalde S. Soler T. Petit A. Bajen M.T. Benitez A. Guma A. Campos M. Pla M.J. Martinez E. Laplana M. Pernas S. Perez-Sildekova D. Catala I. Ponce J. Falo C. Can we avoid axillary lymph node dissection in N2 breast cancer patients with chemo-sensitive tumours such as HER2 and TNBC? Breast Cancer Res. Treat. 2021 185 3 657 666 10.1007/s10549‑020‑05970‑2 33068198
    [Google Scholar]
  129. Riaz N. Jeen T. Whelan T.J. Nielsen T.O. Recent advances in optimizing radiation therapy decisions in early invasive breast cancer. Cancers 2023 15 4 1260 10.3390/cancers15041260 36831598
    [Google Scholar]
  130. Xiong N. Wu H. Yu Z. Advancements and challenges in triple-negative breast cancer: A comprehensive review of therapeutic and diagnostic strategies. Front. Oncol. 2024 14 1405491 10.3389/fonc.2024.1405491 38863622
    [Google Scholar]
  131. Battogtokh G. Obidiro O. Akala E.O. Recent developments in combination immunotherapy with other therapies and nanoparticle-based therapy for triple-negative breast cancer (TNBC). Cancers 2024 16 11 2012 10.3390/cancers16112012 38893132
    [Google Scholar]
  132. Lin X. Kang K. Chen P. Zeng Z. Li G. Xiong W. Yi M. Xiang B. Regulatory mechanisms of PD-1/PD-L1 in cancers. Mol. Cancer 2024 23 1 108 10.1186/s12943‑024‑02023‑w 38762484
    [Google Scholar]
  133. Leon-Ferre R.A. Jonas S.F. Salgado R. Loi S. de Jong V. Carter J.M. Nielsen T.O. Leung S. Riaz N. Chia S. Jules-Clément G. Curigliano G. Criscitiello C. Cockenpot V. Lambertini M. Suman V.J. Linderholm B. Martens J.W.M. van Deurzen C.H.M. Timmermans A.M. Shimoi T. Yazaki S. Yoshida M. Kim S.B. Lee H.J. Dieci M.V. Bataillon G. Vincent-Salomon A. André F. Kok M. Linn S.C. Goetz M.P. Michiels S. Tumor-infiltrating lymphocytes in triple-negative breast cancer. JAMA 2024 331 13 1135 1144 10.1001/jama.2024.3056 38563834
    [Google Scholar]
  134. Barta S.K. Zain J. MacFarlane A.W. Smith S.M. Ruan J. Fung H.C. Tan C.R. Yang Y. Alpaugh R.K. Dulaimi E. Ross E.A. Campbell K.S. Khan N. Siddharta R. Fowler N.H. Fisher R.I. Oki Y. Phase II study of the PD-1 inhibitor pembrolizumab for the treatment of relapsed or refractory Mature T-cell lymphoma. Clin. Lymphoma Myeloma Leuk. 2019 19 6 356 364.e3 10.1016/j.clml.2019.03.022 31029646
    [Google Scholar]
  135. Emens L.A. Molinero L. Loi S. Rugo H.S. Schneeweiss A. Diéras V. Iwata H. Barrios C.H. Nechaeva M. Nguyen-Duc A. Chui S.Y. Husain A. Winer E.P. Adams S. Schmid P. Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer: Biomarker evaluation of the IMpassion130 study. J. Natl. Cancer Inst. 2021 113 8 1005 1016 10.1093/jnci/djab004 33523233
    [Google Scholar]
  136. Córdova-Bahena L. Velasco-Velázquez M.A. Anti-PD-1 and anti-PD-L1 antibodies as immunotherapy against cancer: A structural perspective. Rev. Invest. Clin. 2021 73 1 8 16 10.24875/RIC.20000341 33079077
    [Google Scholar]
  137. Morotti M. Albukhari A. Alsaadi A. Artibani M. Brenton J.D. Curbishley S.M. Dong T. Dustin M.L. Hu Z. McGranahan N. Miller M.L. Santana-Gonzalez L. Seymour L.W. Shi T. Van Loo P. Yau C. White H. Wietek N. Church D.N. Wedge D.C. Ahmed A.A. Promises and challenges of adoptive T-cell therapies for solid tumours. Br. J. Cancer 2021 124 11 1759 1776 10.1038/s41416‑021‑01353‑6 33782566
    [Google Scholar]
  138. Malla R. Srilatha M. Muppala V. Farran B. Chauhan V.S. Nagaraju G.P. Neoantigens and cancer-testis antigens as promising vaccine candidates for triple-negative breast cancer: Delivery strategies and clinical trials. J. Control. Release 2024 370 707 720 10.1016/j.jconrel.2024.05.020 38744346
    [Google Scholar]
  139. Connors C. Valente S.A. ElSherif A. Escobar P. Chichura A. Kopicky L. Real-world outcomes with the KEYNOTE-522 regimen in early-stage triple-negative breast cancer. Ann. Surg. Oncol. 2024 32 2 912 921 10.1245/s10434‑024‑16390‑7 39436619
    [Google Scholar]
  140. Emens L.A. Adams S. Barrios C.H. Diéras V. Iwata H. Loi S. First-line atezolizumab plus nab-paclitaxel for unresectable, locally advanced, or metastatic triple-negative breast cancer: IMpassion130 final overall survival analysis. Ann. Oncol. 2021 32 8 983 993 10.1016/j.annonc.2021.05.355 34272041
    [Google Scholar]
  141. Saini K.S. Punie K. Twelves C. Bortini S. de Azambuja E. Anderson S. Criscitiello C. Awada A. Loi S. Antibody-drug conjugates, immune-checkpoint inhibitors, and their combination in breast cancer therapeutics. Expert Opin. Biol. Ther. 2021 21 7 945 962 10.1080/14712598.2021.1936494 34043927
    [Google Scholar]
  142. Kaboli P.J. Shabani S. Sharma S. Partovi Nasr M. Yamaguchi H. Hung M.C. Shedding light on triple-negative breast cancer with Trop2-targeted antibody-drug conjugates. Am. J. Cancer Res. 2022 12 4 1671 1685 35530278
    [Google Scholar]
  143. Marei H.E. Cenciarelli C. Hasan A. Potential of antibody–drug conjugates (ADCs) for cancer therapy. Cancer Cell Int. 2022 22 1 255 10.1186/s12935‑022‑02679‑8 35964048
    [Google Scholar]
  144. Izzo D. Ascione L. Guidi L. Marsicano R.M. Koukoutzeli C. Trapani D. Curigliano G. Innovative payloads for ADCs in cancer treatment: Moving beyond the selective delivery of chemotherapy. Ther. Adv. Med. Oncol. 2025 17 17588359241309461 10.1177/17588359241309461 39759830
    [Google Scholar]
  145. Hotha K.K. Antibody-drug conjugates (ADCs): Navigating four pillars of safety, development, supply chain and manufacturing excellence. Adv. Chem. Eng. Sci. 2023 13 4 10.4236/aces.2023.134024
    [Google Scholar]
  146. Li M. Jin M. Peng H. Wang H. Shen Q. Zhang L. Current status and future prospects of TROP-2 ADCs in lung cancer treatment. Drug Des. Devel. Ther. 2024 18 5005 5021 10.2147/DDDT.S489234 39525044
    [Google Scholar]
  147. Khan S. Jandrajupalli S.B. Bushara N.Z.A. Raja R.D.P. Targeting refractory triple negative breast cancer with Sacituzumab Govitecan: A new era in precision medicine. Cells 2024 13 24 2126 2126 10.3390/cells13242126
    [Google Scholar]
  148. Lu L. Niu Z. Chao Z. Fu C. Chen K. Shi Y. Exploring the therapeutic potential of ADC combination for triple-negative breast cancer. Cell. Mol. Life Sci. 2023 80 12 350 10.1007/s00018‑023‑04946‑x 37930428
    [Google Scholar]
  149. Okajima D. Yasuda S. Maejima T. Karibe T. Sakurai K. Aida T. Toki T. Yamaguchi J. Kitamura M. Kamei R. Fujitani T. Honda T. Shibutani T. Muramatsu S. Nakada T. Goto R. Takahashi S. Yamaguchi M. Hamada H. Noguchi Y. Murakami M. Abe Y. Agatsuma T. Datopotamab deruxtecan, a novel TROP2-directed antibody–drug conjugate, demonstrates potent antitumor activity by efficient drug delivery to tumor cells. Mol. Cancer Ther. 2021 20 12 2329 2340 10.1158/1535‑7163.MCT‑21‑0206 34413126
    [Google Scholar]
  150. De Sanctis R. Jacobs F. Benvenuti C. Gaudio M. Franceschini R. Tancredi R. Pedrazzoli P. Santoro A. Zambelli A. From seaside to bedside: Current evidence and future perspectives in the treatment of breast cancer using marine compounds. Front. Pharmacol. 2022 13 909566 10.3389/fphar.2022.909566 36160422
    [Google Scholar]
  151. Vahdat L.T. Schmid P. Forero-Torres A. Blackwell K. Telli M.L. Melisko M. Glembatumumab vedotin for patients with metastatic, gpNMB overexpressing, triple-negative breast cancer (“METRIC”): A randomized multicenter study. npj. Breast Cancer 2021 7 1 1 10 33397968
    [Google Scholar]
  152. Modi S. Park H. Murthy R.K. Iwata H. Tamura K. Tsurutani J. Moreno-Aspitia A. Doi T. Sagara Y. Redfern C. Krop I.E. Lee C. Fujisaki Y. Sugihara M. Zhang L. Shahidi J. Takahashi S. Antitumor activity and safety of trastuzumab deruxtecan in patients With HER2-low–expressing advanced breast cancer: Results from a phase Ib study. J. Clin. Oncol. 2020 38 17 1887 1896 10.1200/JCO.19.02318 32058843
    [Google Scholar]
  153. Jackson E.B. Simmons C.E. Gelmon K.A. DESTINY-Breast01 trial: Trastuzumab deruxtecan in previously treated HER2 positive breast cancer. TBCR 2021 2
    [Google Scholar]
  154. Li Y. Zhang H. Merkher Y. Chen L. Liu N. Leonov S. Chen Y. Recent advances in therapeutic strategies for triple-negative breast cancer. J. Hematol. Oncol. 2022 15 1 121 10.1186/s13045‑022‑01341‑0 36038913
    [Google Scholar]
  155. Shuel S.L. Targeted cancer therapies. Can. Fam. Physician 2022 68 7 515 518 10.46747/cfp.6807515 35831091
    [Google Scholar]
  156. Shaikh S.S. Emens L.A. Current and emerging biologic therapies for triple negative breast cancer. Expert Opin. Biol. Ther. 2020 22 5 591 602 10.1080/14712598.2020.1801627
    [Google Scholar]
  157. Exman P. Barroso-Sousa R. Tolaney S.M. Evidence to date: Talazoparib in the treatment of breast cancer. OncoTargets Ther. 2019 12 5177 5187 10.2147/OTT.S184971 31303769
    [Google Scholar]
  158. Li J. Ma M. Yang X. Zhang M. Luo J. Zhou H. Huang N. Xiao F. Lai B. Lv W. Zhang N. Circular HER2 RNA positive triple negative breast cancer is sensitive to Pertuzumab. Mol. Cancer 2020 19 1 142 10.1186/s12943‑020‑01259‑6 32917240
    [Google Scholar]
  159. Cerma K. Piacentini F. Moscetti L. Barbolini M. Canino F. Tornincasa A. Caggia F. Cerri S. Molinaro A. Dominici M. Omarini C. Targeting PI3K/AKT/mTOR pathway in breast cancer: From biology to clinical challenges. Biomedicines 2023 11 1 109 10.3390/biomedicines11010109 36672617
    [Google Scholar]
  160. Madu C.O. Wang S. Madu C.O. Lu Y. Angiogenesis in breast cancer progression, diagnosis, and treatment. J. Cancer 2020 11 15 4474 4494 10.7150/jca.44313 32489466
    [Google Scholar]
  161. Kumar Das D. Insights on sacituzumab govitecan for triple-negative breast cancer. Oncol. Times 2021 43 19 19 9 10.1097/01.COT.0000795976.27991.55
    [Google Scholar]
  162. Drew Y. Zenke F.T. Curtin N.J. DNA damage response inhibitors in cancer therapy: Lessons from the past, current status and future implications. Nat. Rev. Drug Discov. 2024 24 19 39 10.1038/s41573‑024‑01060‑w
    [Google Scholar]
  163. Tattersall A. Ryan N. Wiggans A.J. Rogozińska E. Morrison J. Poly(ADP-ribose) polymerase (PARP) inhibitors for the treatment of ovarian cancer. Cochrane Database Syst. Rev. 2022 2 2 CD007929 10.1002/14651858.CD007929.pub4 35170751
    [Google Scholar]
  164. Shibata A. Jeggo P.A. ATM’s role in the repair of DNA double-strand breaks. Genes 2021 12 9 1370 10.3390/genes12091370 34573351
    [Google Scholar]
  165. Li X. Zou L. BRCAness, DNA gaps, and gain and loss of PARP inhibitor–induced synthetic lethality. J. Clin. Invest. 2024 134 14 e181062 10.1172/JCI181062 39007266
    [Google Scholar]
  166. Jain A. Barge A. Parris C.N. Combination strategies with PARP inhibitors in BRCA-mutated triple-negative breast cancer: Overcoming resistance mechanisms. Oncogene 2024 44 4 193 207 10.1038/s41388‑024‑03227‑6 39572842
    [Google Scholar]
  167. Mandapati A. Lukong K.E. Triple negative breast cancer: Approved treatment options and their mechanisms of action. J. Cancer Res. Clin. Oncol. 2022 149 7 3701 3719 10.1007/s00432‑022‑04189‑6 35976445
    [Google Scholar]
  168. Hobbs E.A. Litton J.K. Yap T.A. Development of the PARP inhibitor talazoparib for the treatment of advanced BRCA1 and BRCA2 mutated breast cancer. Expert Opin. Pharmacother. 2021 22 14 1825 1837 10.1080/14656566.2021.1952181 34309473
    [Google Scholar]
  169. Luz P. Dias D. Fortuna A. Bretes L. Gosalbez B. How shall we treat locally advanced triple negative breast cancer? F1000 Res. 2019 8 1649 10.12688/f1000research.20509.1 32802311
    [Google Scholar]
  170. Rugo H.S. Ettl J. Hurvitz S.A. Gonçalves A. Lee K.H. Fehrenbacher L. Mina L.A. Diab S. Woodward N.E. Yerushalmi R. Goodwin A. Blum J.L. Martin M. Quek R.G.W. Tudor I.C. Bhattacharyya H. Gauthier E. Litton J.K. Eiermann W. Outcomes in clinically relevant patient subgroups from the EMBRACA study: Talazoparib vs Physician’s choice standard-of-care chemotherapy. JNCI Cancer Spectr. 2020 4 1 pkz085 10.1093/jncics/pkz085 32337496
    [Google Scholar]
  171. Drew Y. Kim J.W. Penson R.T. O’Malley D.M. Parkinson C. Roxburgh P. Plummer R. Im S.A. Imbimbo M. Ferguson M. Rosengarten O. Steeghs N. Kim M.H. Gal-Yam E. Tsoref D. Kim J.H. You B. De Jonge M. Lalisang R. Gort E. Bastian S. Meyer K. Feeney L. Baker N. Ah-See M.L. Domchek S.M. Banerjee S. Olaparib plus durvalumab, with or without bevacizumab, as treatment in PARP inhibitor-naïve platinum-sensitive relapsed ovarian cancer: A phase II multi-cohort study. Clin. Cancer Res. 2024 30 1 50 62 10.1158/1078‑0432.CCR‑23‑2249 37939124
    [Google Scholar]
  172. Vinayak S. Tolaney S.M. Schwartzberg L. Mita M. McCann G. Tan A.R. Wahner-Hendrickson A.E. Forero A. Anders C. Wulf G.M. Dillon P. Lynce F. Zarwan C. Erban J.K. Zhou Y. Buerstatte N. Graham J.R. Arora S. Dezube B.J. Telli M.L. Open-label clinical trial of niraparib combined with pembrolizumab for treatment of advanced or metastatic triple-negative breast cancer. JAMA Oncol. 2019 5 8 1132 1140 10.1001/jamaoncol.2019.1029 31194225
    [Google Scholar]
  173. Eskandari A. Leow T.C. Rahman A. Advances in therapeutic cancer vaccines, their obstacles, and prospects toward tumor immunotherapy. Mol. Biotechnol. 2024 67 4 1336 1366 10.1007/s12033‑024‑01144‑3
    [Google Scholar]
  174. Fraguas-Sánchez A.I. Lozza I. Torres-Suárez A.I. Actively targeted nanomedicines in breast cancer: From pre-clinal investigation to clinic. Cancers 2022 14 5 1198 10.3390/cancers14051198 35267507
    [Google Scholar]
  175. Davodabadi F. Sarhadi M. Arabpour J. Sargazi S. Rahdar A. Díez-Pascual A.M. Breast cancer vaccines: New insights into immunomodulatory and nano-therapeutic approaches. J. Control. Release 2022 349 844 875 10.1016/j.jconrel.2022.07.036 35908621
    [Google Scholar]
  176. Shebbo S. Binothman N. Darwaish M. Niaz H.A. Abdulal R.H. Borjac J. Hashem A.M. Mahmoud A.B. Redefining the battle against colorectal cancer: A comprehensive review of emerging immunotherapies and their clinical efficacy. Front. Immunol. 2024 15 1350208 10.3389/fimmu.2024.1350208 38533510
    [Google Scholar]
  177. Ogasawara M. Wilms’ tumor 1 -targeting cancer vaccine: Recent advancements and future perspectives. Hum. Vaccin. Immunother. 2024 20 1 2296735 10.1080/21645515.2023.2296735 38148629
    [Google Scholar]
  178. Brown T.A. Mittendorf E.A. Hale D.F. Myers J.W. Peace K.M. Jackson D.O. Greene J.M. Vreeland T.J. Clifton G.T. Ardavanis A. Litton J.K. Shumway N.M. Symanowski J. Murray J.L. Ponniah S. Anastasopoulou E.A. Pistamaltzian N.F. Baxevanis C.N. Perez S.A. Papamichail M. Peoples G.E. Prospective, randomized, single-blinded, multi-center phase II trial of two HER2 peptide vaccines, GP2 and AE37, in breast cancer patients to prevent recurrence. Breast Cancer Res. Treat. 2020 181 2 391 401 10.1007/s10549‑020‑05638‑x 32323103
    [Google Scholar]
  179. Blass E. Ott P.A. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat. Rev. Clin. Oncol. 2021 18 4 215 229 10.1038/s41571‑020‑00460‑2 33473220
    [Google Scholar]
  180. Paradiso A. Singer C.F. Therapeutic strategies in triple-negative breast cancer. Breast Care 2017 12 1 6 7 10.1159/000460238 28611534
    [Google Scholar]
  181. Sukumar J. Gast K. Quiroga D. Lustberg M. Williams N. Triple-negative breast cancer: Promising prognostic biomarkers currently in development. Expert Rev. Anticancer Ther. 2020 21 2 135 148 10.1080/14737140.2021.1840984 33198517
    [Google Scholar]
  182. Bagegni N.A. Davis A.A. Clifton K.K. Ademuyiwa F.O. Targeted treatment for high-risk early-stage triple-negative breast cancer: Spotlight on pembrolizumab. Breast Cancer 2022 14 113 123 10.2147/BCTT.S293597 35515356
    [Google Scholar]
  183. West H. McCleod M. Hussein M. Morabito A. Rittmeyer A. Conter H.J. Kopp H.G. Daniel D. McCune S. Mekhail T. Zer A. Reinmuth N. Sadiq A. Sandler A. Lin W. Ochi Lohmann T. Archer V. Wang L. Kowanetz M. Cappuzzo F. Atezolizumab in combination with carboplatin plus nab-paclitaxel chemotherapy compared with chemotherapy alone as first-line treatment for metastatic non-squamous non-small-cell lung cancer (IMpower130): A multicentre, randomised, open-label, phase 3 trial. Lancet Oncol. 2019 20 7 924 937 10.1016/S1470‑2045(19)30167‑6 31122901
    [Google Scholar]
  184. Hedgecorth J. Sacituzumab Govitecan-Hziy (TrodelvyTM). Oncology Time 2021 43 8 10
    [Google Scholar]
  185. Donnini S. Filippelli A. Ciccone V. Spini A. Ristori E. Ziche, M Antiangiogenic drugs: Chemosensitizers for combination cancer therapy. Elsevier 2022
    [Google Scholar]
  186. Javle M. Shacham-Shmueli E. Xiao L. Varadhachary G. Halpern N. Fogelman D. Boursi B. Uruba S. Margalit O. Wolff R.A. Golan T. Olaparib monotherapy for previously treated pancreatic cancer with DNA damage repair genetic alterations other than germline BRCA variants: Findings from 2 phase 2 nonrandomized clinical trials. JAMA Oncol. 2021 7 5 693 699 10.1001/jamaoncol.2021.0006 33662100
    [Google Scholar]
  187. Arun B. Couch F.J. Abraham J. Tung N. Fasching P.A. BRCA-mutated breast cancer: The unmet need, challenges and therapeutic benefits of genetic testing. Br. J. Cancer 2024 131 1400 1414 10.1038/s41416‑024‑02827‑z
    [Google Scholar]
  188. Wei Q. Li P. Yang T. Zhu J. Sun L. Zhang Z. Wang L. Tian X. Chen J. Hu C. Xue J. Ma L. Shimura T. Fang J. Ying J. Guo P. Cheng X. The promise and challenges of combination therapies with antibody-drug conjugates in solid tumors. J. Hematol. Oncol. 2024 17 1 1 10.1186/s13045‑023‑01509‑2 38178200
    [Google Scholar]
  189. Yang W.C. Wei M.F. Huang C.S. Shen Y.C. Kuo S.H. Synergistic potential of CDK4/6 inhibitors and radiotherapy with anti-PD-L1 immunotherapy in triple-negative breast cancer. Int. J. Radiat. Oncol. Biol. Phys. 2024 120 2 S46 10.1016/j.ijrobp.2024.07.071 38713122
    [Google Scholar]
  190. Perrier A. Didelot A. Laurent-Puig P. Blons H. Garinet S. Epigenetic mechanisms of resistance to immune checkpoint inhibitors. Biomolecules 2020 10 7 1061 10.3390/biom10071061 32708698
    [Google Scholar]
  191. Lythgoe M.P. Liu D.S.K. Annels N.E. Krell J. Frampton A.E. Gene of the month: Lymphocyte-activation gene 3 (LAG-3). J. Clin. Pathol. 2021 74 9 543 547 10.1136/jclinpath‑2021‑207517 34183437
    [Google Scholar]
  192. Zheng H. Siddharth S. Parida S. Wu X. Sharma D. Tumor microenvironment: Key players in triple negative breast cancer immunomodulation. Cancers 2021 13 13 3357 10.3390/cancers13133357 34283088
    [Google Scholar]
  193. Deepak K.G.K. Vempati R. Nagaraju G.P. Dasari V.R. S, N.; Rao, D.N.; Malla, R.R. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol. Res. 2020 153 104683 10.1016/j.phrs.2020.104683 32050092
    [Google Scholar]
  194. Glabman R.A. Choyke P.L. Sato N. Cancer-associated fibroblasts: Tumorigenicity and targeting for cancer therapy. Cancers 2022 14 16 3906 10.3390/cancers14163906 36010899
    [Google Scholar]
  195. Li Z. Sun C. Qin Z. Metabolic reprogramming of cancer-associated fibroblasts and its effect on cancer cell reprogramming. Theranostics 2021 11 17 8322 8336 10.7150/thno.62378 34373744
    [Google Scholar]
  196. Singh S. Numan A. Maddiboyina B. Arora S. Riadi Y. Md S. Alhakamy N.A. Kesharwani P. The emerging role of immune checkpoint inhibitors in the treatment of triple-negative breast cancer. Drug Discov. Today 2021 26 7 1721 1727 10.1016/j.drudis.2021.03.011 33745879
    [Google Scholar]
  197. Anfray C. Ummarino A. Andón F.T. Allavena P. Current strategies to target tumor-associated-macrophages to improve anti-tumor immune responses. Cells 2019 9 1 46 10.3390/cells9010046 31878087
    [Google Scholar]
  198. Dees S. Ganesan R. Singh S. Grewal I.S. Emerging CAR-T cell therapy for the treatment of triple-negative breast cancer. Mol. Cancer Ther. 2020 19 12 2409 2421 10.1158/1535‑7163.MCT‑20‑0385 33087511
    [Google Scholar]
  199. Abdel-Hamid N.M. Abass S.A. Matrix metalloproteinase contribution in management of cancer proliferation, metastasis and drug targeting. Mol. Biol. Rep. 2021 48 9 6525 6538 10.1007/s11033‑021‑06635‑z 34379286
    [Google Scholar]
  200. Tufail M. Unlocking the potential of the tumor microenvironment for cancer therapy. Pathol. Res. Pract. 2023 251 154846 10.1016/j.prp.2023.154846 37837860
    [Google Scholar]
  201. Elebiyo T.C. Rotimi D. Evbuomwan I.O. Maimako R.F. Iyobhebhe M. Ojo O.A. Oluba O.M. Adeyemi O.S. Reassessing vascular endothelial growth factor (VEGF) in antiangiogenic cancer therapy Cancer Treat Res. Commun 2022 32 100620 10.1016/j.ctarc.2022.100620 35964475
    [Google Scholar]
  202. Zheng R. Li F. Li F. Gong A. Targeting tumor vascularization: Promising strategies for vascular normalization. J. Cancer Res. Clin. Oncol. 2021 147 9 2489 2505 10.1007/s00432‑021‑03701‑8 34148156
    [Google Scholar]
  203. Li Y. Zhao L. Li X.F. Targeting hypoxia: Hypoxia-activated prodrugs in cancer therapy. Front. Oncol. 2021 11 700407 10.3389/fonc.2021.700407 34395270
    [Google Scholar]
  204. Albadari N. Deng S. Li W. The transcriptional factors HIF-1 and HIF-2 and their novel inhibitors in cancer therapy. Expert Opin. Drug Discov. 2019 14 7 667 682 10.1080/17460441.2019.1613370 31070059
    [Google Scholar]
  205. Zhang Y. Li Q. Huang Z. Li B. Nice E.C. Huang C. Wei L. Zou B. Targeting glucose metabolism enzymes in cancer treatment: Current and emerging strategies. Cancers 2022 14 19 4568 10.3390/cancers14194568 36230492
    [Google Scholar]
  206. Dziechciowska I. Dąbrowska M. Mizielska A. Pyra N. Lisiak N. Kopczyński P. Jankowska-Wajda M. Rubiś B. miRNA expression profiling in human breast cancer diagnostics and therapy. Curr. Issues Mol. Biol. 2023 45 12 9500 9525 10.3390/cimb45120595 38132441
    [Google Scholar]
  207. Pan Y. Yu Y. Wang X. Zhang T. Tumor-associated macrophages in tumor immunity. Front. Immunol. 2020 11 583084 10.3389/fimmu.2020.583084 33365025
    [Google Scholar]
  208. Song Y. Fu Y. Xie Q. Zhu B. Wang J. Zhang B. Anti-angiogenic agents in combination with immune checkpoint inhibitors: A promising strategy for cancer treatment. Front. Immunol. 2020 11 1956 10.3389/fimmu.2020.01956 32983126
    [Google Scholar]
  209. Grimaldi A.M. Salvatore M. Incoronato M. miRNA-based therapeutics in breast cancer: A systematic review. Front. Oncol. 2021 11 668464 10.3389/fonc.2021.668464 34026646
    [Google Scholar]
  210. Basak U. Sarkar T. Mukherjee S. Chakraborty S. Dutta A. Dutta S. Nayak D. Kaushik S. Das T. Sa G. Tumor-associated macrophages: An effective player of the tumor microenvironment. Front. Immunol. 2023 14 1295257 10.3389/fimmu.2023.1295257 38035101
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206402646251115102627
Loading
/content/journals/acamc/10.2174/0118715206402646251115102627
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: TNBC ; combination therapies ; signalling pathways ; inhibitors ; clinical trials
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test