Skip to content
2000
image of The Multi-pathway Mechanism and Co-delivery System of Oleanolic Acid Derivatives in Reversing Chemotherapy Resistance in Breast Cancer

Abstract

Breast cancer threatens the health of women worldwide. However, the use of chemotherapy for breast cancer is prone to generating side effects and drug resistance. Therefore, identifying natural compounds with anticancer activity is a better solution to the problem of drug resistance. Oleanolic acid (OA), a kind of pentacyclic triterpenoid, is widely studied and used in the field of oncology. It has biological activity against breast cancer and has few side effects on normal cells. OA can be used as a frame for chemical modification to synthesize new compounds for the development of new drugs. At present, some OA derivatives with anti-breast cancer biological activity have been proven clinically, while others have emerged as candidates. This review aims to provide a comprehensive understanding of the mechanisms of oleanolic acid and its derivatives on breast cancer from previous studies.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206397143251021064739
2026-01-05
2026-01-12
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Force J. Leal J.H.S. McArthur H.L. Checkpoint blockade strategies in the treatment of breast cancer: Where we are and where we are heading. Curr. Treat. Options Oncol. 2019 20 4 35 10.1007/s11864‑019‑0634‑5 30923913
    [Google Scholar]
  3. Thorat M.A. Balasubramanian R. Breast cancer prevention in high-risk women. Best Pract. Res. Clin. Obstet. Gynaecol. 2020 65 18 31 10.1016/j.bpobgyn.2019.11.006 31862315
    [Google Scholar]
  4. Fahad Ullah M. Breast Cancer: Current perspectives on the disease status. Adv. Exp. Med. Biol. 2019 1151 51 64 10.1007/978‑3‑030‑20301‑6_4
    [Google Scholar]
  5. Tavakolian S. Goudarzi H. Faghihloo E. E-cadherin, Snail, ZEB-1, DNMT1, DNMT3A and DNMT3B expression in normal and breast cancer tissues. Acta Biochim. Pol. 2019 66 4 409 414 10.18388/abp.2019_2808 31880901
    [Google Scholar]
  6. Barone I. Giordano C. Bonofiglio D. Andò S. Catalano S. The weight of obesity in breast cancer progression and metastasis: Clinical and molecular perspectives. Semin. Cancer Biol. 2020 60 274 284 10.1016/j.semcancer.2019.09.001 31491560
    [Google Scholar]
  7. Secreto G. Girombelli A. Krogh V. Androgen excess in breast cancer development: Implications for prevention and treatment. Endocr. Relat. Cancer 2019 26 2 R81 R94 10.1530/ERC‑18‑0429 30403656
    [Google Scholar]
  8. Rossi L. Mazzara C. Pagani O. Diagnosis and treatment of breast cancer in young women. Curr. Treat. Options Oncol. 2019 20 12 86 10.1007/s11864‑019‑0685‑7 31776799
    [Google Scholar]
  9. Sen A. Prophylactic and therapeutic roles of oleanolic acid its derivatives in several diseases. World J. Clin. Cases 2020 8 10 1767 1792 10.12998/wjcc.v8.i10.1767 32518769
    [Google Scholar]
  10. Ayeleso T. Matumba M. Mukwevho E. Oleanolic acid and its derivatives: Biological activities and therapeutic potential in chronic diseases. Molecules 2017 22 11 1915 10.3390/molecules22111915 29137205
    [Google Scholar]
  11. Guinda Á. Pérez-Camino M.C. Lanzón A. Supplementation of oils with oleanolic acid from the olive leaf (olea europaea). Eur. J. Lipid Sci. Technol. 2004 106 1 22 26 10.1002/ejlt.200300769
    [Google Scholar]
  12. Pollier J. Goossens A. Oleanolic acid. Phytochemistry 2012 77 10 15 10.1016/j.phytochem.2011.12.022 22377690
    [Google Scholar]
  13. Janicsák G. Veres K. Zoltán Kakasy A. Máthé I. Study of the oleanolic and ursolic acid contents of some species of the Lamiaceae. Biochem. Syst. Ecol. 2006 34 5 392 396 10.1016/j.bse.2005.12.004
    [Google Scholar]
  14. Córdova C. Gutiérrez B. Martínez-García C. Martín R. Gallego-Muñoz P. Hernández M. Nieto M.L. Oleanolic acid controls allergic and inflammatory responses in experimental allergic conjunctivitis. PLoS One 2014 9 4 e91282 10.1371/journal.pone.0091282 24699261
    [Google Scholar]
  15. Xia E.Q. Wang B.W. Xu X.R. Zhu L. Song Y. Li H.B. Microwave-assisted extraction of oleanolic acid and ursolic acid from Ligustrum lucidum Ait. Int. J. Mol. Sci. 2011 12 8 5319 5329 10.3390/ijms12085319 21954361
    [Google Scholar]
  16. Jäger S. Trojan H. Kopp T. Laszczyk M.N. Scheffler A. Pentacyclic triterpene distribution in various plants - Rich sources for a new group of multi-potent plant extracts. Molecules 2009 14 6 2016 2031 10.3390/molecules14062016 19513002
    [Google Scholar]
  17. Liby K.T. Sporn M.B. Synthetic oleanane triterpenoids: Multifunctional drugs with a broad range of applications for prevention and treatment of chronic disease. Pharmacol. Rev. 2012 64 4 972 1003 10.1124/pr.111.004846 22966038
    [Google Scholar]
  18. Zhao H. Zhou M. Duan L. Wang W. Zhang J. Wang D. Liang X. Efficient synthesis and anti-fungal activity of oleanolic acid oxime esters. Molecules 2013 18 3 3615 3629 10.3390/molecules18033615 23519202
    [Google Scholar]
  19. Oladipupo A.R. Alaribe S.C.A. Ogunlaja A.S. Beniddir M.A. Gordon A.T. Ogah C.O. Okpuzor J. Coker H.A.B. Structure-based molecular networking, molecular docking, dynamics simulation and pharmacokinetic studies of Olax subscorpioidea for identification of potential inhibitors against selected cancer targets. J. Biomol. Struct. Dyn. 2024 42 3 1110 1125 10.1080/07391102.2023.2198032 37029762
    [Google Scholar]
  20. Tang Z.Y. Li Y. Tang Y.T. Ma X.D. Zeyao T. Anticancer activity of oleanolic acid and its derivatives: Recent advances in evidence, target profiling and mechanisms of action. Biomed. Pharmacother. 2022 145 112397 10.1016/j.biopha.2021.112397 34798468
    [Google Scholar]
  21. Jiang Q. Yang X. Du P. Zhang H. Zhang T. Dual strategies to improve oral bioavailability of oleanolic acid: Enhancing water-solubility, permeability and inhibiting cytochrome P450 isozymes. Eur. J. Pharm. Biopharm. 2016 99 65 72 10.1016/j.ejpb.2015.11.013 26625716
    [Google Scholar]
  22. Liu J. Oleanolic acid and ursolic acid: Research perspectives. J. Ethnopharmacol. 2005 100 1-2 92 94 10.1016/j.jep.2005.05.024 15994040
    [Google Scholar]
  23. Jeong D.W. Kim Y.H. Kim H.H. Ji H.Y. Yoo S.D. Choi W.R. Lee S.M. Han C.K. Lee H.S. Dose‐linear pharmacokinetics of oleanolic acid after intravenous and oral administration in rats. Biopharm. Drug Dispos. 2007 28 2 51 57 10.1002/bdd.530 17163409
    [Google Scholar]
  24. Tong H.H.Y. Du Z. Wang G.N. Chan H.M. Chang Q. Lai L.C.M. Chow A.H.L. Zheng Y. Spray freeze drying with polyvinylpyrrolidone and sodium caprate for improved dissolution and oral bioavailability of oleanolic acid, a BCS Class IV compound. Int. J. Pharm. 2011 404 1-2 148 158 10.1016/j.ijpharm.2010.11.027 21094233
    [Google Scholar]
  25. Chen Q.S. Wu J. Li W. Cheng B. Extraction of oleanolic acid from leaves of Chaenomeles speciosa and processing techniques of its HP-beta-cyclodextrin inclusion compound Zhong Yao Cai 2010 33 5 804 807 20873569
    [Google Scholar]
  26. Tong H.H.Y. Wu H.B. Zheng Y. Xi J. Chow A.H.L. Chan C.K. Physical characterization of oleanolic acid nonsolvate and solvates prepared by solvent recrystallization. Int. J. Pharm. 2008 355 1-2 195 202 10.1016/j.ijpharm.2007.12.005 18207676
    [Google Scholar]
  27. Ren Y. Liu Y. Yang Z. Niu R. Gao K. Yang B. Liao X. Zhang J. Solid inclusion complexes of oleanolic acid with amino-appended β-cyclodextrins (ACDs): Preparation, characterization, water solubility and anticancer activity. Mater. Sci. Eng. C 2016 69 68 76 10.1016/j.msec.2016.05.022 27612690
    [Google Scholar]
  28. Wang W. Li Y. Li Y. Sun D. Li H. Chen L. Recent progress in oleanolic acid: Structural modification and biological activity. Curr. Top. Med. Chem. 2022 22 1 3 23 10.2174/1568026621666211105101231 34749614
    [Google Scholar]
  29. Meng Y.Q. Kuai Z.Y. Zhan S.W. Li C.L. Chen H.R. Design, synthesis, and antitumor activity of oleanolic acid derivatives. J. Asian Nat. Prod. Res. 2019 21 7 633 651 10.1080/10286020.2018.1464560 29733221
    [Google Scholar]
  30. Castellano J.M. Ramos-Romero S. Perona J.S. Oleanolic acid: Extraction, characterization and biological activity. Nutrients 2022 14 3 623 10.3390/nu14030623 35276982
    [Google Scholar]
  31. Khwaza V. Oyedeji O.O. Aderibigbe B.A. Antiviral activities of oleanolic acid and its analogues. Molecules 2018 23 9 2300 10.3390/molecules23092300 30205592
    [Google Scholar]
  32. Krajka-Kuźniak V. Bednarczyk-Cwynar B. Paluszczak J. Szaefer H. Narożna M. Zaprutko L. Baer-Dubowska W. Oleanolic acid oxime derivatives and their conjugates with aspirin modulate the NF-κB-mediated transcription in HepG2 hepatoma cells. Bioorg. Chem. 2019 93 103326 10.1016/j.bioorg.2019.103326 31586705
    [Google Scholar]
  33. El-Baba C. Baassiri A. Kiriako G. Dia B. Fadlallah S. Moodad S. Darwiche N. Terpenoids’ anti-cancer effects: Focus on autophagy. Apoptosis 2021 26 9-10 491 511 10.1007/s10495‑021‑01684‑y 34269920
    [Google Scholar]
  34. Wang X. Ye X. Liu R. Chen H.L. Bai H. Liang X. Zhang X.D. Wang Z. Li W. Hai C.X. Antioxidant activities of oleanolic acid in vitro: Possible role of Nrf2 and MAP kinases. Chem. Biol. Interact. 2010 184 3 328 337 10.1016/j.cbi.2010.01.034 20100471
    [Google Scholar]
  35. Wang X. Liu R. Zhang W. Zhang X. Liao N. Wang Z. Li W. Qin X. Hai C. Oleanolic acid improves hepatic insulin resistance via antioxidant, hypolipidemic and anti-inflammatory effects. Mol. Cell. Endocrinol. 2013 376 1-2 70 80 10.1016/j.mce.2013.06.014 23791844
    [Google Scholar]
  36. Jesus J.A. Lago J.H.G. Laurenti M.D. Yamamoto E.S. Passero L.F.D. Antimicrobial activity of oleanolic and ursolic acids: An update. Evid. Based Complement. Alternat. Med. 2015 2015 1 14 10.1155/2015/620472 25793002
    [Google Scholar]
  37. Seo C-S. Yoo S-R. Jeong S-J. Lee N-R. Shin H-K. Quantification analysis and in vitro anti-inflammatory effects of 20-hydroxyecdysone, momordin ic, and oleanolic acid from the fructus of Kochia scoparia. Pharmacogn. Mag. 2017 13 51 339 344 10.4103/0973‑1296.211023 28839354
    [Google Scholar]
  38. Gupta N. A review on recent developments in the anticancer potential of oleanolic acid and its analogs (2017-2020). Mini Rev. Med. Chem. 2022 22 4 600 616 10.2174/1389557521666210810153627 35135459
    [Google Scholar]
  39. Song X. Liu C.C. Hong Y.R. Zhu X.C. Anticancer activity of novel oleanolic acid methyl ester derivative in HeLa cervical cancer cells is mediated through apoptosis induction and reactive oxygen species production. Bangladesh J. Pharmacol. 2015 10 4 896 902 10.3329/bjp.v10i4.23709
    [Google Scholar]
  40. Yu Z. Sun W. Peng W. Yu R. Li G. Jiang T. Pharmacokinetics in vitro and in vivo of two novel prodrugs of oleanolic acid in rats and its hepatoprotective effects against liver injury induced by CCl4. Mol. Pharm. 2016 13 5 1699 1710 10.1021/acs.molpharmaceut.6b00129 27018970
    [Google Scholar]
  41. Liang Z. Pan R. Meng X. Su J. Guo Y. Wei G. Zhang Z. He K. Transcriptome study of oleanolic acid in the inhibition of breast tumor growth based on high-throughput sequencing. Aging 2021 13 19 22883 22897 10.18632/aging.203582 34607975
    [Google Scholar]
  42. Chen Z. Huang K.Y. Ling Y. Goto M. Duan H.Q. Tong X.H. Liu Y.L. Cheng Y.Y. Morris-Natschke S.L. Yang P.C. Yang S.L. Lee K.H. Discovery of an oleanolic acid/hederagenin–nitric oxide donor hybrid as an egfr tyrosine kinase inhibitor for non-small-cell lung cancer. J. Nat. Prod. 2019 82 11 3065 3073 10.1021/acs.jnatprod.9b00659 31718182
    [Google Scholar]
  43. Gao F. Zuo Q. Jiang T. Song H. Zhou J. A newly synthesized oleanolic acid derivative inhibits the growth of osteosarcoma cells in vitro and in vivo by decreasing c‐MYC‐dependent glycolysis. J. Cell. Biochem. 2019 120 6 9264 9276 10.1002/jcb.28202 30552712
    [Google Scholar]
  44. Wang S.S. Zhang Q.L. Chu P. Kong L.Q. Li G.Z. Li Y.Q. Yang L. Zhao W.J. Guo X.H. Tang Z.Y. Synthesis and antitumor activity of α,β-unsaturated carbonyl moiety- containing oleanolic acid derivatives targeting PI3K/AKT/mTOR signaling pathway. Bioorg. Chem. 2020 101 104036 10.1016/j.bioorg.2020.104036 32629283
    [Google Scholar]
  45. Zhang X.K. Wang Q.W. Xu Y.J. Sun H.M. Wang L. Zhang L.X. Co‐delivery of cisplatin and oleanolic acid by silica nanoparticles‐enhanced apoptosis and reverse multidrug resistance in lung cancer. Kaohsiung J. Med. Sci. 2021 37 6 505 512 10.1002/kjm2.12365 33559348
    [Google Scholar]
  46. Kahnt M. Loesche A. Serbian I. Hoenke S. Fischer L. Al-Harrasi A. Csuk R. The cytotoxicity of oleanane derived aminocarboxamides depends on their aminoalkyl substituents. Steroids 2019 149 108422 10.1016/j.steroids.2019.05.014 31175922
    [Google Scholar]
  47. Castrejón-Jiménez N.S. Leyva-Paredes K. Baltierra-Uribe S.L. Castillo-Cruz J. Campillo-Navarro M. Hernández-Pérez A.D. Luna-Angulo A.B. Chacón-Salinas R. Coral-Vázquez R.M. Estrada-García I. Sánchez-Torres L.E. Torres-Torres C. García-Pérez B.E. Ursolic and oleanolic acids induce mitophagy in a549 human lung cancer cells. Molecules 2019 24 19 3444 10.3390/molecules24193444 31547522
    [Google Scholar]
  48. Xiaofei J. Mingqing S. Miao S. Yizhen Y. Shuang Z. Qinhua X. Kai Z. Oleanolic acid inhibits cervical cancer Hela cell proliferation through modulation of the ACSL4 ferroptosis signaling pathway. Biochem. Biophys. Res. Commun. 2021 545 81 88 10.1016/j.bbrc.2021.01.028 33548628
    [Google Scholar]
  49. Jiang J. Li X. Xu H. Ma Y. Fu M. Guo X. Sun T. Zheng X. SZC010 suppresses breast cancer development by regulating the PI3K/Akt/NF-κB signaling pathway. Chin Clin. Oncol. 2024 13 3 34 10.21037/cco‑24‑10 38984487
    [Google Scholar]
  50. Zhou L. Wang Z. Yu S. Xiong Y. Fan J. Lyu Y. Su Z. Song J. Liu S. Sun Q. Lu D. CDDO-Me elicits anti–breast cancer activity by targeting lrp6 and fzd7 receptor complex. J. Pharmacol. Exp. Ther. 2020 373 1 149 159 10.1124/jpet.119.263434 32015160
    [Google Scholar]
  51. Wang Y.Y. Yang Y.X. Zhe H. He Z.X. Zhou S.F. Bardoxolone methyl (CDDO-Me) as a therapeutic agent: an update on its pharmacokinetic and pharmacodynamic properties. Drug Des. Devel. Ther. 2014 8 2075 2088 [PMID: 25364233
    [Google Scholar]
  52. Heise N. Siewert B. Ströhl D. Hoenke S. Kazakova O. Csuk R. A simple but unusual rearrangement of an oleanane to a taraxerane-28,14 β -olide. Steroids 2021 172 108853 10.1016/j.steroids.2021.108853 33930390
    [Google Scholar]
  53. Wang R. Yang W. Fan Y. Dehaen W. Li Y. Li H. Wang W. Zheng Q. Huai Q. Design and synthesis of the novel oleanolic acid-cinnamic acid ester derivatives and glycyrrhetinic acid-cinnamic acid ester derivatives with cytotoxic properties. Bioorg. Chem. 2019 88 102951 10.1016/j.bioorg.2019.102951 31054427
    [Google Scholar]
  54. Lisiak N. Dzikowska P. Wisniewska U. Kaczmarek M. Bednarczyk-Cwynar B. Zaprutko L. Rubis B. Biological activity of oleanolic acid derivatives himoxol and br-himolid in breast cancer cells is mediated by ER and EGFR. Int. J. Mol. Sci. 2023 24 6 5099 10.3390/ijms24065099 36982173
    [Google Scholar]
  55. Zheng Q.X. Wang R. Li H.J. Dehaen W. Huai Q.Y. Design, preparation and studies regarding cytotoxic properties of benzyl oleanates. Pharm. Chem. J. 2023 57 8 1174 1178 10.1007/s11094‑024‑03023‑2
    [Google Scholar]
  56. Pistritto G. Trisciuoglio D. Ceci C. Garufi A. D’Orazi G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging 2016 8 4 603 619 10.18632/aging.100934 27019364
    [Google Scholar]
  57. Kim G.J. Jo H.J. Lee K.J. Choi J.W. An J.H. Oleanolic acid induces p53-dependent apoptosis via the ERK/JNK/AKT pathway in cancer cell lines in prostatic cancer xenografts in mice. Oncotarget 2018 9 41 26370 26386 10.18632/oncotarget.25316 29899865
    [Google Scholar]
  58. Wang D. Wang J. Zhang J. Yi X. Piao J. Li L. Wang J. Zhang P. He Q. Decrease of ABCB1 protein expression and increase of G1 phase arrest induced by oleanolic acid in human multidrug resistant cancer cells. Exp. Ther. Med. 2021 22 1 735 10.3892/etm.2021.10167 34055052
    [Google Scholar]
  59. Feng B. Zhao C. Li J. Yu J. Zhang Y. Zhang X. Tian T. Zhao L. The novel synthetic triterpene methyl 3β-O-[4-(2-aminoethylamino)-4-oxo-butyryl]olean-12-ene-28-oate inhibits breast tumor cell growth in vitro and in vivo. Chem. Pharm. Bull. 2020 68 10 962 970 10.1248/cpb.c20‑00353 32999148
    [Google Scholar]
  60. Wang S. Yang D. Li X. Cai S. Deng N. Wang G. Sun T. Li Y. Li G. Guo X. Synthesis and biological evaluation of oleanolic acid derivatives with electrophilic warheads as antitumor agents. Future Med. Chem. 2023 15 9 769 790 10.4155/fmc‑2023‑0041 37227771
    [Google Scholar]
  61. Lisiak N.M. Lewicka I. Kaczmarek M. Kujawski J. Bednarczyk-Cwynar B. Zaprutko L. Rubis B. Oleanolic acid’s semisynthetic derivatives HIMOXOL and Br-HIMOLID show proautophagic potential and inhibit migration of HER2-positive breast cancer cells in vitro. Int. J. Mol. Sci. 2021 22 20 11273 10.3390/ijms222011273 34681931
    [Google Scholar]
  62. Zeng H. Kang S. Zhang Y. Liu K. Yu Q. Li D. An L.K. Synthesis and biological evaluation of oleanolic acid derivatives as selective vascular endothelial growth factor promoter i-Motif ligands. Int. J. Mol. Sci. 2021 22 4 1711 10.3390/ijms22041711 33567767
    [Google Scholar]
  63. Niu G. Sun L. Pei Y. Wang D. Oleanolic acid inhibits colorectal cancer angiogenesis by blocking the VEGFR2 signaling pathway. Anticancer. Agents Med. Chem. 2018 18 4 583 590 10.2174/1871520617666171020124916 29065844
    [Google Scholar]
  64. Chen X. Zhang Y. Zhang S. Wang A. Du Q. Wang Z. Oleanolic acid inhibits osteosarcoma cell proliferation and invasion by suppressing the SOX9/Wnt1 signaling pathway. Exp. Ther. Med. 2021 21 5 443 10.3892/etm.2021.9883 33747179
    [Google Scholar]
  65. Shukla R.P. Urandur S. Banala V.T. Marwaha D. Gautam S. Rai N. Singh N. Tiwari P. Shukla P. Mishra P.R. Development of putrescine anchored nano-crystalsomes bearing doxorubicin and oleanolic acid: Deciphering their role in inhibiting metastatic breast cancer. Biomater. Sci. 2021 9 5 1779 1794 10.1039/D0BM01033B 33443267
    [Google Scholar]
  66. Bao Y. Zhang S. Chen Z. Chen A.T. Ma J. Deng G. Xu W. Zhou J. Yu Z.Q. Yao G. Chen J. Synergistic chemotherapy for breast cancer and breast cancer brain metastases via paclitaxel-loaded oleanolic acid nanoparticles. Mol. Pharm. 2020 17 4 1343 1351 10.1021/acs.molpharmaceut.0c00044 32150416
    [Google Scholar]
  67. Macașoi I. Pavel I. Moacă A. Avram Ș. David V. Coricovac D. Mioc A. Spandidos D. Tsatsakis A. Șoica C. Dumitrașcu V. Dehelean C. Mechanistic investigations of antitumor activity of a Rhodamine B oleanolic acid derivative bioconjugate. Oncol. Rep. 2020 44 3 1169 1183 10.3892/or.2020.7666 32705265
    [Google Scholar]
  68. Elhady S.S. Abdelhameed R.F.A. Zekry S.H. Ibrahim A.K. Habib E.S. Darwish K.M. Hazem R.M. Mohammad K.A. Hassanean H.A. Ahmed S.A. VEGFR-mediated cytotoxic activity of Pulicaria undulata Isolated Metabolites: A biological evaluation and in silico study. Life 2021 11 8 759 10.3390/life11080759 34440504
    [Google Scholar]
  69. Yousuf U. Sofi S. Makhdoomi A. Mir M.A. Identification and analysis of dysregulated fatty acid metabolism genes in breast cancer subtypes. Med. Oncol. 2022 39 12 256 10.1007/s12032‑022‑01861‑2 36224382
    [Google Scholar]
  70. Li J. Liu X. Chen L. Zhu X. Yu Z. Dong L. Zhao X. Zou H. Wei Q. Feng Y. Zhu Y. Chai K. Li Q. Li M. Isopimaric acid, an ion channel regulator, regulates calcium and oxidative phosphorylation pathways to inhibit breast cancer proliferation and metastasis. Toxicol. Appl. Pharmacol. 2023 462 116415 10.1016/j.taap.2023.116415 36754215
    [Google Scholar]
  71. Geck R.C. Toker A. Nonessential amino acid metabolism in breast cancer. Adv. Biol. Regul. 2016 62 11 17 10.1016/j.jbior.2016.01.001 26838061
    [Google Scholar]
  72. Xia H. Zhu J. Zheng Z. Xiao P. Yu X. Wu M. Xue L. Xu X. Wang X. Guo Y. Zheng C. Ding S. Wang Y. Peng X. Fu S. Li J. Deng X. Amino acids and their roles in tumor immunotherapy of breast cancer. J. Gene Med. 2024 26 1 e3647 10.1002/jgm.3647 38084655
    [Google Scholar]
  73. Amara S. Zheng M. Tiriveedhi V. Oleanolic acid inhibits high salt-induced exaggeration of warburg-like metabolism in breast cancer cells. Cell Biochem. Biophys. 2016 74 3 427 434 10.1007/s12013‑016‑0736‑7 27236294
    [Google Scholar]
  74. Liu J. Wu N. Ma L. Liu M. Liu G. Zhang Y. Lin X. Oleanolic acid suppresses aerobic glycolysis in cancer cells by switching pyruvate kinase type M isoforms. PLoS One 2014 9 3 e91606 10.1371/journal.pone.0091606 24626155
    [Google Scholar]
  75. Dubinin M.V. Nedopekina D.A. Ilzorkina A.I. Semenova A.A. Sharapov V.A. Davletshin E.V. Mikina N.V. Belsky Y.P. Spivak A.Y. Akatov V.S. Belosludtseva N.V. Liu J. Belosludtsev K.N. Conjugation of triterpenic acids of ursane and oleanane types with mitochondria-targeting cation f16 synergistically enhanced their cytotoxicity against tumor cells. Membranes 2023 13 6 563 10.3390/membranes13060563 37367767
    [Google Scholar]
  76. Liang Y. Zhang H. Song X. Yang Q. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. Semin. Cancer Biol. 2020 60 14 27 10.1016/j.semcancer.2019.08.012 31421262
    [Google Scholar]
  77. Liu D. Jin X. Yu G. Wang M. Liu L. Zhang W. Wu J. Wang F. Yang J. Luo Q. Cai L. Yang X. Ke X. Qu Y. Xu Z. Jia L. Chen W.L. Oleanolic acid blocks the purine salvage pathway for cancer therapy by inactivating SOD1 and stimulating lysosomal proteolysis. Mol. Ther. Oncolytics 2021 23 107 123 10.1016/j.omto.2021.08.013 34703880
    [Google Scholar]
  78. Ibadurrahman W. Hanif N. Hermawan A. Functional network analysis of p85 and PI3K as potential gene targets and mechanism of oleanolic acid in overcoming breast cancer resistance to tamoxifen. J. Genet. Eng. Biotechnol. 2022 20 1 66 10.1186/s43141‑022‑00341‑4 35482141
    [Google Scholar]
  79. Xu A.L. Xue Y.Y. Tao W.T. Wang S.Q. Xu H.Q. Oleanolic acid combined with olaparib enhances radiosensitization in triple negative breast cancer and hypoxia imaging with 18F-FETNIM micro PET/CT. Biomed. Pharmacother. 2022 150 113007 10.1016/j.biopha.2022.113007 35483190
    [Google Scholar]
  80. Zheng Y. Li Z. Yang Y. Shi H. Chen H. Gao Y. A nanosensitizer self-assembled from oleanolic acid and chlorin e6 for synergistic chemo/sono-photodynamic cancer therapy. Phytomedicine 2021 93 153788 10.1016/j.phymed.2021.153788 34634745
    [Google Scholar]
  81. Fu S. Wang M. Li B. Li X. Cheng J. Zhao H. Zhang H. Dong A. Lu W. Yang X. Bionic natural small molecule co-assemblies towards targeted and synergistic Chemo/PDT/CDT. Biomater. Res. 2023 27 1 43 10.1186/s40824‑023‑00380‑z 37161611
    [Google Scholar]
  82. Wasim M. Bergonzi M.C. Unlocking the potential of oleanolic acid: integrating pharmacological insights and advancements in delivery systems. Pharmaceutics 2024 16 6 692 10.3390/pharmaceutics16060692 38931816
    [Google Scholar]
  83. Chen K. Zhu X. Sun R. Zhao L. Zhao J. Wu X. Wang C. Zeng H. Oleanolic acid derivative self-assembled aggregates based on heparin and chitosan for breast cancer therapy. Int. J. Biol. Macromol. 2024 277 Pt 3 134431 10.1016/j.ijbiomac.2024.134431 39147629
    [Google Scholar]
  84. Das S. Paul M. Ghosh B. Biswas S. Synergistic anticancer response via docetaxel- and oleanolic acid-loaded Albumin/Poly(lactide) Nanoparticles in triple-negative breast cancer. ACS Appl. Nano Mater. 2023 6 21 19710 19726 10.1021/acsanm.3c03499
    [Google Scholar]
  85. Kong F. Liu H. Zhao C. Qin J. Targeted codelivery of doxorubicin and oleanolic acid by reduction responsive hyaluronic acid-based prodrug nano-micelles for enhanced antitumor activity and reduced toxicity. Int. J. Biol. Macromol. 2024 277 Pt 2 134135 10.1016/j.ijbiomac.2024.134135 39069033
    [Google Scholar]
  86. Le X.T. Nguyen N.T. Lee W.T. Yang Y. Choi H-G. Youn Y.S. Peroxidase‐mimicking iron‐based single‐atom upconversion photocatalyst for enhancing chemodynamic therapy. Adv. Funct. Mater. 2024 34 34 2401893 10.1002/adfm.202401893
    [Google Scholar]
  87. Li Z. Shi H. Xie H. Yang Y. Zheng Y. Chen H. Gao Y. Tri-component programmable nanoregulator with Three-pronged penetration boosts immunotherapy of Triple-Negative breast cancer. Chem. Eng. J. 2022 439 135712 10.1016/j.cej.2022.135712
    [Google Scholar]
  88. Shukla R.P. Tiwari P. Sardar A. Urandur S. Gautam S. Marwaha D. Tripathi A.K. Rai N. Trivedi R. Mishra P.R. Alendronate-functionalized porous nano-crystalsomes mitigate osteolysis and consequent inhibition of tumor growth in a tibia-induced metastasis model. J. Control. Release 2024 372 331 346 10.1016/j.jconrel.2024.06.009 38844176
    [Google Scholar]
  89. Wang Y.S. Li G-L. Zhu S-B. Jing F-C. Liu R-D. Li S-S. He J. Lei J-D. A self-assembled nanoparticle platform based on amphiphilic oleanolic acid polyprodrug for cancer therapy. Chin. J. Polym. Sci. 2020 38 8 819 829 10.1007/s10118‑020‑2401‑2
    [Google Scholar]
  90. Liese J. Abhari B.A. Fulda S. Smac mimetic and oleanolic acid synergize to induce cell death in human hepatocellular carcinoma cells. Cancer Lett. 2015 365 1 47 56 10.1016/j.canlet.2015.04.018 25917078
    [Google Scholar]
  91. Wang X. Bai H. Zhang X. Liu J. Cao P. Liao N. Zhang W. Wang Z. Hai C. Inhibitory effect of oleanolic acid on hepatocellular carcinoma via ERK–p53-mediated cell cycle arrest and mitochondrial-dependent apoptosis. Carcinogenesis 2013 34 6 1323 1330 10.1093/carcin/bgt058 23404993
    [Google Scholar]
  92. Mu D.W. Guo H.Q. Zhou G.B. Li J.Y. Su B. Oleanolic acid suppresses the proliferation of human bladder cancer by Akt/mTOR/S6K and ERK1/2 signaling. Int. J. Clin. Exp. Pathol. 2015 8 11 13864 13870 [PMID: 26823699
    [Google Scholar]
  93. Lu X. Li Y. Yang W. Tao M. Dai Y. Xu J. Xu Q. Inhibition of NF‐κB is required for oleanolic acid to downregulate PD‐L1 by promoting DNA demethylation in gastric cancer cells. J. Biochem. Mol. Toxicol. 2021 35 1 e22621 10.1002/jbt.22621 32894642
    [Google Scholar]
  94. Zhou W. Zeng X. Wu X. Effect of oleanolic acid on apoptosis and autophagy of SMMC-7721 hepatoma cells. Med. Sci. Monit. 2020 26 e921606 10.12659/MSM.921606 32424110
    [Google Scholar]
  95. Medina-O’Donnell M. Rivas F. Reyes-Zurita F.J. Martinez A. Lupiañez J.A. Parra A. Diamine and PEGylated-diamine conjugates of triterpenic acids as potential anticancer agents. Eur. J. Med. Chem. 2018 148 325 336 10.1016/j.ejmech.2018.02.044 29471121
    [Google Scholar]
  96. Jo H. Oh J.H. Park D.W. Lee C. Min C.K. Oleanolic acid 3-acetate, a minor element of ginsenosides, induces apoptotic cell death in ovarian carcinoma and endometrial carcinoma cells via the involvement of a reactive oxygen species–independent mitochondrial pathway. J. Ginseng Res. 2020 44 1 96 104 10.1016/j.jgr.2018.09.003 32095097
    [Google Scholar]
  97. Bian M. Sun Y. Liu Y. Xu Z. Fan R. Liu Z. Liu W.A Gold(I) complex containing an oleanolic acid derivative as a potential anti‐ovarian‐cancer agent by inhibiting TrxR and activating ROS‐Mediated ERS. Chemistry 2020 26 31 7092 7108 10.1002/chem.202000045 32037581
    [Google Scholar]
  98. Meng Y.Q. Zhou Y. Li Q.W. Tong S.M. Kuai Z.Y. Li X.X. Synthesis of oleanolic acid analogues targeting PDGF receptor inhibitors and their antitumor biological activities. J. Asian Nat. Prod. Res. 2021 23 2 150 162 10.1080/10286020.2020.1717476 32102552
    [Google Scholar]
  99. Zhao Y. Feng L. Liu L. Zhao R. Saikosaponin b2 enhances the hepatotargeting effect of anticancer drugs through inhibition of multidrug resistance-associated drug transporters. Life Sci. 2019 231 116557 10.1016/j.lfs.2019.116557 31194994
    [Google Scholar]
  100. Mbaveng A.T. Ndontsa B.L. Kuete V. Nguekeu Y.M.M. Çelik İ. Mbouangouere R. Tane P. Efferth T. A naturally occuring triterpene saponin ardisiacrispin B displayed cytotoxic effects in multi-factorial drug resistant cancer cells via ferroptotic and apoptotic cell death. Phytomedicine 2018 43 78 85 10.1016/j.phymed.2018.03.035 29747757
    [Google Scholar]
  101. Hong D.S. Kurzrock R. Supko J.G. He X. Naing A. Wheler J. Lawrence D. Eder J.P. Meyer C.J. Ferguson D.A. Mier J. Konopleva M. Konoplev S. Andreeff M. Kufe D. Lazarus H. Shapiro G.I. Dezube B.J. A phase I first-in-human trial of bardoxolone methyl in patients with advanced solid tumors and lymphomas. Clin. Cancer Res. 2012 18 12 3396 3406 10.1158/1078‑0432.CCR‑11‑2703 22634319
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206397143251021064739
Loading
/content/journals/acamc/10.2174/0118715206397143251021064739
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test