Skip to content
2000
image of A Systematic Review of the Mechanistic Effects of Ginsenosides on Enhancing Radiotherapy and Providing Radioprotection

Abstract

Introduction/Objective

Radiotherapy (RT) is a standard cancer treatment that may be associated with problems such as ineffectiveness and side effects. This study investigated ginsenosides' radiosensitizing and radioprotective properties and their metabolites during RT.

Methods

This study searched databases including PubMed/MEDLINE, Scopus, Embase, and Cochrane Library for articles before January 28, 2025. After specifying the inclusion and exclusion criteria, relevant articles were imported into EndNote software and screened. Then, the data were recorded in tables and analyzed.

Results

After the screening process, 28 articles were included. Ginsenosides exhibited radioprotective effects in normal tissues by reducing oxidative stress, preserving mitochondrial integrity, enhancing DNA repair, modulating inflammatory pathways, and supporting hematopoiesis. Key compounds such as Rg1, Rg3, and Rh2 promoted tissue regeneration and protected against radiation-induced organ damage. In tumour cells, ginsenosides enhance radiosensitivity by increasing reactive oxygen species (ROS), disrupting mitochondrial function, inducing DNA damage and cell cycle arrest, and promoting apoptosis. They also inhibited tumour progression nuclear factor kappa B (NF-κB) suppression and immune activation, reducing angiogenesis and metastasis. These dual actions suggest their potential to improve radiotherapy outcomes.

Discussion

Ginsenosides revealed dual roles as radioprotective and radiosensitizing agents, highlighting their potential in improving RT outcomes. However, the limited clinical data and lack of ginseng extract studies indicate the need for future clinical studies to establish optimal dosing, safety, and relevance for humans.

Conclusion

The findings of both and studies indicated that ginsenosides enhance RT and provide protective effects against the harmful impacts of ionizing radiation.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206394677250930145253
2026-01-02
2026-01-31
Loading full text...

Full text loading...

References

  1. Bray F. Laversanne M. Sung H. Ferlay J. Siegel R.L. Soerjomataram I. Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024 74 3 229 263 10.3322/caac.21834 38572751
    [Google Scholar]
  2. Iragorri N. de Oliveira C. Fitzgerald N. Essue B. The out-of-pocket cost burden of cancer care: A systematic literature review. Curr. Oncol. 2021 28 2 1216 1248 10.3390/curroncol28020117 33804288
    [Google Scholar]
  3. Anand U. Dey A. Chandel A.K.S. Sanyal R. Mishra A. Pandey D.K. De Falco V. Upadhyay A. Kandimalla R. Chaudhary A. Dhanjal J.K. Dewanjee S. Vallamkondu J. Pérez de la Lastra J.M. Cancer chemotherapy and beyond: Current status, drug candidates, associated risks and progress in targeted therapeutics. Genes Dis. 2023 10 4 1367 1401 10.1016/j.gendis.2022.02.007 37397557
    [Google Scholar]
  4. Fayazi M. Sajjadi M. Mousavi S.Y. Cytotoxicity evaluation of hydro-alcoholic extract of Prangos pabularia Lindl root on breast cancer MCF-7 cell line. J. Herbmed. Pharmacol. 2024 14 1 63 70 10.34172/jhp.2025.52583
    [Google Scholar]
  5. Zohmachhuana A. Kumar N.S. Malsawmdawngliana M. Mathipi V. Lalrinzuali L. Parimelazhagan T. Lalnunmawia F. Alpinia galanga induces caspase-dependent apoptotic cell death in human lung and cervical cancer cells. J. Herbmed. Pharmacol. 2024 13 4 640 650 10.34172/jhp.2024.52571
    [Google Scholar]
  6. Kumar T. Dutta R.R. Thakre S. Singh A. Velagala V.R. Shinde R.K. Resistance to resilience: Understanding post-surgical hormone therapy in breast cancer care. Cureus 2023 15 10 e47869 10.7759/cureus.47869 38021507
    [Google Scholar]
  7. Debela D.T. Muzazu S.G.Y. Heraro K.D. Ndalama M.T. Mesele B.W. Haile D.C. Kitui S.K. Manyazewal T. New approaches and procedures for cancer treatment: Current perspectives. SAGE Open Med. 2021 9 10.1177/20503121211034366 34408877
    [Google Scholar]
  8. Mitra S. Lami M.S. Ghosh A. Das R. Tallei T.E. Fatima, Wali, Islam, F.; Dhama, K.; Begum, M.Y.; Aldahish, A.; Chidambaram, K.; Emran, T.B. Hormonal therapy for gynecological cancers: How far has science progressed toward clinical applications? Cancers 2022 14 3 759 10.3390/cancers14030759 35159024
    [Google Scholar]
  9. Yu C. Fu J. Guo L. Yu M. Yu D. Integrating metabolomics and network pharmacology to explore the protective effect of ginsenoside Re against radiotherapy injury in mice. Evid. Based Complement. Alternat. Med. 2022 2022 1 16 10.1155/2022/5436979 35310032
    [Google Scholar]
  10. Koka K. Verma A. Dwarakanath B.S. Papineni R.V.L. Technological advancements in external beam radiation therapy (EBRT): An indispensable tool for cancer treatment. Cancer Manag. Res. 2022 14 1421 1429 10.2147/CMAR.S351744 35431581
    [Google Scholar]
  11. Majeed H. Gupta V. Adverse Effects of Radiation Therapy. Treasure Island, FL StatPearls 2025
    [Google Scholar]
  12. McKibben N.S. MacConnell A.E. Chen Y. Risk factors for radiotherapy failure in the treatment of spinal metastases. Global Spine J. 2023 21925682231213290 37941315
    [Google Scholar]
  13. Raeisi E. Heidari-Soureshjani S. Sherwin M.T.C. Khaghani A. Anti-cancer effects of soy isoflavones against cancer by radiosensitizing properties: A systematic review. Curr. Cancer Ther. Rev. 2024 20 1 14
    [Google Scholar]
  14. Raeisi E. Heidari-Soureshjani S. Mt Sherwin C. Bagheri Z. Radiotherapy enhancing and radioprotective properties of berberine: A systematic review. Recent Pat. Anticancer Drug Discov 2024 [Epublished of Print] 9 10.2174/0115748928315442240624120104
    [Google Scholar]
  15. Shahbazi-Gahrouei D. Raeisi E. Raeisi F. Heidarian E. Evaluation of the radiosensitizing potency of bromelain for radiation therapy of 4T1 breast cancer cells. J. Med. Signals Sens. 2019 9 1 68 74 10.4103/jmss.JMSS_25_18 30967992
    [Google Scholar]
  16. Hong H. Baatar D. Hwang S.G. Anticancer activities of ginsenosides, the main active components of ginseng. Evid. Based Complement. Alternat. Med. 2021 2021 1 10 10.1155/2021/8858006 33623532
    [Google Scholar]
  17. Valdés-González J.A. Sánchez M. Moratilla-Rivera I. Iglesias I. Gómez-Serranillos M.P. Immunomodulatory, anti-inflammatory, and anti-cancer properties of ginseng: A pharmacological update. Molecules 2023 28 9 3863 10.3390/molecules28093863 37175273
    [Google Scholar]
  18. Page M.J. McKenzie J.E. Bossuyt P.M. Boutron I. Hoffmann T.C. Mulrow C.D. Shamseer L. Tetzlaff J.M. Akl E.A. Brennan S.E. Chou R. Glanville J. Grimshaw J.M. Hróbjartsson A. Lalu M.M. Li T. Loder E.W. Mayo-Wilson E. McDonald S. McGuinness L.A. Stewart L.A. Thomas J. Tricco A.C. Welch V.A. Whiting P. Moher D. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021 372 71 n71 10.1136/bmj.n71 33782057
    [Google Scholar]
  19. Schardt C. Adams M.B. Owens T. Keitz S. Fontelo P. Utilization of the PICO framework to improve searching PubMed for clinical questions. BMC Med. Inform. Decis. Mak. 2007 7 1 16 10.1186/1472‑6947‑7‑16 17573961
    [Google Scholar]
  20. Hooijmans C.R. Rovers M.M. de Vries R.B.M. Leenaars M. Ritskes-Hoitinga M. Langendam M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014 14 1 43 10.1186/1471‑2288‑14‑43 24667063
    [Google Scholar]
  21. Chen Y. Sun A.M. Chen Z.X. Liu Y. Chen L.H. Yuan Y.W. Ginsenoside Rg1 protects rat hippocampal neurons from radiation injury by regulating NOS activity. Nan Fang Yi Ke Da Xue Xue Bao 2010 30 7 1522 1525 20650756
    [Google Scholar]
  22. Ko I-H. Chang C-C. Koh J-S. The radioprotective effect of ginseng extracts on the liver in mice that was irradiated by radiation. J. Radiol. Sci. Technol. 2004 27 2 35 43
    [Google Scholar]
  23. Huang Y. Liang X-y. Li C-j. Hu J. Zhou L-q. Ease effect of ginsenoside on different-intensity ionizing radiation damage to human hematopoietic stem cells. Chin. J. Tissue Eng. Res. 2015 19 1 124
    [Google Scholar]
  24. HaeJune L-h. Morphological evaluation on the effect of panaxadiol series ginsenosides in irradiated mice. Korean J. Vet. Res. 2004 44 2 179 184
    [Google Scholar]
  25. Zhang Z. Bo J. Xiaoxiang Z. In vitro immune enhancing effect of ginsenoside Rg_3 on peripheral blood lymphocytes in patients treated with tumor radiotherapy. Chin. Pharm. J. 2004 1 04 25 28
    [Google Scholar]
  26. Kim H.G. Jang S.S. Lee J.S. Kim H.S. Son C.G. Panax ginseng Meyer prevents radiation-induced liver injury via modulation of oxidative stress and apoptosis. J. Ginseng Res. 2017 41 2 159 168 10.1016/j.jgr.2016.02.006 28413320
    [Google Scholar]
  27. Syaifudin M. Song J-Y. Lee Y-S. Kang C-M. Radio protective effects of ginseng extract in gamma-rays induced chromosomal damages of human lymphocyte. Atom Indonesia 2008 34 1 45 58
    [Google Scholar]
  28. Abd El-Rahman N. Effects of panax ginseng on radiation exposure mediated hepatotoxicity and nephrotoxicity in male albino rats. Arab J. Nucl Sci. Appl. 2013 46 5 236 246
    [Google Scholar]
  29. Ben-Hur E. Fulder S. Effect of Panax ginseng saponins and Eleutherococcus senticosus on survival of cultured mammalian cells after ionizing radiation. Am. J. Chin. Med. 1981 9 1 48 56 10.1142/S0192415X8100007X 7304498
    [Google Scholar]
  30. Lee T.K. O’Brien K.F. Wang W. Johnke R.M. Sheng C. Benhabib S.M. Wang T. Allison R.R. Radioprotective effect of American ginseng on human lymphocytes at 90 minutes postirradiation: A study of 40 cases. J. Altern. Complement. Med. 2010 16 5 561 567 10.1089/acm.2009.0590 20491513
    [Google Scholar]
  31. Lee Y.J. Han J.Y. Lee C.G. Heo K. Park S.I. Park Y.S. Kim J.S. Yang K.M. Lee K.J. Kim T.H. Rhee M.H. Kim S.D. Korean Red Ginseng saponin fraction modulates radiation effects on lipopolysaccharide-stimulated nitric oxide production in RAW264.7 macrophage cells. J. Ginseng Res. 2014 38 3 208 214 10.1016/j.jgr.2014.02.001 25378996
    [Google Scholar]
  32. Dong L. Yang Y. Lu Y. Lu C. Lv J. Jiang N. Xu Q. Gao Y. Chang Q. Liu X. Radioprotective effects of dammarane sapogenins against 60 Co-induced myelosuppression in mice. Phytother. Res. 2018 32 4 741 749 10.1002/ptr.6027 29356175
    [Google Scholar]
  33. Cho H.T. Kim J.H. Heo W. Lee H.S. Lee J.J. Park T.S. Lee J.H. Kim Y.J. Explosively puffed ginseng ameliorates ionizing radiation-induced injury of colon by decreasing oxidative stress-related apoptotic cell execution in mice. J. Med. Food 2019 22 5 490 498 10.1089/jmf.2018.4293 31084541
    [Google Scholar]
  34. Bai H. Li T. Study on the mechanism of ginsenoside Rg5 attenuating radiation myocarditis through GDF11-SIRT1 pathway. J. Clin. Oncol. 2024 42 16_suppl. e15098 e15098.(Suppl.) 10.1200/JCO.2024.42.16_suppl.e15098
    [Google Scholar]
  35. Bai H. Li T. Ginsenoside Rg5 affects irradiation-induced lung fibrosis in mice via macrophage-mediated phagocytosis involving MERTK and PTX3. Int. J. Radiat. Oncol. Biol. Phys. 2024 120 2 e353 10.1016/j.ijrobp.2024.07.777
    [Google Scholar]
  36. Hou J. Song Y. Kang L. Effect of 20 (R)-ginsenoside Rg3 on adjuvant therapy after radiotherapy and chemotherapy in elderly patients with cancer. Chin J. Gerontol. 2011 31 20 4024 4025
    [Google Scholar]
  37. Lee H.J. Kim S.R. Kim J.C. Kang C.M. Lee Y.S. Jo S.K. Kim T.H. Jang J.S. Nah S.Y. Kim S.H. In vivo radioprotective effect of Panax ginseng C.A. Meyer and identification of active ginsenosides. Phytother. Res. 2006 20 5 392 395 10.1002/ptr.1867 16619368
    [Google Scholar]
  38. Tamura T. Cui X. Sakaguchi N. Akashi M. Ginsenoside Rd prevents and rescues rat intestinal epithelial cells from irradiation-induced apoptosis. Food Chem. Toxicol. 2008 46 9 3080 3089 10.1016/j.fct.2008.06.011 18638517
    [Google Scholar]
  39. Chen C. Mu X. Zhou Y. Shun K. Geng S. Liu J. Wang J. Chen J. Li T. Wang Y. Ginsenoside Rg1 enhances the resistance of hematopoietic stem/progenitor cells to radiation-induced aging in mice. Acta Pharmacol. Sin. 2014 35 1 143 150 10.1038/aps.2013.136 24335839
    [Google Scholar]
  40. Zhang Q. Yang B. Zhai X. Zhao K. Wu Z. Zhu Q. Zhang J. Wei X. Zhao Y. Cai J. Zhu Z. Protective effects of ginsenosides rb2 on irradiation-induced hematopoietic system injury in the mice. Int. J. Pharmacol. 2014 10 8 524 527 10.3923/ijp.2014.524.527
    [Google Scholar]
  41. Baik J.S. Seo Y.N. Yi J.M. Rhee M.H. Park M.T. Kim S.D. Ginsenoside-Rp1 inhibits radiation-induced effects in lipopolysaccharide-stimulated J774A.1 macrophages and suppresses phenotypic variation in CT26 colon cancer cells. J. Ginseng Res. 2020 44 6 843 848 10.1016/j.jgr.2020.01.006 33192128
    [Google Scholar]
  42. Luo Y. Wang B. Liu J. Ma F. Luo D. Zheng Z. Lu Q. Zhou W. Zheng Y. Zhang C. Wang Q. Sha W. Chen H. Ginsenoside RG1 enhances the paracrine effects of bone marrow-derived mesenchymal stem cells on radiation induced intestinal injury. Aging (Albany NY) 2021 13 1 1132 1152 10.18632/aging.202241 33293477
    [Google Scholar]
  43. Tang Y.L. Zhou Y. Wang Y.P. He Y.H. Ding J.C. Li Y. Wang C.L. Ginsenoside Rg1 protects against Sca 1+ HSC/HPC cell aging by regulating the SIRT1 FOXO3 and SIRT3 SOD2 signaling pathways in a γ ray irradiation induced aging mice model. Exp. Ther. Med. 2020 20 2 1245 1252 10.3892/etm.2020.8810 32765665
    [Google Scholar]
  44. Duan X. Cai H. Hu T. Lin L. Zeng L. Wang H. Cao L. Li X. Ginsenoside Rg3 treats acute radiation proctitis through the TLR4/MyD88/NF-κB pathway and regulation of intestinal flora. Front. Cell. Infect. Microbiol. 2023 12 1028576 10.3389/fcimb.2022.1028576 36683687
    [Google Scholar]
  45. Lv X. Zhang S. Ling L. Effects of Ginsenoside Rg3 on HLA-DR, HLA-ABC and cellular immune function in patients with tumor radiotherapy. Pak. J. Zool. 2023 56 3111 3116
    [Google Scholar]
  46. Shi K. Chen F. Li X. Ginsenosides and ginseng phenolic acids relieve ionizing radiation-induced pyroptosis and apoptosis in intestinal epithelial cells. Nat. Prod. Commun. 2023 18 8 10.1177/1934578X231189954
    [Google Scholar]
  47. Wang Y. Su P. Zhuo Z. Jin Y. Zeng R. Wu H. Huang H. Chen H. Li Z. Sha W. Ginsenoside Rk1 attenuates radiation-induced intestinal injury through the PI3K/AKT/mTOR pathway. Biochem. Biophys. Res. Commun. 2023 643 111 120 10.1016/j.bbrc.2022.12.072 36592584
    [Google Scholar]
  48. Kim M.S. Yang S.J. Jung S.Y. Lee T.Y. Park J.K. Park Y.G. Woo S.Y. Kim S.E. Lee R.A. Combination of phytochemicals, including ginsenoside and curcumin, shows a synergistic effect on the recovery of radiation-induced toxicity. PLoS One 2024 19 1 e0293974 10.1371/journal.pone.0293974 38241326
    [Google Scholar]
  49. Li X. Lin L. Duan X. Dai J. Hu T. Cai H. Efficacy and mechanism of action of ginsenoside Rg3 on radiation proctitis in rats. Immun. Inflamm. Dis. 2024 12 9 e70015 10.1002/iid3.70015 39315884
    [Google Scholar]
  50. Zhou Q. Ou Y. Tian X. Ning Y. Mao Y. Zhao W. Long D. Ginsenoside Rg1 alleviates chronic testicular damage caused by cranial irradiation through the SCF/PI3K/Akt/mTOR pathway in mice. Radiat. Med. Prot 2025 6 1 11 21 10.1016/j.radmp.2024.12.002
    [Google Scholar]
  51. Li C. Zhao B. Xiong J. Li L. Pang D. Unger K. Jung M. Lyu J. Kuang H. Liang L. Li T. Chen L. Bai H. Ginsenoside Rg5 alleviates radiation-induced acute lung vascular endothelium injury by reducing mitochondrial apoptosis via Sirt1. J. Ginseng Res. 2025 49 3 260 270 10.1016/j.jgr.2025.01.004 40453348
    [Google Scholar]
  52. Wang W. Rayburn E.R. Hao M. Zhao Y. Hill D.L. Zhang R. Wang H. Experimental therapy of prostate cancer with novel natural product anti‐cancer ginsenosides. Prostate 2008 68 8 809 819 10.1002/pros.20742 18324646
    [Google Scholar]
  53. Chae S. Kang K.A. Chang W.Y. Kim M.J. Lee S.J. Lee Y.S. Kim H.S. Kim D.H. Hyun J.W. Effect of compound K, a metabolite of ginseng saponin, combined with gamma-ray radiation in human lung cancer cells in vitro and in vivo. J. Agric. Food Chem. 2009 57 13 5777 5782 10.1021/jf900331g 19526988
    [Google Scholar]
  54. Ge X. Zhen F. Yang B. Yang X. Cai J. Zhang C. Zhang S. Cao Y. Ma J. Cheng H. Sun X. Ginsenoside Rg3 enhances radiosensitization of hypoxic oesophageal cancer cell lines through vascular endothelial growth factor and hypoxia inducible factor 1α. J. Int. Med. Res. 2014 42 3 628 640 10.1177/0300060513505491 24691458
    [Google Scholar]
  55. Wang L. Li X. Song Y.M. Wang B. Zhang F.R. Yang R. Wang H.Q. Zhang G.J. Ginsenoside Rg3 sensitizes human non-small cell lung cancer cells to γ-radiation by targeting the nuclear factor-κB pathway. Mol. Med. Rep. 2015 12 1 609 614 10.3892/mmr.2015.3397 25738799
    [Google Scholar]
  56. Teng B. Zhao L. Gao J. He P. Li H. Chen J. Feng Q. Yi C. 20(s)-Protopanaxadiol (PPD) increases the radiotherapy sensitivity of laryngeal carcinoma. Food Funct. 2017 8 12 4469 4477 10.1039/C7FO00853H 29090703
    [Google Scholar]
  57. Liu T. Duo L. Duan P. Ginsenoside Rg3 sensitizes colorectal cancer to radiotherapy through downregulation of proliferative and angiogenic biomarkers. Evid. Based Complement. Alternat. Med. 2018 2018 1 1580427 10.1155/2018/1580427 29743919
    [Google Scholar]
  58. Changizi V. Gharekhani V. Motavaseli E. Co-treatment with Ginsenoside 20(S)-Rg3 and Curcumin increases Radiosensitivity of MDA-MB-231 cancer cell line. Iran. J. Med. Sci. 2021 46 4 291 297 34305241
    [Google Scholar]
  59. Ma J. Yu D.H. Zhao D. Huang T. Dong M. Wang T. Yin H-T. Poly-Lactide-Co-Glycolide-Polyethylene Glycol-Ginsenoside Rg3-Ag exerts a radio-sensitization effect in non-small cell lung cancer. J. Biomed. Nanotechnol. 2022 18 8 2001 2009 10.1166/jbn.2022.3434
    [Google Scholar]
  60. Bai H. Lyu J. Nie X. Kuang H. Liang L. Jia H. Zhou S. Li C. Li T. Ginsenoside Rg5 enhances the radiosensitivity of lung adenocarcinoma via reducing HSP90-CDC37 interaction and promoting client protein degradation. J. Pharm. Anal. 2023 13 11 1296 1308 10.1016/j.jpha.2023.06.004 38174116
    [Google Scholar]
  61. Hu G. Luo N. Guo Q. Wang D. Peng P. Liu D. Liu S. Zhang L. Long G. Sun W. Ginsenoside Rg3 sensitizes nasopharyngeal carcinoma cells to radiation by suppressing epithelial mesenchymal transition. Radiat. Res. 2023 199 5 460 467 10.1667/RADE‑22‑00183.1 36946792
    [Google Scholar]
  62. Lee S.C. Shen C.Y. Wang W.H. Lee Y.P. Liang K.W. Chou Y.H. Tyan Y.S. Hwang J.J. Synergistic effect of Ginsenoside Rh2 combines with ionizing radiation on CT26/luc colon carcinoma cells and tumor-bearing animal model. Pharmaceuticals 2023 16 9 1188 10.3390/ph16091188 37764996
    [Google Scholar]
  63. Li J. Yang B. Ginsenoside Rg3 enhances the radiosensitivity of lung cancer A549 and H1299 cells via the PI3K/AKT signaling pathway. In Vitro Cell. Dev. Biol. Anim. 2023 59 1 19 30 10.1007/s11626‑023‑00749‑3 36790693
    [Google Scholar]
  64. Zhang Y. Huang Y. Li Z. Wu H. Zou B. Xu Y. Exploring natural products as radioprotective agents for cancer therapy: Mechanisms, challenges, and opportunities. Cancers 2023 15 14 3585 10.3390/cancers15143585 37509245
    [Google Scholar]
  65. Jameel Q. Jameel T. Mohammed N. Preventive and therapeutic effects of natural antioxidants against damage caused by X-rays. Bioact. Compd. Health. Dis. 2025 8 1 11 30 10.31989/bchd.v8i1.1530
    [Google Scholar]
  66. Zhang X. Chen X. Wang L. He C. Shi Z. Fu Q. Xu W. Zhang S. Hu S. Review of the efficacy and mechanisms of traditional chinese medicines as a therapeutic option for Ionizing radiation induced damage. Front. Pharmacol. 2021 12 617559 10.3389/fphar.2021.617559 33658941
    [Google Scholar]
  67. Shivappa P. Bernhardt G.V. Natural radioprotectors on current and future perspectives. J. Pharm. Bioallied Sci. 2022 14 2 57 71 10.4103/jpbs.jpbs_502_21 36034486
    [Google Scholar]
  68. Adnan M. Rasul A. Shah M.A. Hussain G. Asrar M. Riaz A. Sarfraz I. Hussain A. Khorsandi K. Lai N.S. Hussain S.M. Radioprotective role of natural polyphenols: From sources to mechanisms. Anticancer. Agents Med. Chem. 2022 22 1 30 39 33874875
    [Google Scholar]
  69. Yi J. Zhu J. Zhao C. Kang Q. Zhang X. Suo K. Cao N. Hao L. Lu J. Potential of natural products as radioprotectors and radiosensitizers: opportunities and challenges. Food Funct. 2021 12 12 5204 5218 10.1039/D1FO00525A 34018510
    [Google Scholar]
  70. Nisar S. Masoodi T. Prabhu K.S. Kuttikrishnan S. Zarif L. Khatoon S. Ali S. Uddin S. Akil A.A.S. Singh M. Macha M.A. Bhat A.A. Natural products as chemo-radiation therapy sensitizers in cancers. Biomed. Pharmacother. 2022 154 113610 10.1016/j.biopha.2022.113610 36030591
    [Google Scholar]
  71. National Library of Medicine (US), National Center for Biotechnology Information National Library of Medicine (US), National Center for Biotechnology Information; 2004-. PubChem Compound Summary for CID 3086007, PubChem [Internet]. Bethesda (MD): Ginsenosides; [cited 2024 Nov. 29]. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Ginsenosides
    [Google Scholar]
  72. Kiefer D. Pantuso T. Panax ginseng. Am. Fam. Physician 2003 68 8 1539 1542 14596440
    [Google Scholar]
  73. Kim J.H. Pharmacological and medical applications of Panax ginseng and ginsenosides: A review for use in cardiovascular diseases. J. Ginseng Res. 2018 42 3 264 269 10.1016/j.jgr.2017.10.004 29983607
    [Google Scholar]
  74. Chen W. Balan P. Popovich D.G. Comparison of Ginsenoside components of various tissues of new Zealand Forest-Grown Asian Ginseng (Panax Ginseng) and American Ginseng (Panax Quinquefolium L.). Biomolecules 2020 10 3 372 10.3390/biom10030372 32121159
    [Google Scholar]
  75. Yang W. Shi X. Yao C. Huang Y. Hou J. Han S. Feng Z. Wei W. Wu W. Guo D. A novel neutral loss/product ion scan-incorporated integral approach for the untargeted characterization and comparison of the carboxyl-free ginsenosides from Panax ginseng, Panax quinquefolius, and Panax notoginseng. J. Pharm. Biomed. Anal. 2020 177 112813 10.1016/j.jpba.2019.112813 31472326
    [Google Scholar]
  76. Park S.B. Chun J.H. Ban Y.W. Han J.Y. Choi Y.E. Alteration of Panax ginseng saponin composition by overexpression and RNA interference of the protopanaxadiol 6-hydroxylase gene (CYP716A53v2). J. Ginseng Res. 2016 40 1 47 54 10.1016/j.jgr.2015.04.010 26843821
    [Google Scholar]
  77. Piao X.M. Huo Y. Kang J.P. Mathiyalagan R. Zhang H. Yang D.U. Kim M. Yang D.C. Kang S.C. Wang Y.P. Diversity of Ginsenoside profiles produced by various processing technologies. Molecules 2020 25 19 4390 10.3390/molecules25194390 32987784
    [Google Scholar]
  78. Zheng Z. Su J. Bao X. Wang H. Bian C. Zhao Q. Jiang X. Mechanisms and applications of radiation-induced oxidative stress in regulating cancer immunotherapy. Front. Immunol. 2023 14 1247268 10.3389/fimmu.2023.1247268 37600785
    [Google Scholar]
  79. Yang P. Li J. Zhang T. Ren Y. Zhang Q. Liu R. Li H. Hua J. Wang W.A. Wang J. Zhou H. Ionizing radiation-induced mitophagy promotes ferroptosis by increasing intracellular free fatty acids. Cell Death Differ. 2023 30 11 2432 2445 10.1038/s41418‑023‑01230‑0 37828085
    [Google Scholar]
  80. Smith T.A. Kirkpatrick D.R. Smith S. Smith T.K. Pearson T. Kailasam A. Herrmann K.Z. Schubert J. Agrawal D.K. Radioprotective agents to prevent cellular damage due to ionizing radiation. J. Transl. Med. 2017 15 1 232 10.1186/s12967‑017‑1338‑x 29121966
    [Google Scholar]
  81. Faraonio R. Vergara P. Di Marzo D. Pierantoni M.G. Napolitano M. Russo T. Cimino F. p53 suppresses the Nrf2-dependent transcription of antioxidant response genes. J. Biol. Chem. 2006 281 52 39776 39784 10.1074/jbc.M605707200 17077087
    [Google Scholar]
  82. Kim W. Lee S. Seo D. Kim D. Kim K. Kim E. Kang J. Seong K.M. Youn H. Youn B. Cellular stress responses in radiotherapy. Cells 2019 8 9 1105 10.3390/cells8091105 31540530
    [Google Scholar]
  83. Shimura T. Mitochondrial signaling pathways associated with DNA damage responses. Int. J. Mol. Sci. 2023 24 7 6128 10.3390/ijms24076128 37047099
    [Google Scholar]
  84. Shimura T. Sasatani M. Kawai H. Kamiya K. Kobayashi J. Komatsu K. Kunugita N. ATM-mediated mitochondrial damage response triggered by nuclear DNA damage in normal human lung fibroblasts. Cell Cycle 2017 16 24 2345 2354 10.1080/15384101.2017.1387697 29099268
    [Google Scholar]
  85. Kong X. Yu D. Wang Z. Li S. Relationship between p53 status and the bioeffect of ionizing radiation. (Review) Oncol. Lett. 2021 22 3 661 10.3892/ol.2021.12922 34386083
    [Google Scholar]
  86. Wang Y. Xu Y. Zhou K. Zhang S. Wang Y. Li T. Xie C. Zhang X. Song J. Wang X. Zhu C. Autophagy inhibition reduces irradiation-induced subcortical white matter injury not by reducing inflammation, but by increasing mitochondrial fusion and inhibiting mitochondrial fission. Mol. Neurobiol. 2022 59 2 1199 1213 10.1007/s12035‑021‑02653‑x 34962635
    [Google Scholar]
  87. Kavanagh J.N. Redmond K.M. Schettino G. Prise K.M. DNA double strand break repair: A radiation perspective. Antioxid. Redox Signal. 2013 18 18 2458 2472 10.1089/ars.2012.5151 23311752
    [Google Scholar]
  88. Mijit M. Caracciolo V. Melillo A. Amicarelli F. Giordano A. Role of p53 in the regulation of cellular senescence. Biomolecules 2020 10 3 420 10.3390/biom10030420 32182711
    [Google Scholar]
  89. Zhang C. Liang Z. Ma S. Liu X. Radiotherapy and cytokine storm: Risk and mechanism. Front. Oncol. 2021 11 670464 10.3389/fonc.2021.670464 34094967
    [Google Scholar]
  90. Najafi M. Motevaseli E. Shirazi A. Geraily G. Rezaeyan A. Norouzi F. Rezapoor S. Abdollahi H. Mechanisms of inflammatory responses to radiation and normal tissues toxicity: clinical implications. Int. J. Radiat. Biol. 2018 94 4 335 356 10.1080/09553002.2018.1440092 29504497
    [Google Scholar]
  91. Singh V. Gupta D. Arora R. NF-κB as a key player in regulation of cellular radiation responses and identification of radiation countermeasures. Discoveries (Craiova) 2015 3 1 e35 10.15190/d.2015.27 32309561
    [Google Scholar]
  92. Zhao H. Wu L. Yan G. Chen Y. Zhou M. Wu Y. Li Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021 6 1 263 10.1038/s41392‑021‑00658‑5 34248142
    [Google Scholar]
  93. Jameus A. Kennedy A.E. Thome C. Hematological changes following low dose radiation therapy and comparison to current standard of care cancer treatments. Dose Response 2021 19 4 15593258211056196 10.1177/15593258211056196 34803549
    [Google Scholar]
  94. Zhang Y. Chen X. Wang X. Chen J. Du C. Wang J. Liao W. Insights into ionizing radiation-induced bone marrow hematopoietic stem cell injury. Stem Cell Res. Ther. 2024 15 1 222 10.1186/s13287‑024‑03853‑7 39039566
    [Google Scholar]
  95. Shao L. Luo Y. Zhou D. Hematopoietic stem cell injury induced by ionizing radiation. Antioxid. Redox Signal. 2014 20 9 1447 1462 10.1089/ars.2013.5635 24124731
    [Google Scholar]
  96. Kalimuthu S. Se-Kwon K. Cell survival and apoptosis signaling as therapeutic target for cancer: marine bioactive compounds. Int. J. Mol. Sci. 2013 14 2 2334 2354 10.3390/ijms14022334 23348928
    [Google Scholar]
  97. Peng F. Liao M. Qin R. Zhu S. Peng C. Fu L. Chen Y. Han B. Regulated cell death (RCD) in cancer: Key pathways and targeted therapies. Signal Transduct. Target. Ther. 2022 7 1 286 10.1038/s41392‑022‑01110‑y 35963853
    [Google Scholar]
  98. Jiao Y. Cao F. Liu H. Radiation-induced cell death and its mechanisms. Health Phys. 2022 123 5 376 386 10.1097/HP.0000000000001601 36069830
    [Google Scholar]
  99. Kehat I. Molkentin J.D. Extracellular signal-regulated kinase 1/2 (ERK1/2) signaling in cardiac hypertrophy. Ann. N. Y. Acad. Sci. 2010 1188 1 96 102 10.1111/j.1749‑6632.2009.05088.x 20201891
    [Google Scholar]
  100. He Y. Sun M.M. Zhang G.G. Yang J. Chen K.S. Xu W.W. Li B. Targeting PI3K/Akt signal transduction for cancer therapy. Signal Transduct. Target. Ther. 2021 6 1 425 10.1038/s41392‑021‑00828‑5 34916492
    [Google Scholar]
  101. Véquaud E. Desplanques G. Jézéquel P. Juin P. Barillé-Nion S. Survivin contributes to DNA repair by homologous recombination in breast cancer cells. Breast Cancer Res. Treat. 2016 155 1 53 63 10.1007/s10549‑015‑3657‑z 26679694
    [Google Scholar]
  102. Huo R. Wang L. Liu P. Zhao Y. Zhang C. Bai B. Liu X. Shi C. Wei S. Zhang H. Cabazitaxel-induced autophagy via the PI3K/Akt/mTOR pathway contributes to A549 cell death. Mol. Med. Rep. 2016 14 4 3013 3020 10.3892/mmr.2016.5648 27572899
    [Google Scholar]
  103. Nepon H. Safran T. Reece E.M. Murphy A.M. Vorstenbosch J. Davison P.G. Radiation-induced tissue damage: Clinical consequences and current treatment options. Semin. Plast. Surg. 2021 35 3 181 188 10.1055/s‑0041‑1731464 34526866
    [Google Scholar]
  104. Wang W. Cui B. Nie Y. Sun L. Zhang F. Radiation injury and gut microbiota-based treatment. Protein Cell 2024 15 2 83 97 10.1093/procel/pwad044 37470727
    [Google Scholar]
  105. Gong L. Zhang Y. Liu C. Zhang M. Han S. Application of radiosensitizers in cancer radiotherapy. Int. J. Nanomedicine 2021 16 1083 1102 10.2147/IJN.S290438 33603370
    [Google Scholar]
  106. Fischer N. Seo E.J. Efferth T. Prevention from radiation damage by natural products. Phytomedicine 2018 47 192 200 10.1016/j.phymed.2017.11.005 30166104
    [Google Scholar]
  107. Cerella C. Radogna F. Dicato M. Diederich M. Natural compounds as regulators of the cancer cell metabolism. Int. J. Cell Biol. 2013 2013 1 16 10.1155/2013/639401 23762063
    [Google Scholar]
  108. Matthews H.K. Bertoli C. de Bruin R.A.M. Cell cycle control in cancer. Nat. Rev. Mol. Cell Biol. 2022 23 1 74 88 10.1038/s41580‑021‑00404‑3 34508254
    [Google Scholar]
  109. Mercadante A.A. Kasi A. Genetics, Cancer Cell Cycle Phases. In: StatPearls. Treasure Island, FL StatPearls Publishing 2025
    [Google Scholar]
  110. Goel S. DeCristo M.J. McAllister S.S. Zhao J.J. CDK4/6 inhibition in cancer: Beyond cell cycle arrest. Trends Cell Biol. 2018 28 11 911 925 10.1016/j.tcb.2018.07.002 30061045
    [Google Scholar]
  111. Biade S. Stobbe C.C. Chapman J.D. The intrinsic radiosensitivity of some human tumor cells throughout their cell cycles. Radiat. Res. 1997 147 4 416 421 10.2307/3579497 9092920
    [Google Scholar]
  112. Liu R. Bian Y. Liu L. Liu L. Liu X. Ma S. Molecular pathways associated with oxidative stress and their potential applications in radiotherapy. (Review) Int. J. Mol. Med. 2022 49 5 65 10.3892/ijmm.2022.5121 35293589
    [Google Scholar]
  113. McCann E. O’Sullivan J. Marcone S. Targeting cancer-cell mitochondria and metabolism to improve radiotherapy response. Transl. Oncol. 2021 14 1 100905 10.1016/j.tranon.2020.100905 33069104
    [Google Scholar]
  114. Huang M. Myers C.R. Wang Y. You M. Mitochondria as a novel target for cancer chemoprevention: Emergence of mitochondrial-targeting agents. Cancer Prev. Res. (Phila.) 2021 14 3 285 306 10.1158/1940‑6207.CAPR‑20‑0425 33303695
    [Google Scholar]
  115. Vaes R.D.W. Hendriks L.E.L. Vooijs M. De Ruysscher D. Biomarkers of radiotherapy-induced immunogenic cell death. Cells 2021 10 4 930 10.3390/cells10040930 33920544
    [Google Scholar]
  116. Zhu S. Wang Y. Tang J. Cao M. Radiotherapy induced immunogenic cell death by remodeling tumor immune microenvironment. Front. Immunol. 2022 13 1074477 10.3389/fimmu.2022.1074477 36532071
    [Google Scholar]
  117. Pistritto G. Trisciuoglio D. Ceci C. Garufi A. D’Orazi G. Apoptosis as anticancer mechanism: Function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY) 2016 8 4 603 619 10.18632/aging.100934 27019364
    [Google Scholar]
  118. Carlos-Reyes A. Muñiz-Lino M.A. Romero-Garcia S. López-Camarillo C. Hernández-de la Cruz O.N. Biological adaptations of tumor cells to radiation therapy. Front. Oncol. 2021 11 718636 10.3389/fonc.2021.718636 34900673
    [Google Scholar]
  119. Keam S. MacKinnon K.M. D’Alonzo R.A. Gill S. Ebert M.A. Nowak A.K. Cook A.M. Effects of photon radiation on dna damage, cell proliferation, cell survival, and apoptosis of murine and human mesothelioma cell lines. Adv. Radiat. Oncol. 2022 7 6 101013 10.1016/j.adro.2022.101013 36420194
    [Google Scholar]
  120. Cao Y. Yin Y. Wang X. Wu Z. Liu Y. Zhang F. Lin J. Huang Z. Zhou L. Sublethal irradiation promotes the metastatic potential of hepatocellular carcinoma cells. Cancer Sci. 2021 112 1 265 274 10.1111/cas.14724 33155388
    [Google Scholar]
  121. Neophytou C.M. Panagi M. Stylianopoulos T. Papageorgis P. The Role of tumor microenvironment in cancer metastasis: Molecular mechanisms and therapeutic opportunities. Cancers 2021 13 9 2053 10.3390/cancers13092053 33922795
    [Google Scholar]
  122. Goedegebuure R.S.A. de Klerk L.K. Bass A.J. Derks S. Thijssen V.L.J.L. Combining radiotherapy with anti-angiogenic therapy and immunotherapy: A therapeutic triad for cancer? Front. Immunol. 2019 9 3107 10.3389/fimmu.2018.03107 30692993
    [Google Scholar]
  123. Liu Z.L. Chen H.H. Zheng L.L. Sun L.P. Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct. Target. Ther. 2023 8 1 198 10.1038/s41392‑023‑01460‑1 37169756
    [Google Scholar]
  124. Kim Y.S. Woo J.Y. Han C.K. Chang I.M. Safety analysis of Panax Ginseng in randomized clinical trials: A systematic review. Medicines 2015 2 2 106 126 10.3390/medicines2020106 28930204
    [Google Scholar]
  125. Lee N.H. Yoo S.R. Kim H.G. Cho J.H. Son C.G. Safety and tolerability of Panax ginseng root extract: A randomized, placebo-controlled, clinical trial in healthy Korean volunteers. J. Altern. Complement. Med. 2012 18 11 1061 1069 10.1089/acm.2011.0591 22909282
    [Google Scholar]
  126. Zhang S. Chen C. Lu W. Wei L. Phytochemistry, pharmacology, and clinical use of Panax notoginseng flowers buds. Phytother. Res. 2018 32 11 2155 2163 10.1002/ptr.6167 30088301
    [Google Scholar]
  127. Soleimani R. Gol Z. Jalali S.M. The association between ginseng and mania: A case report and literature review. Casp J. Neurol. Sci. 2020 6 1 66 70 10.32598/CJNS.6.20.217.1
    [Google Scholar]
  128. Liu Y. Zhang J.W. Li W. Ma H. Sun J. Deng M.C. Yang L. Ginsenoside metabolites, rather than naturally occurring ginsenosides, lead to inhibition of human cytochrome P450 enzymes. Toxicol. Sci. 2006 91 2 356 364 10.1093/toxsci/kfj164 16547074
    [Google Scholar]
  129. Van Booven D. Marsh S. McLeod H. Carrillo M.W. Sangkuhl K. Klein T.E. Altman R.B. Cytochrome P450 2C9-CYP2C9. Pharmacogenet. Genomics 2010 20 4 277 281 10.1097/FPC.0b013e3283349e84 20150829
    [Google Scholar]
  130. Bansal A.B. Cassagnol M. HMG-CoA Reductase Inhibitors. In: StatPearls. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  131. Miners J.O. Birkett D.J. Cytochrome P4502C9: An enzyme of major importance in human drug metabolism. Br. J. Clin. Pharmacol. 1998 45 6 525 538 10.1046/j.1365‑2125.1998.00721.x 9663807
    [Google Scholar]
  132. Hao M. Ba Q. Yin J. Li J. Zhao Y. Wang H. Deglycosylated ginsenosides are more potent inducers of CYP1A1, CYP1A2 and CYP3A4 expression in HepG2 cells than glycosylated ginsenosides. Drug Metab. Pharmacokinet 2011 26 2 201 205 10.2133/dmpk.DMPK‑10‑NT‑056 21178302
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206394677250930145253
Loading
/content/journals/acamc/10.2174/0118715206394677250930145253
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keywords: phytochemicals ; ginseng ; radiotherapy ; neoplasm ; Ginsenosides ; cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test