Skip to content
2000
image of The Role of Kinase Inhibitors in Cancer Neuroscience: Mechanisms, Therapeutic Potential, and Future Directions

Abstract

Introduction

Cancer progression is increasingly understood to be influenced by neural mechanisms, including neurotransmitter signaling, neurotrophic factor activity, neuroinflammation, and neurogenic inflammation. These neurobiological interactions contribute to tumor proliferation, angiogenesis, and metastasis. Kinase inhibitors, a class of targeted therapies that block dysregulated kinase activity, have demonstrated promise not only in direct tumor suppression but also in modulating neural pathways associated with cancer progression.

Methods

This review examines the role of kinase inhibitors in modulating cancer-associated neural mechanisms. A comprehensive literature search was conducted to identify studies exploring the effects of kinase inhibition on: (1) neurotransmitter signaling pathways; (2) neurotrophic factors such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF); (3) neuroinflammation through glial cell modulation; and (4) neurogenic inflammation. Additionally, we assessed the impact of kinase inhibitors on tumor-induced axonogenesis and stress-related signaling. Clinical relevance was evaluated through analysis of preclinical models, human case studies, and outcomes from relevant clinical trials.

Results

Kinase inhibitors were found to significantly modulate neural factors that facilitate tumor growth. Specifically, they can suppress neurotrophic signaling (., NGF/TrkA, BDNF/TrkB), inhibit glial activation, reduce pro-inflammatory cytokine production, and block neurotransmitter-induced proliferation. Inhibition of stress-responsive kinases such as p38 MAPK and JNK also disrupted tumor-associated axonogenesis and inflammation. Clinical trials demonstrate improved outcomes in cancers such as glioblastoma, breast cancer, and pancreatic cancer when kinase inhibitors are employed with consideration of neural mechanisms.

Discussion

These findings support the emerging concept of targeting the neural tumor microenvironment as a therapeutic strategy. Kinase inhibitors represent a dual-action approach, suppressing both cancer cell intrinsic growth pathways and the neural factors that sustain them. However, several challenges persist, including resistance mechanisms, variability in patient neural profiles, and off-target effects. Future research should focus on the development of neural-specific kinase inhibitors, the use of neural biomarkers for therapy selection, and the integration of neuro-oncology into personalized treatment plans.

Conclusion

Kinase inhibitors offer a promising frontier in cancer treatment by targeting neural mechanisms that contribute to tumor progression. While current evidence is encouraging, further investigation is required to optimize their use within neuro-oncology. Personalized approaches and novel targets within the neural-cancer axis will be essential for translating this strategy into clinical practice and improving long-term patient outcomes.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206387712250711132221
2025-07-21
2025-09-27
Loading full text...

Full text loading...

References

  1. Winkler F. Venkatesh H.S. Amit M. Batchelor T. Demir I.E. Deneen B. Gutmann D.H. Hervey-Jumper S. Kuner T. Mabbott D. Platten M. Rolls A. Sloan E.K. Wang T.C. Wick W. Venkataramani V. Monje M. Cancer neuroscience: State of the field, emerging directions. Cell 2023 186 8 1689 1707 10.1016/j.cell.2023.02.002
    [Google Scholar]
  2. Simó M. Rodríguez-Fornells A. Navarro V. Navarro-Martín A. Nadal E. Bruna J. Mitigating radiation-induced cognitive toxicity in brain metastases: More questions than answers. Neurooncol. Adv. 2024 6 1 vdae137 10.1093/noajnl/vdae137 39247496
    [Google Scholar]
  3. Ahmed J. Torrado C. Chelariu A. Kim S.H. Ahnert J.R. Fusion challenges in solid tumors: Shaping the landscape of cancer care in precision medicine. JCO Precis. Oncol. 2024 8 8 e2400038 10.1200/PO.24.00038 38986029
    [Google Scholar]
  4. Lee P.Y. Yeoh Y. Low T.Y. A recent update on small-molecule kinase inhibitors for targeted cancer therapy and their therapeutic insights from mass spectrometry-based proteomic analysis. FEBS J. 2023 290 11 2845 2864 10.1111/febs.16442
    [Google Scholar]
  5. Nasser Binjawhar D. Al-Salmi F.A. Alghamdi M.A. Alqahtani A. Fayad E. Saleem R.M. Zaki I. Youssef Moustafa A.M. Design, synthesis, and biological evaluation of newly synthesized cinnamide-fluorinated containing compounds as bioactive anticancer agents. ACS Omega 2024 9 16 18505 18515 10.1021/acsomega.4c00847 38680330
    [Google Scholar]
  6. Burov A. Grigorieva E. Lebedev T. Vedernikova V. Popenko V. Astakhova T. Leonova O. Spirin P. Prassolov V. Karpov V. Morozov A. Multikinase inhibitors modulate non-constitutive proteasome expression in colorectal cancer cells. Front. Mol. Biosci. 2024 11 1351641 10.3389/fmolb.2024.1351641 38774235
    [Google Scholar]
  7. Mancusi R. Monje M. The neuroscience of cancer. Nature 2023 618 7965 467 479 10.1038/s41586‑023‑05968‑y 37316719
    [Google Scholar]
  8. Mauch D.H. Nägler K. Schumacher S. Göritz C. Müller E.C. Otto A. Pfrieger F.W. CNS synaptogenesis promoted by glia-derived cholesterol. Science 2001 294 5545 1354 1357 10.1126/science.294.5545.1354 11701931
    [Google Scholar]
  9. Nägler K. Mauch D.H. Pfrieger F.W. Glia‐derived signals induce synapse formation in neurones of the rat central nervous system. J. Physiol. 2001 533 3 665 679 10.1111/j.1469‑7793.2001.00665.x 11410625
    [Google Scholar]
  10. Leclerc C. Daguzan C. Nicolas M.T. Chabret C. Duprat A.M. Moreau M. L-type calcium channel activation controls the in vivo transduction of the neuralizing signal in the amphibian embryos. Mech. Dev. 1997 64 1-2 105 110 10.1016/S0925‑4773(97)00054‑3 9232601
    [Google Scholar]
  11. Lan Y.L. Zou S. Wang W. Chen Q. Zhu Y. Progress in cancer neuroscience. MedComm 2023 4 6 e431 10.1002/mco2.431 38020711
    [Google Scholar]
  12. Valiente M. Ahluwalia M.S. Boire A. Brastianos P.K. Goldberg S.B. Lee E.Q. Le Rhun E. Preusser M. Winkler F. Soffietti R. The evolving landscape of brain metastasis. Trends Cancer 2018 4 3 176 196 10.1016/j.trecan.2018.01.003 29506669
    [Google Scholar]
  13. Jung E. Alfonso J. Osswald M. Monyer H. Wick W. Winkler F. Emerging intersections between neuroscience and glioma biology. Nat. Neurosci. 2019 22 12 1951 1960 10.1038/s41593‑019‑0540‑y 31719671
    [Google Scholar]
  14. Monje M. Borniger J.C. D’Silva N.J. Deneen B. Dirks P.B. Fattahi F. Frenette P.S. Garzia L. Gutmann D.H. Hanahan D. Hervey-Jumper S.L. Hondermarck H. Hurov J.B. Kepecs A. Knox S.M. Lloyd A.C. Magnon C. Saloman J.L. Segal R.A. Sloan E.K. Sun X. Taylor M.D. Tracey K.J. Trotman L.C. Tuveson D.A. Wang T.C. White R.A. Winkler F. Roadmap for the emerging field of cancer neuroscience. Cell 2020 181 2 219 222 10.1016/j.cell.2020.03.034 32302564
    [Google Scholar]
  15. Hanahan D. Monje M. Cancer hallmarks intersect with neuroscience in the tumor microenvironment. Cancer Cell 2023 41 3 573 580 10.1016/j.ccell.2023.02.012 36917953
    [Google Scholar]
  16. Chamberlain M.C. International Neurology-Neuro-Oncology Overview, 2nd ed; Lisak, R.P.; Truong, D.; Carroll, W.M.; Bhidayasiri, R., Eds.; : Hoboken, NJ 2016
    [Google Scholar]
  17. Weller M. Next generation neuro-oncology. Eur. J. Cancer 2018 96 1 5 10.1016/j.ejca.2018.03.016 29656021
    [Google Scholar]
  18. Brem S.S. Bierman P.J. Black P. Blumenthal D.T. Brem H. Chamberlain M.C. Chiocca E.A. DeAngelis L.M. Fenstermaker R.A. Fine H.A. Friedman A. Glass J. Grossman S.A. Heimberger A.B. Junck L. Levin V. Loeffler J.J. Maor M.H. Narayana A. Newton H.B. Olivi A. Portnow J. Prados M. Raizer J.J. Rosenfeld S.S. Shrieve D.C. Sills A.K. Spence A.M. Vrionis F.D. Central nervous system cancers: Clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw. 2005 3 5 644 690 10.6004/jnccn.2005.0038 16194456
    [Google Scholar]
  19. Afonso M. Brito M.A. Therapeutic options in neuro-oncology. Int. J. Mol. Sci. 2022 23 10 5351 10.3390/ijms23105351 35628161
    [Google Scholar]
  20. Wang Z. Li W. Li F. Xiao R. An update of predictive biomarkers related to WEE1 inhibition in cancer therapy. J. Cancer Res. Clin. Oncol. 2024 150 1 13 10.1007/s00432‑023‑05527‑y 38231277
    [Google Scholar]
  21. Barbosa R.S.S. Dantonio P.M. Guimarães T. de Oliveira M.B. Fook Alves V.L. Sandes A.F. Fernando R.C. Colleoni G.W.B. Sequential combination of bortezomib and WEE1 inhibitor, MK-1775, induced apoptosis in multiple myeloma cell lines. Biochem. Biophys. Res. Commun. 2019 519 3 597 604 10.1016/j.bbrc.2019.08.163 31540690
    [Google Scholar]
  22. Bauman J.E. Chung C.H. CHK it out! Blocking WEE kinase routs TP53 mutant cancer. Clin. Cancer Res. 2014 20 16 4173 4175 10.1158/1078‑0432.CCR‑14‑0720 25125257
    [Google Scholar]
  23. Beck H. Nähse-Kumpf V. Larsen M.S.Y. O’Hanlon K.A. Patzke S. Holmberg C. Mejlvang J. Groth A. Nielsen O. Syljuåsen R.G. Sørensen C.S. Cyclin-dependent kinase suppression by WEE1 kinase protects the genome through control of replication initiation and nucleotide consumption. Mol. Cell. Biol. 2012 32 20 4226 4236 10.1128/MCB.00412‑12 22907750
    [Google Scholar]
  24. Hanahan D. Weinberg R.A. Hallmarks of cancer: The next generation. Cell 2011 144 5 646 674 10.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  25. Lelliott E.J. Naddaf J. Ganio K. Michie J. Wang S. Liu L. Silke N. Ahn A. Ramsbottom K.M. Brennan A.J. Freeman A.J. Goel S. Vervoort S.J. Kearney C.J. Beavis P.A. McDevitt C.A. Silke J. Oliaro J. Intracellular zinc protects tumours from T cell-mediated cytotoxicity. Cell Death Differ. 2024 31 12 1707 1716 10.1038/s41418‑024‑01369‑4 39261596
    [Google Scholar]
  26. Adu-Amankwaah F. Februarie C. Nyambo K. Maarman G. Tshililo N. Mabasa L. Mavumengwana V. Baatjies L. Cytotoxic properties, glycolytic effects and high-resolution respirometry mitochondrial activities of Eriocephalus racemosus against MDA-MB 231 triple-negative breast cancer. BMC Complementary Medicine and Therapies 2024 24 1 332 10.1186/s12906‑024‑04615‑x 39256791
    [Google Scholar]
  27. Rafaqat S. Khurshid H. Hafeez R. Arif M. Zafar A. Gilani M. Ashraf H. Rafaqat S. Role of interleukins in pancreatic cancer: A literature review. J. Gastrointest. Cancer 2024 55 4 1498 1510 10.1007/s12029‑024‑01111‑w 39256264
    [Google Scholar]
  28. Xiong A. Yang Z. Shen Y. Zhou J. Shen Q. Transcription factor STAT3 as a novel molecular target for cancer prevention. Cancers 2014 6 2 926 957 10.3390/cancers6020926 24743778
    [Google Scholar]
  29. Siegel R.L. Miller K.D. Jemal A. Cancer statistics, 2020. CA Cancer J. Clin. 2020 70 1 7 30 10.3322/caac.21590 31912902
    [Google Scholar]
  30. Bradshaw R.A. Dennis E.A. Handbook of Cell. Signaling. 2nd ed San Diego Academic Press 2009
    [Google Scholar]
  31. Manning G. Whyte D.B. Martinez R. Hunter T. Sudarsanam S. The protein kinase complement of the human genome. Science 2002 298 5600 1912 1934 10.1126/science.1075762 12471243
    [Google Scholar]
  32. Bhullar K.S. Lagarón N.O. McGowan E.M. Parmar I. Jha A. Hubbard B.P. Rupasinghe H.P.V. Kinase-targeted cancer therapies: Progress, challenges and future directions. Mol. Cancer 2018 17 1 48 10.1186/s12943‑018‑0804‑2 29455673
    [Google Scholar]
  33. Cohen P. Protein kinases — The major drug targets of the twenty-first century? Nat. Rev. Drug Discov. 2002 1 4 309 315 10.1038/nrd773 12120282
    [Google Scholar]
  34. Lemmon M.A. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2010 141 7 1117 1134 10.1016/j.cell.2010.06.011 20602996
    [Google Scholar]
  35. Cohen P. Alessi D.R. Kinase drug discovery--what’s next in the field? ACS Chem. Biol. 2013 8 1 96 104 10.1021/cb300610s 23276252
    [Google Scholar]
  36. Li L. Liu S. Wang B. Liu F. Xu S. Li P. Chen Y. An updated review on developing small molecule kinase inhibitors using computer-aided drug design approaches. Int. J. Mol. Sci. 2023 24 18 13953 10.3390/ijms241813953 37762253
    [Google Scholar]
  37. Wong K. Di Cristofano F. Ranieri M. De Martino D. Di Cristofano A. PI3K/mTOR inhibition potentiates and extends palbociclib activity in anaplastic thyroid cancer. Endocr. Relat. Cancer 2019 26 4 425 436 10.1530/ERC‑19‑0011 30699064
    [Google Scholar]
  38. Knight Z.A. Shokat K.M. Features of selective kinase inhibitors. Chem. Biol. 2005 12 6 621 637 10.1016/j.chembiol.2005.04.011 15975507
    [Google Scholar]
  39. Chou T.C. Drug combination studies and their synergy quantification using the Chou-Talalay method. Cancer Res. 2010 70 2 440 446 10.1158/0008‑5472.CAN‑09‑1947 20068163
    [Google Scholar]
  40. Montagut C. Settleman J. Targeting the RAF–MEK–ERK pathway in cancer therapy. Cancer Lett. 2009 283 2 125 134 10.1016/j.canlet.2009.01.022 19217204
    [Google Scholar]
  41. Wu L. Ke L. Zhang Z. Yu J. Meng X. Development of EGFR TKIs and options to manage resistance of third-generation EGFR TKI osimertinib: Conventional ways and immune checkpoint inhibitors. Front. Oncol. 2020 10 602762 10.3389/fonc.2020.602762 33392095
    [Google Scholar]
  42. Ferguson F.M. Gray N.S. Kinase inhibitors: The road ahead. Nat. Rev. Drug Discov. 2018 17 5 353 377 10.1038/nrd.2018.21 29545548
    [Google Scholar]
  43. Huse J.T. Holland E.C. Targeting brain cancer: Advances in the molecular pathology of malignant glioma and medulloblastoma. Nat. Rev. Cancer 2010 10 5 319 331 10.1038/nrc2818 20414201
    [Google Scholar]
  44. Bracarda S. Caserta C. Sordini L. Rossi M. Hamzay A. Crinò L. Protein kinase inhibitors in the treatment of renal cell carcinoma: Sorafenib. Ann Oncol. 2007 19 , vi22-vi25.(Suppl. 6) 10.1093/annonc/mdm219 17591826
    [Google Scholar]
  45. Prados M.D. Chang S.M. Butowski N. DeBoer R. Parvataneni R. Carliner H. Kabuubi P. Ayers-Ringler J. Rabbitt J. Page M. Fedoroff A. Sneed P.K. Berger M.S. McDermott M.W. Parsa A.T. Vandenberg S. James C.D. Lamborn K.R. Stokoe D. Haas-Kogan D.A. Phase II study of erlotinib plus temozolomide during and after radiation therapy in patients with newly diagnosed glioblastoma multiforme or gliosarcoma. J. Clin. Oncol. 2009 27 4 579 584 10.1200/JCO.2008.18.9639 19075262
    [Google Scholar]
  46. Mossé Y.P. Lim M.S. Voss S.D. Wilner K. Ruffner K. Laliberte J. Rolland D. Balis F.M. Maris J.M. Weigel B.J. Ingle A.M. Ahern C. Adamson P.C. Blaney S.M. Safety and activity of crizotinib for paediatric patients with refractory solid tumours or anaplastic large-cell lymphoma: A children’s oncology group phase 1 consortium study. Lancet Oncol. 2013 14 6 472 480 10.1016/S1470‑2045(13)70095‑0 23598171
    [Google Scholar]
  47. Drilon A. Laetsch T.W. Kummar S. DuBois S.G. Lassen U.N. Demetri G.D. Nathenson M. Doebele R.C. Farago A.F. Pappo A.S. Turpin B. Dowlati A. Brose M.S. Mascarenhas L. Federman N. Berlin J. El-Deiry W.S. Baik C. Deeken J. Boni V. Nagasubramanian R. Taylor M. Rudzinski E.R. Meric-Bernstam F. Sohal D.P.S. Ma P.C. Raez L.E. Hechtman J.F. Benayed R. Ladanyi M. Tuch B.B. Ebata K. Cruickshank S. Ku N.C. Cox M.C. Hawkins D.S. Hong D.S. Hyman D.M. Efficacy of larotrectinib in TRK fusion-positive cancers in adults and children. N. Engl. J. Med. 2018 378 8 731 739 10.1056/NEJMoa1714448 29466156
    [Google Scholar]
  48. Solomon B.J. Besse B. Bauer T.M. Felip E. Soo R.A. Camidge D.R. Chiari R. Bearz A. Lin C.C. Gadgeel S.M. Riely G.J. Tan E.H. Seto T. James L.P. Clancy J.S. Abbattista A. Martini J.F. Chen J. Peltz G. Thurm H. Ou S.H.I. Shaw A.T. Lorlatinib in patients with ALK-positive non-small-cell lung cancer: Results from a global phase 2 study. Lancet Oncol. 2018 19 12 1654 1667 10.1016/S1470‑2045(18)30649‑1 30413378
    [Google Scholar]
  49. Wilson I. Qiu M. Itchins M. Wang B. Huang M.L. Grimison P. Metastatic non-myofibroblastic sarcoma harbouring EML4-ALK fusion: Dramatic response to ALK tyrosine kinase inhibitors and development of resistance mutations. Cancer Rep. 2024 7 8 e2164 10.1002/cnr2.2164 39188081
    [Google Scholar]
  50. Zheng Y. Zhao F. Ren Y. Xue Y. Yan B. Huang C. A case report: Pathological complete response to neoadjuvant lorlatinib for epithelioid inflammatory myofibroblastic sarcoma with EML4-ALK rearrangement. Front. Pharmacol. 2024 15 1401428 10.3389/fphar.2024.1401428
    [Google Scholar]
  51. Zheng Y. Zhao F. Ren Y. Xue Y. Yan B. Huang C. Identifying actionable alterations in KRAS wild-type pancreatic cancer. Front. Pharmacol. 2024 15 1401428 10.3389/fphar.2024.1401428 39144623
    [Google Scholar]
  52. Elhariri A. Patel J. Mahadevia H. Albelal D. Ahmed A.K. Jones J.C. Borad M.J. Babiker H. Identifying actionable alterations in KRAS wild-type pancreatic cancer. Target. Oncol. 2024 19 5 679 689 10.1007/s11523‑024‑01088‑3 39123077
    [Google Scholar]
  53. Pedersen M.W. Pedersen N. Ottesen L.H. Poulsen H.S. Differential response to gefitinib of cells expressing normal EGFR and the mutant EGFRvIII. Br. J. Cancer 2005 93 8 915 923 10.1038/sj.bjc.6602793 16189524
    [Google Scholar]
  54. Cocco E. Scaltriti M. Drilon A. NTRK fusion-positive cancers and TRK inhibitor therapy. Nat. Rev. Clin. Oncol. 2018 15 12 731 747 10.1038/s41571‑018‑0113‑0 30333516
    [Google Scholar]
  55. Shah N.P. Tran C. Lee F.Y. Chen P. Norris D. Sawyers C.L. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science 2004 305 5682 399 401 10.1126/science.1099480 15256671
    [Google Scholar]
  56. O’Hare T. Walters D.K. Stoffregen E.P. Jia T. Manley P.W. Mestan J. Cowan-Jacob S.W. Lee F.Y. Heinrich M.C. Deininger M.W.N. Druker B.J. In vitro activity of Bcr-Abl inhibitors AMN107 and BMS-354825 against clinically relevant imatinib-resistant Abl kinase domain mutants. Cancer Res. 2005 65 11 4500 4505 10.1158/0008‑5472.CAN‑05‑0259 15930265
    [Google Scholar]
  57. Wright S.C.E. Vasilevski N. Serra V. Rodon J. Eichhorn P.J.A. Mechanisms of resistance to PI3K inhibitors in cancer: Adaptive responses, drug tolerance and cellular plasticity. Cancers 2021 13 7 1538 10.3390/cancers13071538 33810522
    [Google Scholar]
  58. Krygowska A.A. Castellano E. PI3K: A crucial piece in the RAS signaling puzzle. Cold Spring Harb. Perspect. Med. 2018 8 6 a031450 10.1101/cshperspect.a031450 28847905
    [Google Scholar]
  59. Wong K.K. Engelman J.A. Cantley L.C. Targeting the PI3K signaling pathway in cancer. Curr. Opin. Genet. Dev. 2010 20 1 87 90 10.1016/j.gde.2009.11.002 20006486
    [Google Scholar]
  60. Moitra K. Overcoming multidrug resistance in cancer stem cells. BioMed Res. Int. 2015 2015 1 8 10.1155/2015/635745 26649310
    [Google Scholar]
  61. Catalano A. Iacopetta D. Ceramella J. Scumaci D. Giuzio F. Saturnino C. Aquaro S. Rosano C. Sinicropi M.S. Multidrug resistance (MDR): A widespread phenomenon in pharmacological therapies. Molecules 2022 27 3 616 10.3390/molecules27030616 35163878
    [Google Scholar]
  62. Baylin S.B. Jones P.A. A decade of exploring the cancer epigenome — biological and translational implications. Nat. Rev. Cancer 2011 11 10 726 734 10.1038/nrc3130 21941284
    [Google Scholar]
  63. Kim I.S. Zhang X.H.F. One microenvironment does not fit all: Heterogeneity beyond cancer cells. Cancer Metastasis Rev. 2016 35 4 601 629 10.1007/s10555‑016‑9643‑z 27858305
    [Google Scholar]
  64. Zheng P.P. Li J. Kros J.M. Breakthroughs in modern cancer therapy and elusive cardiotoxicity: Critical research‐practice gaps, challenges, and insights. Med. Res. Rev. 2018 38 1 325 376 10.1002/med.21463 28862319
    [Google Scholar]
  65. Ziogas I.A. Tsoulfas G. Evolving role of Sorafenib in the management of hepatocellular carcinoma. World J. Clin. Oncol. 2017 8 3 203 213 10.5306/wjco.v8.i3.203 28638790
    [Google Scholar]
  66. Knight Z.A. Shokat K.M. Chemical genetics: where genetics and pharmacology meet. Cell 2007 128 3 425 430 10.1016/j.cell.2007.01.021 17289560
    [Google Scholar]
  67. Rocha C.V. Gonçalves V. da Silva M.C. Bañobre-López M. Gallo J. PLGA-based composites for various biomedical applications. Int. J. Mol. Sci. 2022 23 4 2034 10.3390/ijms23042034 35216149
    [Google Scholar]
  68. Peer D. Karp J.M. Hong S. Farokhzad O.C. Margalit R. Langer R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007 2 12 751 760 10.1038/nnano.2007.387 18654426
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206387712250711132221
Loading
/content/journals/acamc/10.2174/0118715206387712250711132221
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test