Skip to content
2000
image of Computational Optimization and In silico Analysis for the Discovery of New HER2 and CDK4/6 Drug Candidates for Breast Cancer

Abstract

Background

Breast cancer is an abnormal cell growth that develops in the breast and spreads throughout the body. Despite cancer being the second leading cause of death, survival rates are increasing as a result of progress in cancer screening and therapy. Breast cancer is the most frequently diagnosed cancer type among women, but in most cases, there are no obvious symptoms. Screening mammograms can be used for early detection of cancer. The size of the tumor and the extent of cancer spread determine the type of needed treatment. There are different forms of treatment, where targeted therapy is generally the least harmful. It targets specific characteristics of cancer cells, such as human epidermal growth factor receptor 2 (HER2). Tyrosine kinase inhibitors are effective targeted treatment of HER2 positive breast cancer. A newer class has emerged, cyclin dependent kinase (CDK4/6), which is used to treat metastatic breast cancer.

Objectives

Although CDK4/6 inhibitors class of therapy has revolutionized the treatment of metastatic breast cancer, some patients showed resistance and decreased efficacy. This study is the first to propose innovative computational strategies to improve the effectiveness and pharmacokinetic properties of existing HER2/CDK4/6 inhibitors anti-cancer agents. Through computer-aided drug design, the activity of existing breast cancer drug candidates has been tested. Structural modifications have been applied for in-silico optimization of their biological activity.

Methods

In this research, twenty-two analogues of the tested compounds have been proposed. Their biological activity and pharmacokinetic properties (ADMET) have been tested using BIOVIA Discovery Studio software.

Results

Out of the designed analogous compounds, seven proposed structures demonstrated superior efficacy compared to the original drugs. The research study docking studies revealed that modifications to lapatinib and tucatinib improved binding affinity to HER2 by 15-25%, with docking scores of -18.34 kcal/mol and -1.04 kcal/mol, respectively. Similarly, CDK4/6 inhibitors exhibited enhanced selectivity, with abemaciclib showing the highest binding energy of -13.2 kcal/mol. ADMET predictions suggested improved solubility and reduced toxicity risks compared to the original drugs.

Conclusion

The research study results demonstrate that the synthesis of more lipophilic analogues of lapatinib or tucatinib and, likewise designing of fluorinated derivatives of CDK4/6 inhibitors play a crucial role in improving the efficacy of these anti-cancer agents. These findings highlight the potential of the proposed modifications as promising candidates for further pharmacological and and clinical validation.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206382065250507114908
2025-05-13
2025-09-27
Loading full text...

Full text loading...

References

  1. Li S.G. Li L. Targeted therapy in HER2-positive breast cancer. Biomed. Rep. 2013 1 4 499 505 10.3892/br.2013.95 24648975
    [Google Scholar]
  2. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  3. Cheng Z. Li H. Chen C. Lv X. Zuo E. Xie X. Li Z. Liu P. Li H. Chen C. Application of serum SERS technology based on thermally annealed silver nanoparticle composite substrate in breast cancer. Photodiagn. Photodyn. Ther. 2023 41 103284 10.1016/j.pdpdt.2023.103284 36646366
    [Google Scholar]
  4. Yarden Y. Biology of HER2 and its importance in breast cancer. Oncology 2001 61 S2 1 13 10.1159/000055396 11694782
    [Google Scholar]
  5. Siegel R.L. Miller K.D. Jemal A. Cancer statistics, 2020. CA Cancer J. Clin. 2020 70 1 7 30 10.3322/caac.21590 31912902
    [Google Scholar]
  6. Yarden Y. Sliwkowski M.X. Untangling the ErbB signalling network. Nat. Rev. Mol. Cell Biol. 2001 2 2 127 137 10.1038/35052073 11252954
    [Google Scholar]
  7. Debien V. De Caluwé A. Wang X. Piccart-Gebhart M. Tuohy V.K. Romano E. Buisseret L. Immunotherapy in breast cancer: An overview of current strategies and perspectives. NPJ Breast Cancer 2023 9 1 7 10.1038/s41523‑023‑00508‑3 36781869
    [Google Scholar]
  8. Savas P. Salgado R. Denkert C. Sotiriou C. Darcy P.K. Smyth M.J. Loi S. Clinical relevance of host immunity in breast cancer: From TILs to the clinic. Nat. Rev. Clin. Oncol. 2016 13 4 228 241 10.1038/nrclinonc.2015.215 26667975
    [Google Scholar]
  9. Carter P. Presta L. Gorman C.M. Ridgway J.B. Henner D. Wong W.L. Rowland A.M. Kotts C. Carver M.E. Shepard H.M. Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc. Natl. Acad. Sci. USA 1992 89 10 4285 4289 10.1073/pnas.89.10.4285 1350088
    [Google Scholar]
  10. Sawyers C.L. Herceptin: A first assault on oncogenes that launched a revolution. Cell 2019 179 1 8 12 10.1016/j.cell.2019.08.027 31519311
    [Google Scholar]
  11. Zhang H. Berezov A. Wang Q. Zhang G. Drebin J. Murali R. Greene M.I. ErbB receptors: From oncogenes to targeted cancer therapies. J. Clin. Invest. 2007 117 8 2051 2058 10.1172/JCI32278 17671639
    [Google Scholar]
  12. Sirhan Z. Thyagarajan A. Sahu R.P. The efficacy of tucatinib-based therapeutic approaches for HER2-positive breast cancer. Mil. Med. Res. 2022 9 1 39 10.1186/s40779‑022‑00401‑3 35820970
    [Google Scholar]
  13. Shah A.A. Kamal M.A. Akhtar S. Tumor angiogenesis and VEGFR-2: Mechanism, pathways and current biological therapeutic interventions. Curr. Drug Metab. 2021 22 1 50 59 10.2174/18755453MTEwxNzQ0x 33076807
    [Google Scholar]
  14. Ma F. Ouyang Q. Li W. Jiang Z. Tong Z. Liu Y. Li H. Yu S. Feng J. Wang S. Hu X. Zou J. Zhu X. Xu B. Pyrotinib or lapatinib combined with capecitabine in HER2-positive metastatic breast cancer with prior taxanes, anthracyclines, and/or trastuzumab: A randomized, phase ii study. J. Clin. Oncol. 2019 37 29 2610 2619 10.1200/JCO.19.00108 31430226
    [Google Scholar]
  15. Saura C. Oliveira M. Feng Y.H. Dai M.S. Chen S.W. Hurvitz S.A. Kim S.B. Moy B. Delaloge S. Gradishar W. Masuda N. Palacova M. Trudeau M.E. Mattson J. Yap Y.S. Hou M.F. De Laurentiis M. Yeh Y.M. Chang H.T. Yau T. Wildiers H. Haley B. Fagnani D. Lu Y.S. Crown J. Lin J. Takahashi M. Takano T. Yamaguchi M. Fujii T. Yao B. Bebchuk J. Keyvanjah K. Bryce R. Brufsky A. NALA Investigators. Neratinib plus capecitabine versus lapatinib plus capecitabine in her2-positive metastatic breast cancer previously treated with >/= 2 HER2- directed regimens: Phase III NALA trial. J. Clin. Oncol. 2020 38 27 3138 3149 10.1200/JCO.20.00147 32678716
    [Google Scholar]
  16. Murthy R.K. Loi S. Okines A. Paplomata E. Hamilton E. Hurvitz S.A. Lin N.U. Borges V. Abramson V. Anders C. Bedard P.L. Oliveira M. Jakobsen E. Bachelot T. Shachar S.S. Müller V. Braga S. Duhoux F.P. Greil R. Cameron D. Carey L.A. Curigliano G. Gelmon K. Hortobagyi G. Krop I. Loibl S. Pegram M. Slamon D. Palanca-Wessels M.C. Walker L. Feng W. Winer E.P. Tucatinib, trastuzumab, and capecitabine for HER2-positive metastatic breast cancer. N. Engl. J. Med. 2020 382 7 597 609 10.1056/NEJMoa1914609 31825569
    [Google Scholar]
  17. Schlam I. Swain S.M. HER2-positive breast cancer and tyrosine kinase inhibitors: The time is now. NPJ Breast Cancer 2021 7 1 56 10.1038/s41523‑021‑00265‑1 34016991
    [Google Scholar]
  18. DeBusk K. Abeysinghe S. Vickers A. Nangia A. Bell J. Ike C. Forero-Torres A. Blahna M.T. Efficacy of tucatinib for HER2-positive metastatic breast cancer after HER2-targeted therapy: A network meta-analysis. Future Oncol. 2021 17 33 4635 4647 10.2217/fon‑2021‑0742 34463120
    [Google Scholar]
  19. Hu M. Yuan X. Liu Y. Tang S. Miao J. Zhou Q. Chen S. IL-1β-induced NF-κB activation down-regulates miR-506 expression to promotes osteosarcoma cell growth through JAG1. Biomed. Pharmacother. 2017 95 1147 1155 10.1016/j.biopha.2017.08.120 28926924
    [Google Scholar]
  20. Wu B. Wang Z.X. Xie H. Xie P.L. Dimethyl fumarate augments anticancer activity of ångstrom silver particles in myeloma cells through NRF2 activation. Adv. Ther. (Weinh.) 2025 8 1 2400363 10.1002/adtp.202400363
    [Google Scholar]
  21. Highlights of prescribing information - TUKYSATM (tucatinib). 2020 Available from:(accessed on 17-3-2024). https://www.accessdata.fda.gov/drugsatfda_docs/label/2023/213411s004lbl.pdf
  22. Zhao L. Weng Y. Zhou X. Wu G. Aminoselenation and dehydroaromatization of cyclohexanones with anilines and diselenides. Org. Lett. 2024 26 22 4835 4839 10.1021/acs.orglett.4c01799 38809603
    [Google Scholar]
  23. Nie Y. Li D. Peng Y. Wang S. Hu S. Liu M. Ding J. Zhou W. Metal organic framework coated MnO2 nanosheets delivering doxorubicin and self-activated DNAzyme for chemo-gene combinatorial treatment of cancer. Int. J. Pharm. 2020 585 119513 10.1016/j.ijpharm.2020.119513 32526334
    [Google Scholar]
  24. Malumbres M. Sotillo R. Santamaría D. Galán J. Cerezo A. Ortega S. Dubus P. Barbacid M. Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 2004 118 4 493 504 10.1016/j.cell.2004.08.002 15315761
    [Google Scholar]
  25. Ibrance (palbociclib) package insert. New York, NY: Pfizer Inc. 2019 Available from: (accessed on 17-3-2024).https://cdn.pfizer.com/pfizercom/news/asco/IBRANCE(palbociclib)_Fact_Sheet_16MAY2018.pdf
  26. Kisqali (ribociclib) package insert. East Hanover, NJ: Novartis Pharmaceuticals Corp. 2017 Available from: (accessed on 17-3-2024).https://www.novartis.com/us-en/sites/novartis_us/files/kisqali.pdf
  27. Verzenio (abemaciclib) package insert. Indianapolis, IN: Eli Lilly and Co. 2017 Available from: (accessed on 17-3-2024).https://pi.lilly.com/us/verzenio-uspi.pdf
  28. Im S.A. Lu Y.S. Bardia A. Harbeck N. Colleoni M. Franke F. Chow L. Sohn J. Lee K.S. Campos-Gomez S. Villanueva-Vazquez R. Jung K.H. Chakravartty A. Hughes G. Gounaris I. Rodriguez-Lorenc K. Taran T. Hurvitz S. Tripathy D. Overall survival with ribociclib plus endocrine therapy in breast cancer. N. Engl. J. Med. 2019 381 4 307 316 10.1056/NEJMoa1903765 31166679
    [Google Scholar]
  29. Cristofanilli M. Turner N.C. Bondarenko I. Ro J. Im S.A. Masuda N. Colleoni M. DeMichele A. Loi S. Verma S. Iwata H. Harbeck N. Zhang K. Theall K.P. Jiang Y. Bartlett C.H. Koehler M. Slamon D. Fulvestrant plus palbociclib versus fulvestrant plus placebo for treatment of hormone-receptor-positive, HER2-negative metastatic breast cancer that progressed on previous endocrine therapy (PALOMA-3): Final analysis of the multicentre, double-blind, phase 3 randomised controlled trial. Lancet Oncol. 2016 17 4 425 439 10.1016/S1470‑2045(15)00613‑0 26947331
    [Google Scholar]
  30. Cejuela M. Gil-Torralvo A. Castilla M.Á. Domínguez-Cejudo M.Á. Falcón A. Benavent M. Molina-Pinelo S. Ruiz-Borrego M. Salvador Bofill J. Abemaciclib, palbociclib, and ribociclib in real-world data: A direct comparison of first-line treatment for endocrine-receptor-positive metastatic breast cancer. Int. J. Mol. Sci. 2023 24 10 8488 10.3390/ijms24108488 37239834
    [Google Scholar]
  31. Zeng Q. Jiang T. Wang J. Role of LMO7 in cancer (Review). Oncol. Rep. 2024 52 3 117 10.3892/or.2024.8776 38994754
    [Google Scholar]
  32. Guo S.B. Hu L.S. Huang W.J. Zhou Z.Z. Luo H.Y. Tian X.P. Comparative investigation of neoadjuvant immunotherapy versus adjuvant immunotherapy in perioperative patients with cancer: A global-scale, cross-sectional, and large-sample informatics study. Int. J. Surg. 2024 110 8 4660 4671 10.1097/JS9.0000000000001479 38652128
    [Google Scholar]
  33. Guo S.B. Meng Y. Lin L. Zhou Z.Z. Li H.L. Tian X.P. Huang W.J. Artificial intelligence alphafold model for molecular biology and drug discovery: A machine-learning-driven informatics investigation. Mol. Cancer 2024 23 1 223 10.1186/s12943‑024‑02140‑6 39369244
    [Google Scholar]
  34. Zhan X. Zhou Z. Liu Y. Cecchi N.J. Hajiahamemar M. Zeineh M.M. Grant G.A. Camarillo D. Differences between two maximal principal strain rate calculation schemes in traumatic brain analysis with in-vivo and in-silico datasets. J. Biomech. 2025 179 112456 10.1016/j.jbiomech.2024.112456 39671828
    [Google Scholar]
  35. Zeng Q. Chen C. Chen C. Song H. Li M. Yan J. Lv X. Serum Raman spectroscopy combined with convolutional neural network for rapid diagnosis of HER2-positive and triple-negative breast cancer. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2023 286 122000 10.1016/j.saa.2022.122000 36279798
    [Google Scholar]
  36. B.I.O.V.I.A. Discovery Studio. 2019 Available from: (accessed on 17-3-2024).https://www.3ds.com/products/biovia/discovery-studio
  37. Tang Z.C. Qu Q. Teng X.Q. Zhuang H.H. Xu W.X. Qu J. Bibliometric analysis of evolutionary trends and hotspots of super-enhancers in cancer. Front. Pharmacol. 2023 14 1192855 10.3389/fphar.2023.1192855 37576806
    [Google Scholar]
  38. Burris H.A. III Hurwitz H.I. Dees E.C. Dowlati A. Blackwell K.L. O’Neil B. Marcom P.K. Ellis M.J. Overmoyer B. Jones S.F. Harris J.L. Smith D.A. Koch K.M. Stead A. Mangum S. Spector N.L. Phase I. Phase I safety, pharmacokinetics, and clinical activity study of lapatinib (GW572016), a reversible dual inhibitor of epidermal growth factor receptor tyrosine kinases, in heavily pretreated patients with metastatic carcinomas. J. Clin. Oncol. 2005 23 23 5305 5313 10.1200/JCO.2005.16.584 15955900
    [Google Scholar]
  39. Herendeen J.M. Smith D.A. Stead A. Bowen C. Koch K.M. Beelen A.P. An open-label, fixed sequence, two period study to evaluate the potential induction of GW572016 metabolism by carbamazepine. J. Clin. Oncol. 2004 22 S14 3081 10.1200/jco.2004.22.90140.3081
    [Google Scholar]
  40. Smith D.A. Bowen C. Herendeen J.M. Stead A. Koch K.M. Andrew B.P. An open-label, randomized, two-way crossover study to evaluate the potential inhibition of GW572016 metabolism by ketoconazole. J. Clin. Oncol. 2004 22 S14 3071 10.1200/jco.2004.22.90140.3071
    [Google Scholar]
  41. Versola M. Burris H.A. Jones S. Wilding G. Taylor C. Pandite L. Smith D.A. Stead A. Spector N.L. Clinical activity of GW572016 in EGF10003 in patients with solid tumors. J. Clin. Oncol. 2004 22 S14 3047 10.1200/jco.2004.22.90140.3047
    [Google Scholar]
  42. Sun H. Cardinal K.A. Wienkers L. Chin A. Kumar V. Neace C. Henderson C. Endres C.J. Topletz-Erickson A. Regal K. Vo A. Alley S.C. Lee A.J. Elimination of tucatinib, a small molecule kinase inhibitor of HER2, is primarily governed by CYP2C8 enantioselective oxidation of gem-dimethyl. Cancer Chemother. Pharmacol. 2022 89 6 737 750 10.1007/s00280‑022‑04429‑z 35435471
    [Google Scholar]
  43. LiverTox: Clinical and research information on drug-induced liver injury. Bethesda (MD): National Institute of Diabetes and Digestive and Kidney Diseases 2012 31643176
    [Google Scholar]
  44. Yu J. Petrie I.D. Levy R.H. Ragueneau-Majlessi I. Mechanisms and clinical significance of pharmacokinetic-based drug-drug interactions with drugs approved by the U.S. Food and drug administration in 2017. Drug metabolism Dispos. Biol. fate. Drug Metab. Dispos. 2019 47 2 135 144 10.1124/dmd.118.084905 30442649
    [Google Scholar]
  45. Bellet M. Ahmad F. Villanueva R. Valdivia C. Palomino-Doza J. Ruiz A. Gonzàlez X. Adrover E. Azaro A. Valls-Margarit M. Parra J.L. Aguilar J. Vidal M. Martín A. Gavilá J. Escrivá-de-Romaní S. Perelló A. Hernando C. Lahuerta A. Zamora P. Reyes V. Alcalde M. Masanas H. Céliz P. Ruíz I. Gil M. Seguí M.À. de la Peña L. Palbociclib and ribociclib in breast cancer: consensus workshop on the management of concomitant medication. Ther. Adv. Med. Oncol. 2019 11 1758835919833867 10.1177/1758835919833867 31205497
    [Google Scholar]
  46. Desnoyers A. Nadler M.B. Kumar V. Saleh R. Amir E. Comparison of treatment-related adverse events of different Cyclin-dependent kinase 4/6 inhibitors in metastatic breast cancer: A network meta-analysis. Cancer Treat. Rev. 2020 90 102086 10.1016/j.ctrv.2020.102086 32861975
    [Google Scholar]
  47. Gao Y. Wang C. Wang K. He C. Hu K. Liang M. The effects and molecular mechanism of heat stress on spermatogenesis and the mitigation measures. Syst. Biol. Reprod. Med. 2022 68 5-6 331 347 10.1080/19396368.2022.2074325
    [Google Scholar]
  48. Jiang C.H. Sun T.L. Xiang D.X. Wei S.S. Li W.Q. Anticancer activity and mechanism of xanthohumol: A prenylated flavonoid from hops (Humulus lupulus L.). Front. Pharmacol. 2018 9 530 10.3389/fphar.2018.00530 29872398
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206382065250507114908
Loading
/content/journals/acamc/10.2174/0118715206382065250507114908
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test