Skip to content
2000
image of Talimogene Laherparepvec (T-VEC): Expanding Horizons in Oncolytic Viral

Abstract

Talimogene laherparepvec (T-VEC), the first FDA-approved oncolytic viral therapy, has transformed cancer immunotherapy since its 2015 approval for unresectable melanoma. Engineered from Herpes Simplex Virus type 1 (HSV-1) with deletions in ICP34.5 and ICP47 genes and GM-CSF insertion, T-VEC selectively replicates within the tumor cells, inducing lysis and releasing tumor-derived antigens while stimulating systemic antitumor immunity through dendritic cell activation. Although extensively studied for melanoma, its potential extends beyond this malignancy, with emerging applications in breast cancer, Head and Neck Squamous Cell Carcinoma (HNSCC), and other solid tumors. This review synthesizes T-VEC’s mechanism of action, leveraging dysregulated Ras signalling, impaired interferon pathways in cancer cells, its clinical outcomes, and safety profile across these indications. While prior literature emphasizes melanoma monotherapy and combinations with immune checkpoint inhibitors, less attention has been given to its efficacy in non-melanoma cancers and synergistic potential with chemotherapy or radiation therapy. By exploring recent trials, such as T-VEC with neoadjuvant chemotherapy in triple-negative breast cancer and pembrolizumab in HNSCC, highlighting its versatility. Comparative analysis with other oncolytic viruses like HF-10, oncorine (H101), and measles virus variants positions T-VEC within the virotherapy landscape. Key challenges—systemic delivery, immune clearance, and biomarker development for patient selection—are addressed alongside strategies to enhance immune modulation through novel combinations. This review underscores T-VEC’s expanding role in cancer treatment, offering clinicians’ and researchers’ insights to optimize its therapeutic horizons across diverse malignancies.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206379105250429115604
2025-05-06
2025-08-13
Loading full text...

Full text loading...

References

  1. Kelly E. Russell S.J. History of oncolytic viruses: Genesis to genetic engineering. Mol. Ther. 2007 15 4 651 659 10.1038/sj.mt.6300108 17299401
    [Google Scholar]
  2. FDA Approves Talimogene Laherparepvec to Treat Metastatic Melanoma Frederick, Maryland National Cancer Institute 2015 1 9
    [Google Scholar]
  3. Liu B.L. Robinson M. Han Z-Q. Branston R.H. English C. Reay P. McGrath Y. Thomas S.K. Thornton M. Bullock P. Love C.A. Coffin R.S. ICP34.5 deleted herpes simplex virus with enhanced oncolytic, immune stimulating, and anti-tumour properties. Gene Ther. 2003 10 4 292 303 10.1038/sj.gt.3301885 12595888
    [Google Scholar]
  4. Ferrucci P.F. Pala L. Conforti F. Cocorocchio E. Talimogene laherparepvec (T-VEC): An intralesional cancer immunotherapy for advanced melanoma. Cancers 2021 13 6 1383 10.3390/cancers13061383 33803762
    [Google Scholar]
  5. Hamid O. Hoffner B. Gasal E. Hong J. Carvajal R.D. Oncolytic immunotherapy: Unlocking the potential of viruses to help target cancer. Cancer Immunol. Immunother. 2017 66 10 1249 1264 10.1007/s00262‑017‑2025‑8 28712033
    [Google Scholar]
  6. Yokota Y. Inoue H. Matsumura Y. Nabeta H. Narusawa M. Watanabe A. Sakamoto C. Hijikata Y. Iga-Murahashi M. Takayama K. Sasaki F. Nakanishi Y. Yokomizo T. Tani K. Absence of LTB4/BLT1 axis facilitates generation of mouse GM-CSF–induced long-lasting antitumor immunologic memory by enhancing innate and adaptive immune systems. Blood 2012 120 17 3444 3454 10.1182/blood‑2011‑10‑383240 22936657
    [Google Scholar]
  7. Kohlhapp F.J. Kaufman H.L. Molecular pathways: Mechanism of action for talimogene laherparepvec, a new oncolytic virus immunotherapy. Clin. Cancer Res. 2016 22 5 1048 1054 10.1158/1078‑0432.CCR‑15‑2667 26719429
    [Google Scholar]
  8. Achuthan A.A. Lee K.M.C. Hamilton J.A. Targeting GM-CSF in inflammatory and autoimmune disorders. Semin. Immunol. 2021 54 101523 10.1016/j.smim.2021.101523 34776300
    [Google Scholar]
  9. Chukwurah E. Farabaugh K.T. Guan B.J. Ramakrishnan P. Hatzoglou M. A tale of two proteins: PACT and PKR and their roles in inflammation. FEBS J. 2021 288 22 6365 6391 10.1111/febs.15691 33387379
    [Google Scholar]
  10. Gal-Ben-Ari S. Barrera I. Ehrlich M. Rosenblum K. PKR: A kinase to remember. Front. Mol. Neurosci. 2019 11 480 10.3389/fnmol.2018.00480 30686999
    [Google Scholar]
  11. Kaufman H.L. Kohlhapp F.J. Zloza A. Oncolytic viruses: A new class of immunotherapy drugs. Nat. Rev. Drug Discov. 2015 14 9 642 662 10.1038/nrd4663 26323545
    [Google Scholar]
  12. Russell S.J. Peng K.W. Bell J.C. Oncolytic virotherapy. Nat. Biotechnol. 2012 30 7 658 670 10.1038/nbt.2287 22781695
    [Google Scholar]
  13. Atherton M.J. Lichty B.D. Evolution of oncolytic viruses: Novel strategies for cancer treatment. Immunotherapy 2013 5 11 1191 1206 10.2217/imt.13.123 24188674
    [Google Scholar]
  14. Hu J.C.C. Coffin R.S. Davis C.J. Graham N.J. Groves N. Guest P.J. Harrington K.J. James N.D. Love C.A. McNeish I. Medley L.C. Michael A. Nutting C.M. Pandha H.S. Shorrock C.A. Simpson J. Steiner J. Steven N.M. Wright D. Coombes R.C. A phase I study of OncoVEXGM-CSF, a second-generation oncolytic herpes simplex virus expressing granulocyte macrophage colony-stimulating factor. Clin. Cancer Res. 2006 12 22 6737 6747 10.1158/1078‑0432.CCR‑06‑0759 17121894
    [Google Scholar]
  15. Skin Cancer Geneva, Switzerland World Health Organization 2024 1 8
    [Google Scholar]
  16. Melanoma Overview US Skin Cancer Foundation 2024 1 9
    [Google Scholar]
  17. Melanoma Skin Cancer Atlanta, Georgia American Cancer Society 2024 1 6
    [Google Scholar]
  18. Gorry C McCullagh L. O'Donnell H. Barrett S. Schmitz S. Barry M. Curtin K. Beausang E. Barry R. Coyne I. Neoadjuvant treatment for malignant and metastatic cutaneous melanoma. The Cochrane Database of Systematic Reviews. 2018 3 CD012974
    [Google Scholar]
  19. Andtbacka R.H.I. Ross M. Puzanov I. Milhem M. Collichio F. Delman K.A. Amatruda T. Zager J.S. Cranmer L. Hsueh E. Chen L. Shilkrut M. Kaufman H.L. Patterns of clinical response with talimogene laherparepvec (t-vec) in patients with melanoma treated in the oPTIM phase III clinical trial. Ann. Surg. Oncol. 2016 23 13 4169 4177 10.1245/s10434‑016‑5286‑0 27342831
    [Google Scholar]
  20. Harrington K. Andtbacka R. Collichio F. Downey G. Chen L. Szabo Z. Kaufman H. Efficacy and safety of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in patients with stage IIIB/C and IVM1a melanoma: Subanalysis of the Phase III OPTiM trial. OncoTargets Ther. 2016 9 7081 7093 10.2147/OTT.S115245 27895500
    [Google Scholar]
  21. Andtbacka R.H.I. Collichio F. Harrington K.J. Middleton M.R. Downey G. Ӧhrling K. Kaufman H.L. Final analyses of OPTiM: A randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III–IV melanoma. J. Immunother. Cancer 2019 7 1 145 10.1186/s40425‑019‑0623‑z 31171039
    [Google Scholar]
  22. Senzer N.N. Kaufman H.L. Amatruda T. Nemunaitis M. Reid T. Daniels G. Gonzalez R. Glaspy J. Whitman E. Harrington K. Goldsweig H. Marshall T. Love C. Coffin R. Nemunaitis J.J. Phase II clinical trial of a granulocyte-macrophage colony-stimulating factor-encoding, second-generation oncolytic herpesvirus in patients with unresectable metastatic melanoma. J. Clin. Oncol. 2009 27 34 5763 5771 10.1200/JCO.2009.24.3675 19884534
    [Google Scholar]
  23. Andtbacka R.H.I. Collichio F.A. Amatruda T. Senzer N.N. Chesney J. Delman K.A. Spitler L.E. Puzanov I. Doleman S. Ye Y. Vanderwalde A.M. Coffin R. Kaufman H. OPTiM: A randomized phase III trial of talimogene laherparepvec (T-VEC) versus subcutaneous (SC) granulocyte-macrophage colony-stimulating factor (GM-CSF) for the treatment (tx) of unresected stage IIIB/C and IV melanoma. J. Clin. Oncol. 2013 31 18_suppl LBA9008 LBA9008 10.1200/jco.2013.31.18_suppl.lba9008
    [Google Scholar]
  24. Kaufman H.L. Bines S.D. OPTIM trial: A Phase III trial of an oncolytic herpes virus encoding GM-CSF for unresectable stage III or IV melanoma. Future Oncol. 2010 6 6 941 949 10.2217/fon.10.66 20528232
    [Google Scholar]
  25. Kaufman H.L. Kim D.W. DeRaffele G. Mitcham J. Coffin R.S. Kim-Schulze S. Local and distant immunity induced by intralesional vaccination with an oncolytic herpes virus encoding GM-CSF in patients with stage IIIc and IV melanoma. Ann. Surg. Oncol. 2010 17 3 718 730 10.1245/s10434‑009‑0809‑6 19915919
    [Google Scholar]
  26. Kaufman H.L. Andtbacka R.H.I. Collichio F.A. Amatruda T. Senzer N.N. Chesney J. Delman K.A. Spitler L.E. Puzanov I. Ye Y. Li A. Gansert J.L. Coffin R. Ross M.I. Primary overall survival (OS) from OPTiM, a randomized phase III trial of talimogene laherparepvec (T-VEC) versus subcutaneous (SC) granulocyte-macrophage colony-stimulating factor (GM-CSF) for the treatment (tx) of unresected stage IIIB/C and IV melanoma. J. Clin. Oncol. 2014 32 15_suppl Suppl. 9008a 9008a 10.1200/jco.2014.32.15_suppl.9008a
    [Google Scholar]
  27. Greig S.L. Talimogene Laherparepvec: First Global Approval. Drugs 2016 76 1 147 154 10.1007/s40265‑015‑0522‑7 26620366
    [Google Scholar]
  28. Hodi F.S. O’Day S.J. McDermott D.F. Weber R.W. Sosman J.A. Haanen J.B. Gonzalez R. Robert C. Schadendorf D. Hassel J.C. Akerley W. van den Eertwegh A.J.M. Lutzky J. Lorigan P. Vaubel J.M. Linette G.P. Hogg D. Ottensmeier C.H. Lebbé C. Peschel C. Quirt I. Clark J.I. Wolchok J.D. Weber J.S. Tian J. Yellin M.J. Nichol G.M. Hoos A. Urba W.J. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010 363 8 711 723 10.1056/NEJMoa1003466 20525992
    [Google Scholar]
  29. Fellner C. Ipilimumab (yervoy) prolongs survival in advanced melanoma: Serious side effects and a hefty price tag may limit its use. P. T. 2012 37 9 503 530 23066344
    [Google Scholar]
  30. Chesney J. Puzanov I. Collichio F. Singh P. Milhem M.M. Glaspy J. Hamid O. Ross M. Friedlander P. Garbe C. Logan T.F. Hauschild A. Lebbé C. Chen L. Kim J.J. Gansert J. Andtbacka R.H.I. Kaufman H.L. randomized, open-label phase II study evaluating the efficacy and safety of talimogene laherparepvec in combination with ipilimumab versus ipilimumab alone in patients with advanced, unresectable melanoma. J. Clin. Oncol. 2018 36 17 1658 1667 10.1200/JCO.2017.73.7379 28981385
    [Google Scholar]
  31. Yamazaki N. Isei T. Kiyohara Y. Koga H. Kojima T. Takenouchi T. Yokota K. Namikawa K. Yi M. Keegan A. Fukushima S. A phase I study of the safety and efficacy of talimogene laherparepvec in Japanese patients with advanced melanoma. Cancer Sci. 2022 113 8 2798 2806 10.1111/cas.15450 35656636
    [Google Scholar]
  32. Andtbacka R.H.I. Kaufman H.L. Collichio F. Amatruda T. Senzer N. Chesney J. Delman K.A. Spitler L.E. Puzanov I. Agarwala S.S. Milhem M. Cranmer L. Curti B. Lewis K. Ross M. Guthrie T. Linette G.P. Daniels G.A. Harrington K. Middleton M.R. Miller W.H. Jr Zager J.S. Ye Y. Yao B. Li A. Doleman S. VanderWalde A. Gansert J. Coffin R.S. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J. Clin. Oncol. 2015 33 25 2780 2788 10.1200/JCO.2014.58.3377 26014293
    [Google Scholar]
  33. Louie R.J. Perez M.C. Jajja M.R. Sun J. Collichio F. Delman K.A. Lowe M. Sarnaik A.A. Zager J.S. Ollila D.W. Real-world outcomes of talimogene laherparepvec therapy: A multi-institutional experience. J. Am. Coll. Surg. 2019 228 4 644 649 10.1016/j.jamcollsurg.2018.12.027 30690076
    [Google Scholar]
  34. Franke V. Berger D.M.S. Klop W.M.C. van der Hiel B. van de Wiel B.A. ter Meulen S. Wouters M.W.J.M. van Houdt W.J. van Akkooi A.C.J. High response rates for T‐VEC in early metastatic melanoma (stage IIIB/C‐IVM1a). Int. J. Cancer 2019 145 4 974 978 10.1002/ijc.32172 30694555
    [Google Scholar]
  35. Perez M.C. Miura J.T. Naqvi S.M.H. Kim Y. Holstein A. Lee D. Sarnaik A.A. Zager J.S. Talimogene laherparepvec (TVEC) for the treatment of advanced melanoma: A single-institution experience. Ann. Surg. Oncol. 2018 25 13 3960 3965 10.1245/s10434‑018‑6803‑0 30298318
    [Google Scholar]
  36. Dummer R. Gyorki D.E. Hyngstrom J.R. Ning M. Lawrence T. Ross M.I. Final 5-year follow-up results evaluating neoadjuvant talimogene laherparepvec plus surgery in advanced melanoma. JAMA Oncol. 2023 9 10 1457 1459 10.1001/jamaoncol.2023.2789 37561473
    [Google Scholar]
  37. Breast Cancer Statistics United Kingdom World Cancer Research Fund 2024 1 5
    [Google Scholar]
  38. Breast Cancer Geneva, Switzerland World Health Organization 2024 1 8
    [Google Scholar]
  39. O’Keefe K. Desai N. Tan A. Treating. Breast Cancer 2024 16 517 527 10.2147/BCTT.S271441 39224861
    [Google Scholar]
  40. Kai M. Marx A.N. Liu D.D. Shen Y. Gao H. Reuben J.M. Whitman G. Krishnamurthy S. Ross M.I. Litton J.K. Lim B. Ibrahim N. Kogawa T. Ueno N.T. A phase II study of talimogene laherparepvec for patients with inoperable locoregional recurrence of breast cancer. Sci. Rep. 2021 11 1 22242 10.1038/s41598‑021‑01473‑2 34782633
    [Google Scholar]
  41. Soliman H. Hogue D. Han H. Mooney B. Costa R. Lee M.C. Niell B. Williams A. Chau A. Falcon S. Khakpour N. Weinfurtner R.J. Hoover S. Kiluk J. Rosa M. Khong H. Czerniecki B. A Phase I trial of talimogene laherparepvec in combination with neoadjuvant chemotherapy for the treatment of nonmetastatic triple-negative breast cancer. Clin. Cancer Res. 2021 27 4 1012 1018 10.1158/1078‑0432.CCR‑20‑3105 33219014
    [Google Scholar]
  42. Dummer R. Hoeller C. Gruter I.P. Michielin O. Combining talimogene laherparepvec with immunotherapies in melanoma and other solid tumors. Cancer Immunol. Immunother. 2017 66 6 683 695 10.1007/s00262‑017‑1967‑1 28238174
    [Google Scholar]
  43. Hamid O. Ismail R. Puzanov I. Intratumoral Immunotherapy-Update 2019. Oncologist 2020 25 3 e423 e438 10.1634/theoncologist.2019‑0438 32162802
    [Google Scholar]
  44. Conry R.M. Westbrook B. McKee S. Norwood T.G. Talimogene laherparepvec: First in class oncolytic virotherapy. Hum. Vaccin. Immunother. 2018 14 4 839 846 10.1080/21645515.2017.1412896 29420123
    [Google Scholar]
  45. Hecht J.R. Abstract P3-09-19: Preliminary safety data of intrahepatic talimogene laherparepvec and intravenous atezolizumab in patients with triple negative breast cancer. Cancer Res. 2020 80 4_Supplement 09 19 10.1158/1538‑7445.SABCS19‑P3‑09‑19
    [Google Scholar]
  46. Hecht J.R. Raman S.S. Chan A. Kalinsky K. Baurain J.F. Jimenez M.M. Garcia M.M. Berger M.D. Lauer U.M. Khattak A. Carrato A. Zhang Y. Liu K. Cha E. Keegan A. Bhatta S. Strassburg C.P. Roohullah A. Phase Ib study of talimogene laherparepvec in combination with atezolizumab in patients with triple negative breast cancer and colorectal cancer with liver metastases. ESMO Open 2023 8 2 100884 10.1016/j.esmoop.2023.100884 36863095
    [Google Scholar]
  47. Emens L.A. Cruz C. Eder J.P. Braiteh F. Chung C. Tolaney S.M. Kuter I. Nanda R. Cassier P.A. Delord J.P. Gordon M.S. ElGabry E. Chang C.W. Sarkar I. Grossman W. O’Hear C. Fassò M. Molinero L. Schmid P. Long-term clinical outcomes and biomarker analyses of atezolizumab therapy for patients with metastatic triple-negative breast cancer. JAMA Oncol. 2019 5 1 74 82 10.1001/jamaoncol.2018.4224 30242306
    [Google Scholar]
  48. Head and Neck Cancers USA Cleveland Clinic 2024
    [Google Scholar]
  49. Head and Neck Cancers Frederick, Maryland National Cancer Institute 2021 1 5
    [Google Scholar]
  50. Anderson G. Ebadi M. Vo K. Novak J. Govindarajan A. Amini A. An Updated Review on Head and Neck Cancer Treatment with Radiation Therapy. Cancers (Basel) 2021 13 19 4912 10.3390/cancers13194912 34638398
    [Google Scholar]
  51. Johnson D.E. Burtness B. Leemans C.R. Lui V.W.Y. Bauman J.E. Grandis J.R. Head and neck squamous cell carcinoma. Nat. Rev. Dis. Primers 2020 6 1 92 10.1038/s41572‑020‑00224‑3 33243986
    [Google Scholar]
  52. Mody M.D. Rocco J.W. Yom S.S. Haddad R.I. Saba N.F. Head and neck cancer. Lancet 2021 398 10318 2289 2299 10.1016/S0140‑6736(21)01550‑6 34562395
    [Google Scholar]
  53. Harrington K.J. Kong A. Mach N. Chesney J.A. Fernandez B.C. Rischin D. Cohen E.E.W. Radcliffe H.S. Gumuscu B. Cheng J. Snyder W. Siu L.L. Talimogene laherparepvec and pembrolizumab in recurrent or metastatic squamous cell carcinoma of the head and neck (MASTERKEY-232): A multicenter, phase 1b study. Clin. Cancer Res. 2020 26 19 5153 5161 10.1158/1078‑0432.CCR‑20‑1170 32669371
    [Google Scholar]
  54. Nishino M. Giobbie-Hurder A. Gargano M. Suda M. Ramaiya N.H. Hodi F.S. Developing a common language for tumor response to immunotherapy: Immune-related response criteria using unidimensional measurements. Clin. Cancer Res. 2013 19 14 3936 3943 10.1158/1078‑0432.CCR‑13‑0895 23743568
    [Google Scholar]
  55. Chapman P.B. Einhorn L.H. Meyers M.L. Saxman S. Destro A.N. Panageas K.S. Begg C.B. Agarwala S.S. Schuchter L.M. Ernstoff M.S. Houghton A.N. Kirkwood J.M. Phase III multicenter randomized trial of the Dartmouth regimen versus dacarbazine in patients with metastatic melanoma. J. Clin. Oncol. 1999 17 9 2745 2751 10.1200/JCO.1999.17.9.2745 10561349
    [Google Scholar]
  56. Long G.V. Stroyakovskiy D. Gogas H. Levchenko E. de Braud F. Larkin J. Garbe C. Jouary T. Hauschild A. Grob J.J. Sileni C.V. Lebbe C. Mandalà M. Millward M. Arance A. Bondarenko I. Haanen J.B.A.G. Hansson J. Utikal J. Ferraresi V. Kovalenko N. Mohr P. Probachai V. Schadendorf D. Nathan P. Robert C. Ribas A. DeMarini D.J. Irani J.G. Casey M. Ouellet D. Martin A.M. Le N. Patel K. Flaherty K. Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N. Engl. J. Med. 2014 371 20 1877 1888 10.1056/NEJMoa1406037 25265492
    [Google Scholar]
  57. Xia A.L. Wang X.C. Lu Y.J. Lu X.J. Sun B. Chimeric-antigen receptor T (CAR-T) cell therapy for solid tumors: Challenges and opportunities. Oncotarget 2017 8 52 90521 90531 10.18632/oncotarget.19361 29163850
    [Google Scholar]
  58. Ribas A. Dummer R. Puzanov I. VanderWalde A. Andtbacka R.H.I. Michielin O. Olszanski A.J. Malvehy J. Cebon J. Fernandez E. Kirkwood J.M. Gajewski T.F. Chen L. Gorski K.S. Anderson A.A. Diede S.J. Lassman M.E. Gansert J. Hodi F.S. Long G.V. Oncolytic virotherapy promotes intratumoral T cell infiltration and improves anti-PD-1 immunotherapy. Cell 2017 170 6 1109 1119.e10 10.1016/j.cell.2017.08.027 28886381
    [Google Scholar]
  59. Jhawar S.R. Wang S.J. Thandoni A. Bommareddy P.K. Newman J.H. Giurini E.F. Marzo A.L. Kuzel T.M. Gupta V. Reiser J. Daniels P. Schiff D. Mitchell D. LeBoeuf N.R. Simmons C. Goyal S. Lasfar A. Guevara-Patino J.A. Haffty B.G. Kaufman H.L. Silk A.W. Zloza A. Combination oncolytic virus, radiation therapy, and immune checkpoint inhibitor treatment in anti-PD-1-refractory cancer. J. Immunother. Cancer 2023 11 7 006780 10.1136/jitc‑2023‑006780 37433716
    [Google Scholar]
  60. Bartlett D.L. Liu Z. Sathaiah M. Ravindranathan R. Guo Z. He Y. Guo Z.S. Oncolytic viruses as therapeutic cancer vaccines. Mol. Cancer 2013 12 1 103 10.1186/1476‑4598‑12‑103 24020520
    [Google Scholar]
  61. Esaki S. Goshima F. Kimura H. Murakami S. Nishiyama Y. Enhanced antitumoral activity of oncolytic herpes simplex virus with gemcitabine using colorectal tumor models. Int. J. Cancer 2013 132 7 1592 1601 10.1002/ijc.27823 22949155
    [Google Scholar]
  62. Mondal M. Guo J. He P. Zhou D. Recent advances of oncolytic virus in cancer therapy. Hum. Vaccin. Immunother. 2020 16 10 2389 2402 10.1080/21645515.2020.1723363 32078405
    [Google Scholar]
  63. Kim R.D. Sarker D. Meyer T. Yau T. Macarulla T. Park J.W. Choo S.P. Hollebecque A. Sung M.W. Lim H.Y. Mazzaferro V. Trojan J. Zhu A.X. Yoon J.H. Sharma S. Lin Z.Z. Chan S.L. Faivre S. Feun L.G. Yen C.J. Dufour J.F. Palmer D.H. Llovet J.M. Manoogian M. Tugnait M. Stransky N. Hagel M. Kohl N.E. Lengauer C. Sherwin C.A. Schmidt-Kittler O. Hoeflich K.P. Shi H. Wolf B.B. Kang Y.K. First-in-human phase I study of fisogatinib (BLU-554) validates aberrant fgf19 signaling as a driver event in hepatocellular carcinoma. Cancer Discov. 2019 9 12 1696 1707 10.1158/2159‑8290.CD‑19‑0555 31575541
    [Google Scholar]
  64. Watanabe D. Goshima F. Mori I. Tamada Y. Matsumoto Y. Nishiyama Y. Oncolytic virotherapy for malignant melanoma with herpes simplex virus type 1 mutant HF10. J. Dermatol. Sci. 2008 50 3 185 196 10.1016/j.jdermsci.2007.12.001 18226503
    [Google Scholar]
  65. Shimoyama S. Goshima F. Teshigahara O. Kasuya H. Kodera Y. Nakao A. Nishiyama Y. Enhanced efficacy of herpes simplex virus mutant HF10 combined with paclitaxel in peritoneal cancer dissemination models. Hepatogastroenterology 2007 54 76 1038 1042 17629034
    [Google Scholar]
  66. Fujimoto Y. Mizuno T. Sugiura S. Goshima F. Kohno S.I. Nakashima T. Nishiyama Y. Intratumoral injection of herpes simplex virus HF10 in recurrent head and neck squamous cell carcinoma. Acta Otolaryngol. 2006 126 10 1115 1117 10.1080/00016480600702100 16923721
    [Google Scholar]
  67. Liang M. Clinical development of oncolytic viruses in China. Curr. Pharm. Biotechnol. 2012 13 9 1852 1857 10.2174/138920112800958760 21740357
    [Google Scholar]
  68. Räty J. Pikkarainen J. Wirth T. Ylä-Herttuala S. Gene therapy: The first approved gene-based medicines, molecular mechanisms and clinical indications. Curr. Mol. Pharmacol. 2008 1 1 13 23 10.2174/1874467210801010013 20021420
    [Google Scholar]
  69. Cerullo V. Koski A. Vähä-Koskela M. Hemminki A. Chapter eight--Oncolytic adenoviruses for cancer immunotherapy: Data from mice, hamsters, and humans. Adv. Cancer Res. 2012 115 265 318 10.1016/B978‑0‑12‑398342‑8.00008‑2 23021247
    [Google Scholar]
  70. Xia Z.J. [Phase III randomized clinical trial of intratumoral injection of E1B gene-deleted adenovirus (H101) combined with cisplatin-based chemotherapy in treating squamous cell cancer of head and neck or esophagus]. Chin. J. Cancer 2004 23 12 1666 1670
    [Google Scholar]
  71. Liang M. Oncorine, the world first oncolytic virus medicine and its update in china. Curr. Cancer Drug Targets 2018 18 2 171 176 10.2174/1568009618666171129221503 29189159
    [Google Scholar]
  72. Kirn D. Clinical research results with dl1520 (Onyx-015), a replication-selective adenovirus for the treatment of cancer: What have we learned? Gene Ther. 2001 8 2 89 98 10.1038/sj.gt.3301377 11313778
    [Google Scholar]
  73. Enders J.F. Peebles T.C. Propagation in tissue cultures of cytopathogenic agents from patients with measles. Exp. Biol. Med. 1954 86 2 277 286 10.3181/00379727‑86‑21073 13177653
    [Google Scholar]
  74. Enders J.F. Katz S.L. Milovanovic M.V. Holloway A. Studies on an attenuated measles-virus vaccine. I. Development and preparations of the vaccine: Technics for assay of effects of vaccination. N. Engl. J. Med. 1960 263 4 153 159 10.1056/NEJM196007282630401 13820246
    [Google Scholar]
  75. Mader E.K. Maeyama Y. Lin Y. Butler G.W. Russell H.M. Galanis E. Russell S.J. Dietz A.B. Peng K.W. Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model. Clin. Cancer Res. 2009 15 23 7246 7255 10.1158/1078‑0432.CCR‑09‑1292 19934299
    [Google Scholar]
  76. Russell S.J. Federspiel M.J. Peng K.W. Tong C. Dingli D. Morice W.G. Lowe V. O’Connor M.K. Kyle R.A. Leung N. Buadi F.K. Rajkumar S.V. Gertz M.A. Lacy M.Q. Dispenzieri A. Remission of disseminated cancer after systemic oncolytic virotherapy. Mayo Clin. Proc. 2014 89 7 926 933 10.1016/j.mayocp.2014.04.003 24835528
    [Google Scholar]
  77. Haddad D. Genetically engineered vaccinia viruses as agents for cancer treatment, imaging, and transgene delivery. Front. Oncol. 2017 7 96 10.3389/fonc.2017.00096 28589082
    [Google Scholar]
  78. Parato K.A. Breitbach C.J. Le Boeuf F. Wang J. Storbeck C. Ilkow C. Diallo J.S. Falls T. Burns J. Garcia V. Kanji F. Evgin L. Hu K. Paradis F. Knowles S. Hwang T.H. Vanderhyden B.C. Auer R. Kirn D.H. Bell J.C. The oncolytic poxvirus JX-594 selectively replicates in and destroys cancer cells driven by genetic pathways commonly activated in cancers. Mol. Ther. 2012 20 4 749 758 10.1038/mt.2011.276 22186794
    [Google Scholar]
  79. Hwang T.H. Moon A. Burke J. Ribas A. Stephenson J. Breitbach C.J. Daneshmand M. De Silva N. Parato K. Diallo J.S. Lee Y.S. Liu T.C. Bell J.C. Kirn D.H. A mechanistic proof-of-concept clinical trial with JX-594, a targeted multi-mechanistic oncolytic poxvirus, in patients with metastatic melanoma. Mol. Ther. 2011 19 10 1913 1922 10.1038/mt.2011.132 21772252
    [Google Scholar]
  80. Park B.H. Hwang T. Liu T.C. Sze D.Y. Kim J.S. Kwon H.C. Oh S.Y. Han S.Y. Yoon J.H. Hong S.H. Moon A. Speth K. Park C. Ahn Y.J. Daneshmand M. Rhee B.G. Pinedo H.M. Bell J.C. Kirn D.H. Use of a targeted oncolytic poxvirus, JX-594, in patients with refractory primary or metastatic liver cancer: A phase I trial. Lancet Oncol. 2008 9 6 533 542 10.1016/S1470‑2045(08)70107‑4 18495536
    [Google Scholar]
  81. Varghese S. Rabkin S.D. Liu R. Nielsen P.G. Ipe T. Martuza R.L. Enhanced therapeutic efficacy of IL-12, but not GM-CSF, expressing oncolytic herpes simplex virus for transgenic mouse derived prostate cancers. Cancer Gene Ther. 2006 13 3 253 265 10.1038/sj.cgt.7700900 16179929
    [Google Scholar]
  82. Bommareddy P.K. Aspromonte S. Zloza A. Rabkin S.D. Kaufman H.L. MEK inhibition enhances oncolytic virus immunotherapy through increased tumor cell killing and T cell activation. Sci. Transl. Med. 2018 10 471 eaau0417 10.1126/scitranslmed.aau0417 30541787
    [Google Scholar]
  83. Wakimoto H. Ikeda K. Abe T. Ichikawa T. Hochberg F.H. Ezekowitz R.A.B. Pasternack M.S. Chiocca E.A. The complement response against an oncolytic virus is species-specific in its activation pathways. Mol. Ther. 2002 5 3 275 282 10.1006/mthe.2002.0547 11863417
    [Google Scholar]
  84. Terasawa Y. Hotani T. Katayama Y. Tachibana M. Mizuguchi H. Sakurai F. Activity levels of cathepsins B and L in tumor cells are a biomarker for efficacy of reovirus-mediated tumor cell killing. Cancer Gene Ther. 2015 22 4 188 197 10.1038/cgt.2015.4 25633482
    [Google Scholar]
  85. Liikanen I. Koski A. Merisalo-Soikkeli M. Hemminki O. Oksanen M. Kairemo K. Joensuu T. Kanerva A. Hemminki A. Serum HMGB1 is a predictive and prognostic biomarker for oncolytic immunotherapy. OncoImmunology 2015 4 3 989771 10.4161/2162402X.2014.989771 25949903
    [Google Scholar]
  86. Garcia-Carbonero R. Salazar R. Duran I. Osman-Garcia I. Paz-Ares L. Bozada J.M. Boni V. Blanc C. Seymour L. Beadle J. Alvis S. Champion B. Calvo E. Fisher K. Phase 1 study of intravenous administration of the chimeric adenovirus enadenotucirev in patients undergoing primary tumor resection. J. Immunother. Cancer 2017 5 1 71 10.1186/s40425‑017‑0277‑7 28923104
    [Google Scholar]
  87. Kennedy E.M. Denslow A. Hewett J. Kong L. De Almeida A. Bryant J.D. Lee J.S. Jacques J. Feau S. Hayes M. McMichael E.L. Wambua D. Farkaly T. Rahmeh A.A. Herschelman L. Douglas D. Spinale J. Adhikari S. Deterling J. Scott M. Haines B.B. Finer M.H. Ashburn T.T. Quéva C. Lerner L. Development of intravenously administered synthetic RNA virus immunotherapy for the treatment of cancer. Nat. Commun. 2022 13 1 5907 10.1038/s41467‑022‑33599‑w 36207308
    [Google Scholar]
  88. Samson A. West E.J. Carmichael J. Scott K.J. Turnbull S. Kuszlewicz B. Dave R.V. Peckham-Cooper A. Tidswell E. Kingston J. Johnpulle M. da Silva B. Jennings V.A. Bendjama K. Stojkowitz N. Lusky M. Prasad K.R. Toogood G.J. Auer R. Bell J. Twelves C.J. Harrington K.J. Vile R.G. Pandha H. Errington-Mais F. Ralph C. Newton D.J. Anthoney A. Melcher A.A. Collinson F. Neoadjuvant intravenous oncolytic vaccinia virus therapy promotes anticancer immunity in patients. Cancer Immunol. Res. 2022 10 6 745 756 10.1158/2326‑6066.CIR‑21‑0171 35439304
    [Google Scholar]
  89. Yun C.O. Overcoming the extracellular matrix barrier to improve intratumoral spread and therapeutic potential of oncolytic virotherapy. Curr. Opin. Mol. Ther. 2008 10 4 356 361 18683100
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206379105250429115604
Loading
/content/journals/acamc/10.2174/0118715206379105250429115604
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test