Skip to content
2000
image of Advancements in Metal Complexation of Pyridine Derivatives (2022–2024): A Pathway to Enhanced Anticancer Potency

Abstract

Cancer remains a major global health challenge, necessitating innovative therapies that selectively target cancer cells while sparing healthy tissues. Pyridine and its derivatives have gained prominence in medicinal chemistry for their structural diversity and biological activity. However, their therapeutic potential is often hindered by low bioavailability, poor solubility, and rapid metabolism. Metal complexation has emerged as a promising solution, with pyridine nitrogen serving as an excellent coordination site for transition metals. These pyridine-metal complexes enhance stability, bioavailability, and anticancer properties, exhibiting potent cytotoxicity through mechanisms like ROS generation, DNA intercalation, and apoptosis induction. This review highlights the latest progress (2022-2024) in the field, emphasizing the structural modifications, and mechanistic insights that have propelled pyridine-metal complexes as potent anticancer agents. Special attention is given to the role of metal complexation in enhancing the anticancer potency of pyridine derivatives, with examples of preclinical studies showing their efficacy against various cancer types. The findings emphasize the potential of pyridine-metal complexes as a transformative approach in oncology, bridging the gap between innovative chemical design and impactful therapeutic applications.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206378693250414044912
2025-04-24
2025-09-27
Loading full text...

Full text loading...

References

  1. Chu J.J. Mehrzad R. The biology of cancer, link between obes. Cancer. 2023 35 45 10.1016/B978‑0‑323‑90965‑5.00012‑X
    [Google Scholar]
  2. Sarkar S. Horn G. Moulton K. Oza A. Byler S. Kokolus S. Longacre M. Cancer development, progression, and therapy: An epigenetic overview. Int. J. Mol. Sci. 2013 14 21087 21113 10.3390/ijms141021087
    [Google Scholar]
  3. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820
    [Google Scholar]
  4. Alharbi A.H. Khan S. Antimicrobial, antioxidant, cell imaging and sensing applications of fluorescein derivatives: A review. Anal. Biochem. 2024 688 115479 10.1016/j.ab.2024.115479 38342200
    [Google Scholar]
  5. Mohammad Abu-Taweel G. Ibrahim M.M. Khan S. Al-Saidi H.M. Alshamrani M. Alhumaydhi F.A. Alharthi S.S. Medicinal importance and chemosensing applications of pyridine derivatives: A review. Crit. Rev. Anal. Chem. 2022 52 1 18 10.1080/10408347.2022.2089839 35724248
    [Google Scholar]
  6. Khan S. Alhumaydhi F.A. Ibrahim M.M. Alqahtani A. Alshamrani M. Alruwaili A.S. Hassanian A.A. Khan S. Recent advances and therapeutic journey of Schiff base complexes with selected metals (Pt, Pd, Ag, Au) as potent anticancer agents: A review. Anticancer. Agents Med. Chem. 2022 22 18 3086 3096 10.2174/1871520622666220511125600 35546764
    [Google Scholar]
  7. Alrooqi M. Khan S. Alhumaydhi F.A. Asiri S.A. Alshamrani M. Mashraqi M.M. Alzamami A. Alshahrani A.M. Aldahish A.A. A therapeutic journey of pyridine-based heterocyclic compounds as potent anticancer agents: A review (from 2017 to 2021). Anticancer. Agents Med. Chem. 2022 22 15 2775 2787 10.2174/1871520622666220324102849 35331100
    [Google Scholar]
  8. Law C.S.W. Yeong K.Y. Benzimidazoles in drug discovery: A patent review. ChemMedChem 2021 16 12 1861 1877 10.1002/cmdc.202100004 33646618
    [Google Scholar]
  9. DOĞAN-Sadin ÖZDEMİR-Mustafa Serkan YALÇIN A. Özdemir S. Yalçin M.S. Sari H. Nural Y. Naphthoquinone–thiazole hybrids bearing adamantane: Synthesis, antimicrobial, DNA cleavage, antioxidant activity, acid dissociation constant, and drug-likeness. J. Res. Pharm. 2021 25 3 292 304 10.29228/jrp.20
    [Google Scholar]
  10. Nural Y. Gemili M. Ulger M. Sari H. Synthesis, antimicrobial activity and acid dissociation constants of methyl 5,5-diphenyl-1-(thiazol-2-yl)pyrrolidine-2-carboxylate derivatives. Bioorg. Med. Chem. Lett. 2018 28 5 942 946 10.1016/j.bmcl.2018.01.045
    [Google Scholar]
  11. Gemili M. Nural Y. Keleş E. Aydıner B. Seferoğlu N. Ülger M. Şahin E. Erat S. Seferoğlu Z. Novel highly functionalized 1,4-naphthoquinone 2-iminothiazole hybrids: Synthesis, photophysical properties, crystal structure, DFT studies, and anti(myco)bacterial/antifungal activity. J. Mol. Struct. 2019 1196 536 546 10.1016/j.molstruc.2019.06.087
    [Google Scholar]
  12. Huo H. Li G. Shi B. Li J. Recent advances on synthesis and biological activities of C-17 aza-heterocycle derived steroids. Bioorg. Med. Chem. 2022 69 116882 10.1016/j.bmc.2022.116882 35749841
    [Google Scholar]
  13. Küçükgüzel Ş.G. Çıkla-Süzgün P. Recent advances bioactive 1,2,4-triazole-3-thiones. Eur. J. Med. Chem. 2015 97 830 870 10.1016/j.ejmech.2014.11.033 25563511
    [Google Scholar]
  14. Sharma P.C. Sinhmar A. Sharma A. Rajak H. Pathak D.P. Medicinal significance of benzothiazole scaffold: An insight view. J. Enzyme Inhib. Med. Chem. 2013 28 2 240 266 10.3109/14756366.2012.720572 23030043
    [Google Scholar]
  15. Tambat N. Mulani S.K. Ahmad A. Shaikh S.B. Ahmed K. Pyrazine derivatives—versatile scaffold. Russ. J. Bioorganic Chem. 2022 48 865 895 10.1134/S1068162022050259
    [Google Scholar]
  16. Hou W. Dai W. Huang H. Liu S.L. Liu J. Huang L.J. Huang X.H. Zeng J.L. Gan Z.W. Zhang Z.Y. Lan J.X. Pharmacological activity and mechanism of pyrazines. Eur. J. Med. Chem. 2023 258 115544 10.1016/j.ejmech.2023.115544 37300915
    [Google Scholar]
  17. Bhilare N.V. Auti P.B. Marulkar V.S. Pise V.J. Diverse thiophenes as scaffolds in anti-cancer drug development: A concise review. Mini Rev. Med. Chem. 2021 21 2 217 232 10.2174/18755607MTExyOTkg0 33267760
    [Google Scholar]
  18. Alizadeh S.R. Ebrahimzadeh M.A. Antiviral activities of pyridine fused and pyridine containing heterocycles, a review (from 2000 to 2020). Mini Rev. Med. Chem. 2021 21 17 2584 2611 10.2174/18755607MTEzvNjcu0 33573543
    [Google Scholar]
  19. Tahir T. Ashfaq M. Saleem M. Rafiq M. Shahzad M.I. Kotwica-Mojzych K. Mojzych M. Pyridine scaffolds, phenols and derivatives of azo moiety: Current therapeutic perspectives. Molecules 2021 26 16 4872 10.3390/molecules26164872 34443460
    [Google Scholar]
  20. Allaka T.R. Katari N.K. Synthesis of pyridine derivatives for diverse biological activity profiles: A review. Recent Developments in the Synthesis and Applications of Pyridines Elsevier 2023 605 625 10.1016/B978‑0‑323‑91221‑1.00005‑1
    [Google Scholar]
  21. Chiacchio M.A. Iannazzo D. Romeo R. Giofrè S.V. Legnani L. Pyridine and pyrimidine derivatives as privileged scaffolds in biologically active agents. Curr. Med. Chem. 2020 26 40 7166 7195 10.2174/0929867325666180904125400 30182842
    [Google Scholar]
  22. Prachayasittikul S. Pingaew R. Worachartcheewan A. Sinthupoom N. Prachayasittikul V. Ruchirawat S. Prachayasittikul V. Roles of pyridine and pyrimidine derivatives as privileged scaffolds in anticancer agents. Mini Rev. Med. Chem. 2017 17 10 869 901 10.2174/1389557516666160923125801 27670581
    [Google Scholar]
  23. Manaithiya A. Alam O. Sharma V. Naim M.J. Mittal S. Azam F. Husain A. Sheikh A.A. Imran M. Khan I.A. Current status of novel pyridine fused derivatives as anticancer agents: An insight into future perspectives and structure activity relationship (SAR). Curr. Top. Med. Chem. 2021 21 25 2292 2349 10.2174/1568026621666210916171015 34530713
    [Google Scholar]
  24. Albratty M. Alhazmi H.A. Novel pyridine and pyrimidine derivatives as promising anticancer agents: A review. Arab. J. Chem. 2022 15 6 103846 10.1016/j.arabjc.2022.103846
    [Google Scholar]
  25. Abadi A.H. Ibrahim T.M. Abouzid K.M. Lehmann J. Tinsley H.N. Gary B.D. Piazza G.A. Design, synthesis and biological evaluation of novel pyridine derivatives as anticancer agents and phosphodiesterase 3 inhibitors. Bioorg. Med. Chem. 2009 17 16 5974 5982 10.1016/j.bmc.2009.06.063 19628397
    [Google Scholar]
  26. Zhang Y-B. Liu W. Yang Y.S. Wang X.L. Zhu H.L. Bai L.F. Qiu X.Y. Synthesis, molecular modeling, and biological evaluation of 1,2,4-triazole derivatives containing pyridine as potential anti-tumor agents. Med. Chem. Res. 2013 22 7 3193 3203 10.1007/s00044‑012‑0306‑5
    [Google Scholar]
  27. Smułek W. Kaczorek E. Factors influencing the bioavailability of organic molecules to bacterial cells—a mini-review. Mol. 2022 27 6579 10.3390/molecules27196579
    [Google Scholar]
  28. Szabó R. Rácz C.P. Dulf F.V. Bioavailability improvement strategies for icariin and its derivatives: A review. Int. J. Mol. Sci. 2022 23 7519 10.3390/ijms23147519
    [Google Scholar]
  29. Sabet S. Rashidinejad A. Melton L.D. McGillivray D.J. Recent advances to improve curcumin oral bioavailability. Trends Food Sci. Technol. 2021 110 253 266 10.1016/j.tifs.2021.02.006
    [Google Scholar]
  30. Ramesh A. Walker S.A. Hood D.B. Guillén M.D. Schneider K. Weyand E.H. Bioavailability and risk assessment of orally ingested polycyclic aromatic hydrocarbons. Int. J. Toxicol. 2004 23 5 301 333 10.1080/10915810490517063 15513831
    [Google Scholar]
  31. Wu K. Kwon S.H. Zhou X. Fuller C. Wang X. Vadgama J. Wu Y. Overcoming challenges in small-molecule drug bioavailability: A review of key factors and approaches. Int. J. Mol. Sci. 2024 25 13121 10.3390/ijms252313121
    [Google Scholar]
  32. Alshamrani M. Recent advances and therapeutic journey of pyridine-based Cu(II) complexes as potent anticancer agents: A review (2015–2022). J. Coord. Chem. 2023 76 1 1 19 10.1080/00958972.2022.2164190
    [Google Scholar]
  33. BenGuzzi S.A. Abubakr A.S. Hassan S.S. Structural and biological studies of mononuclear metal (II) complexes containing hetero ligand based on 3-acetylpyridine thiosemicarbazone. Appl. Organomet. Chem. 2023 37 e7203 10.1002/aoc.7203
    [Google Scholar]
  34. Huang Q.W. Liu S.G. Li G.B. Wang S.X. Su W.Y. Liang D.M. Mao S.Q. Crystal structure and antitumor activities of the dichloride 2,6-bis(1-phenylbenzimidazol-2-yl)pyridine copper(II) complex. J. Struct. Chem. 2015 56 3 458 462 10.1134/S0022476615030087
    [Google Scholar]
  35. Liu Z. Romero-Canelón I. Habtemariam A. Clarkson G.J. Sadler P.J. Potent half-sandwich iridium(III) anticancer complexes containing C^N-chelated and pyridine ligands. Organometallics 2014 33 19 5324 5333 10.1021/om500644f 25328266
    [Google Scholar]
  36. Halcrow M.A. The synthesis and coordination chemistry of 2,6-bis(pyrazolyl)pyridines and related ligands — Versatile terpyridine analogues. Coord. Chem. Rev. 2005 249 24 2880 2908 10.1016/j.ccr.2005.03.010
    [Google Scholar]
  37. McPherson J.N. Das B. Colbran S.B. Tridentate pyridine–pyrrolide chelate ligands: An under-appreciated ligand set with an immensely promising coordination chemistry. Coord. Chem. Rev. 2018 375 285 332 10.1016/j.ccr.2018.01.012
    [Google Scholar]
  38. Ilmi R. Juma Al-busaidi I. Haque A. Khan M.S. Recent progress in coordination chemistry, photo-physical properties, and applications of pyridine-based Cu(I) complexes. J. Coord. Chem. 2018 71 19 3045 3076 10.1080/00958972.2018.1509070
    [Google Scholar]
  39. Martinez-Bulit P. Garza-Ortíz A. Mijangos E. Barrón-Sosa L. Sánchez-Bartéz F. Gracia-Mora I. Flores-Parra A. Contreras R. Reedijk J. Barba-Behrens N. 2,6-Bis(2,6-diethylphenyliminomethyl)pyridine coordination compounds with cobalt(II), nickel(II), copper(II), and zinc(II): Synthesis, spectroscopic characterization, X-ray study and in vitro cytotoxicity. J. Inorg. Biochem. 2015 142 1 7 10.1016/j.jinorgbio.2014.09.007 25282405
    [Google Scholar]
  40. González-Bártulos M. Aceves-Luquero C. Qualai J. Cussó O. Martínez M.A. Fernández de Mattos S. Menéndez J.A. Villalonga P. Costas M. Ribas X. Massaguer A. Pro-oxidant activity of amine-pyridine-based iron complexes efficiently kills cancer and cancer stem-like cells. PLoS One 2015 10 9 e0137800 10.1371/journal.pone.0137800 26368127
    [Google Scholar]
  41. Tyagi S. Mishra R. Mazumder R. Mazumder A. Current market potential and prospects of copper-based pyridine derivatives: A review. Curr. Mol. Med. 2024 24 9 1111 1123 10.2174/1566524023666230726160056 37496249
    [Google Scholar]
  42. Jiang M. Su X. Zhong X. Lan Y. Yang F. Qin Y. Jiang C. Recent development of Schiff-base metal complexes as therapeutic agents for lung cancer. J. Mol. Struct. 2024 1318 139403 10.1016/j.molstruc.2024.139403
    [Google Scholar]
  43. Tyagi M. Dubey M. A fight against cancer with advancement of Schiff base metal complexes: Future prospects. Oral Oncology Reports 2025 13 100692 10.1016/j.oor.2024.100692
    [Google Scholar]
  44. Khan H.Y. Ansari M.F. Tabassum S. Arjmand F. A review on the recent advances of interaction studies of anticancer metal-based drugs with therapeutic targets, DNA and RNAs. Drug Discov. Today 2024 29 7 104055 10.1016/j.drudis.2024.104055 38852835
    [Google Scholar]
  45. Abdolmaleki S. Aliabadi A. Khaksar S. Riding the metal wave: A review of the latest developments in metal-based anticancer agents. Coord. Chem. Rev. 2024 501 215579 10.1016/j.ccr.2023.215579
    [Google Scholar]
  46. Hangan A.C. Oprean L.S. Dican L. Procopciuc L.M. Sevastre B. Lucaciu R.L. Metal-based drug–DNA interactions and analytical determination methods. Molecules 2024 29 18 4361 10.3390/molecules29184361 39339356
    [Google Scholar]
  47. Dasmahapatra U. Maiti B. Alam M.M. Chanda K. Anti-cancer property and DNA binding interaction of first row transition metal complexes: A decade update. Eur. J. Med. Chem. 2024 275 116603 10.1016/j.ejmech.2024.116603 38936150
    [Google Scholar]
  48. Peña Q. Sciortino G. Maréchal J.D. Bertaina S. Simaan A.J. Lorenzo J. Capdevila M. Bayón P. Iranzo O. Palacios Ò. Copper N. II Copper(II) N, N, O -chelating complexes as potential anticancer agents. Inorg. Chem. 2021 60 5 2939 2952 10.1021/acs.inorgchem.0c02932 33596377
    [Google Scholar]
  49. Abu-Dief A.M. Mohamed I.M.A. A review on versatile applications of transition metal complexes incorporating Schiff bases. Beni. Suef Univ. J. Basic Appl. Sci. 2015 4 2 119 133 10.1016/j.bjbas.2015.05.004 32289037
    [Google Scholar]
  50. Santini C. Pellei M. Gandin V. Porchia M. Tisato F. Marzano C. Advances in copper complexes as anticancer agents. Chem. Rev. 2014 114 1 815 862 10.1021/cr400135x 24102434
    [Google Scholar]
  51. Singh N.K. Kumbhar A.A. Pokharel Y.R. Yadav P.N. Anticancer potency of copper(II) complexes of thiosemicarbazones. J. Inorg. Biochem. 2020 210 111134 10.1016/j.jinorgbio.2020.111134 32673842
    [Google Scholar]
  52. Rubbiani R. Zehnder T.N. Mari C. Blacque O. Venkatesan K. Gasser G. Anticancer profile of a series of gold(III) (2-phenyl)pyridine complexes. ChemMedChem 2014 9 12 2781 2790 10.1002/cmdc.201402446 25377650
    [Google Scholar]
  53. Kutlu E. Emen F.M. Kismali G. Kınaytürk N.K. Kılıç D. Karacolak A.I. Demirdogen R.E. Pyridine derivative platinum complexes: Synthesis, molecular structure, DFT and initial anticancer activity studies. J. Mol. Struct. 2021 1234 130191 10.1016/j.molstruc.2021.130191
    [Google Scholar]
  54. Choroba K. Machura B. Kula S. Raposo L.R. Fernandes A.R. Kruszynski R. Erfurt K. Shul’pina L.S. Kozlov Y.N. Shul’pin G.B. Copper( ii ) complexes with 2,2′:6′,2′′-terpyridine, 2,6-di(thiazol-2-yl)pyridine and 2,6-di(pyrazin-2-yl)pyridine substituted with quinolines. Synthesis, structure, antiproliferative activity, and catalytic activity in the oxidation of alkanes and alcohols with peroxides. Dalton Trans. 2019 48 33 12656 12673 10.1039/C9DT01922G 31384866
    [Google Scholar]
  55. Abdolmaleki S. Ghadermazi M. Aliabadi A. Study on electrochemical behavior and in vitro anticancer effect of Co(II) and Zn(II) complexes containing pyridine-2,6-dicarboxylate. Inorg. Chim. Acta 2021 527 120549 10.1016/j.ica.2021.120549
    [Google Scholar]
  56. Fernandes A.S. Costa J. Gaspar J. Rueff J. Cabral M.F. Cipriano M. Castro M. Oliveira N.G. Development of pyridine-containing macrocyclic copper(II) complexes: Potential role in the redox modulation of oxaliplatin toxicity in human breast cells. Free Radic. Res. 2012 46 9 1157 1166 10.3109/10715762.2012.695869 22612279
    [Google Scholar]
  57. Abdolmaleki S. Ghadermazi M. Aliabadi A. Novel Tl(III) complexes containing pyridine-2,6-dicarboxylate derivatives with selective anticancer activity through inducing mitochondria-mediated apoptosis in A375 cells. Sci. Rep. 2021 11 1 15699 10.1038/s41598‑021‑95278‑y
    [Google Scholar]
  58. Ghasemi L. Behzad M. Khaleghian A. Abbasi A. Abedi A. Synthesis and characterization of two new mixed‐ligand Cu(II) complexes of a tridentate NN’O type Schiff base ligand and N‐donor heterocyclic co‐ligands: In vitro anticancer assay, DNA/human leukemia/COVID‐19 molecular docking studies, and pharmacophore modeling. Appl. Organomet. Chem. 2022 36 5 e6639 10.1002/aoc.6639 35538931
    [Google Scholar]
  59. Qu J.J. Bai P. Liu W.N. Liu Z.L. Gong J.F. Wang J.X. Zhu X. Song B. Hao X.Q. New NNN pincer copper complexes as potential anti-prostate cancer agents. Eur. J. Med. Chem. 2022 244 114859 10.1016/j.ejmech.2022.114859 36308778
    [Google Scholar]
  60. Moradi H.S. Momenzadeh E. Asar M. Iranpour S. Bahrami A.R. Bazargan M. Hassanzadeh H. Matin M.M. Mirzaei M. Bioactivity studies of two copper complexes based on pyridinedicarboxylic acid N-oxide and 2,2′-bipyridine. J. Mol. Struct. 2022 1249 131584 10.1016/j.molstruc.2021.131584
    [Google Scholar]
  61. Malik M. Świtlicka A. Bieńko A. Komarnicka U.K. Bieńko D.C. Kozieł S. Kyzioł A. Mazur T. Machura B. Copper( ii ) complexes with 2-ethylpyridine and related hydroxyl pyridine derivatives: Structural, spectroscopic, magnetic and anticancer in vitro studies. RSC Advances 2022 12 42 27648 27665 10.1039/D2RA05133H 36276031
    [Google Scholar]
  62. Adhikari H.S. Garai A. Manandhar K.D. Yadav P.N. Pyridine-based NNS tridentate chitosan thiosemicarbazones and their Copper(II) complexes: Synthesis, characterization, and anticancer activity. ACS Omega 2022 7 35 30978 30988 10.1021/acsomega.2c02966 36092560
    [Google Scholar]
  63. Wu Y. Hou L. Lan J. Yang F. Huang G. Liu W. Gou Y. Mixed-ligand copper(II) hydrazone complexes: Synthesis, structure, and anti-lung cancer properties. J. Mol. Struct. 2023 1279 134986 10.1016/j.molstruc.2023.134986
    [Google Scholar]
  64. Chen Y.M. Liu Y.C. Wang J.Q. Ou G.C. Wang X.F. Gao S.Q. Du K.J. Lin Y.W. Functional copper complexes with benzofurans tridentate ligand: Synthesis, crystal structure, DNA binding and anticancer studies. J. Inorg. Biochem. 2023 247 112330 10.1016/j.jinorgbio.2023.112330 37478782
    [Google Scholar]
  65. Lu W. Tang J. Gu Z. Sun L. Wei H. Wang Y. Yang S. Chi X. Xu L. Crystal structure, in vitro cytotoxicity, DNA binding and DFT calculations of new copper (II) complexes with coumarin-amide ligand. J. Inorg. Biochem. 2023 238 112030 10.1016/j.jinorgbio.2022.112030 36327496
    [Google Scholar]
  66. Topal T. Synthesis and characterization of zinc(II) complexes with new pyridine-based ligands: Crystal structure, Hirshfeld surface analysis, and molecular docking study of lung cancer cell. J. Coord. Chem. 2020 73 23 3203 3222 10.1080/00958972.2020.1853710
    [Google Scholar]
  67. Dam J. Ismail Z. Kurebwa T. Gangat N. Harmse L. Marques H.M. Lemmerer A. Bode M.L. de Koning C.B. Synthesis of copper and zinc 2-(pyridin-2-yl)imidazo[1,2-a]pyridine complexes and their potential anticancer activity. Eur. J. Med. Chem. 2017 126 353 368 10.1016/j.ejmech.2016.10.041 27907874
    [Google Scholar]
  68. Stanojkovic T.P. Kovala-Demertzi D. Primikyri A. Garcia-Santos I. Castineiras A. Juranic Z. Demertzis M.A. Zinc(II) complexes of 2-acetyl pyridine 1-(4-fluorophenyl)-piperazinyl thiosemicarbazone: Synthesis, spectroscopic study and crystal structures – Potential anticancer drugs. J. Inorg. Biochem. 2010 104 4 467 476 10.1016/j.jinorgbio.2009.12.021 20102782
    [Google Scholar]
  69. Gao E. Sun T. Liu S. Ma S. Wen Z. Wang Y. Zhu M. Wang L. Gao X. Guan F. Guo M.J. Liu F.C. Synthesis, characterization, interaction with DNA and cytotoxicity in vitro of novel pyridine complexes with Zn(II). Eur. J. Med. Chem. 2010 45 10 4531 4538 10.1016/j.ejmech.2010.07.013 20692739
    [Google Scholar]
  70. Araškov J.B. Višnjevac A. Popović J. Blagojević V. Fernandes H.S. Sousa S.F. Novaković I. Padrón J.M. Holló B.B. Monge M. Rodríguez-Castillo M. López-de-Luzuriaga J.M. Filipović N.R. Todorović T.R. Zn( ii ) complexes with thiazolyl–hydrazones: Structure, intermolecular interactions, photophysical properties, computational study and anticancer activity. CrystEngComm 2022 24 29 5194 5214 10.1039/D2CE00443G
    [Google Scholar]
  71. Chang Q. Xie Y. Lu X. Zong Z. Zhang E. Cao S. Liang L. In vitro and in vivo antiproliferative activity on lung cancer of two acylhydrazone based zinc(II) complexes. Bioorg. Chem. 2024 147 107422 10.1016/j.bioorg.2024.107422 38705106
    [Google Scholar]
  72. Wang Z.F. Zhou X.F. Wei Q.C. Qin Q.P. Li J.X. Tan M.X. Zhang S.H. Novel bifluorescent Zn(II)–cryptolepine–cyclen complexes trigger apoptosis induced by nuclear and mitochondrial DNA damage in cisplatin-resistant lung tumor cells. Eur. J. Med. Chem. 2022 238 114418 10.1016/j.ejmech.2022.114418 35525079
    [Google Scholar]
  73. Adhikari S. Nath S. Kansız S. Balidya N. Paul A.K. Dege N. Sahin O. Mahmoudi G. Verma A.K. Safin D.A. Zinc(II) coordination compound with N′-(pyridin-2-ylmethylene)nicotinohydrazide: Synthesis, crystal structure, computational and cytotoxicity studies. J. Inorg. Biochem. 2024 257 112598 10.1016/j.jinorgbio.2024.112598 38763101
    [Google Scholar]
  74. Hassan M. El-Faham A. Barakat A. Haukka M. Tatikonda R. Abu-Youssef M.A.M. Soliman S.M. Yousri A. Synthesis, X-ray structure, cytotoxic, and anti-microbial activities of Zn(II) complexes with a hydrazono s-triazine bearing pyridyl arm. Inorganics 2024 12 7 176 10.3390/inorganics12070176
    [Google Scholar]
  75. Chen D.Y. Chen C.L. Li M.X. Niu J.Y. Zhu X.F. Guo H.M. Synthesis, crystal structure, and biological activity of a nickel(II) complex of 2-acetylpyridine N(4)-methylthiosemicarbazone. J. Coord. Chem. 2010 63 9 1546 1554 10.1080/00958972.2010.484490
    [Google Scholar]
  76. Choo K.B. Lee S.M. Lee W.L. Cheow Y.L. Synthesis, characterization, in vitro antimicrobial and anticancer studies of new platinum N-heterocyclic carbene (NHC) complexes and unexpected nickel complexes. J. Organomet. Chem. 2019 898 120868 10.1016/j.jorganchem.2019.07.019
    [Google Scholar]
  77. Yang J.M. Zhu Y.H. Chen S. Lu X. Wu Y.M. Ma F.E. Li L.P. Yang Y. Shi Z.H. Huang K.Y. Hong X. Jiang P. Peng Y. A β-carboline derivative-based nickel( ii ) complex as a potential antitumor agent: Synthesis, characterization, and cytotoxicity. MedChemComm 2018 9 1 100 107 10.1039/C7MD00428A 30108903
    [Google Scholar]
  78. Bhattacharjee T. Adhikari S. Sheikh A.H. Mahmoudi G. Mlowe S. Akerman M.P. Choudhury N.A. Chakraborty S. Butcher R.J. Kennedy A.R. Demir B.S. Örs A. Saygideger Y. Syntheses, crystal structures, theoretical studies, and anticancer properties of an unsymmetrical schiff base ligand N-2-(6-methylpyridyl)-2-hydroxy-1-naphthaldimine and its Ni(II) complex. J. Mol. Struct. 2022 1269 133717 10.1016/j.molstruc.2022.133717
    [Google Scholar]
  79. Keypour H. Tafazzoli A. Hamed Moazzami Farida S. Abdollahi-Moghadam M. William Gable R. Synthesis, investigation of biological activities and theoretical studies of a novel hexaaza Schiff base ligand and its Ni(II) complex: X-ray crystal structure of the Ni(II) complex. Inorg. Chem. Commun. 2023 155 110981 10.1016/j.inoche.2023.110981
    [Google Scholar]
  80. Panicker R.R. Sivaramakrishna A. Studies on synthesis and influence of sterically driven Ni(II)-terpyridine (NNN) complexes on BSA/DNA binding and anticancer activity. J. Inorg. Biochem. 2024 257 112553 10.1016/j.jinorgbio.2024.112553 38759263
    [Google Scholar]
  81. Huang X. Wang B. Sun D. Chen M. Xue X. Liu H. Zhou Y. Ma Z. Synthesis of substituted terpyridine nickel nitrate complexes and their inhibitory selectivity against cancer cell lines. J. Inorg. Biochem. 2024 256 112554 10.1016/j.jinorgbio.2024.112554 38613885
    [Google Scholar]
  82. Manikandan R. Viswanathamurthi P. Velmurugan K. Nandhakumar R. Hashimoto T. Endo A. Synthesis, characterization and crystal structure of cobalt(III) complexes containing 2-acetylpyridine thiosemicarbazones: DNA/protein interaction, radical scavenging and cytotoxic activities. J. Photochem. Photobiol. B 2014 130 205 216 10.1016/j.jphotobiol.2013.11.008 24342132
    [Google Scholar]
  83. Qin Q.P. Qin J.L. Meng T. Lin W.H. Zhang C.H. Wei Z.Z. Chen J.N. Liu Y.C. Liang H. Chen Z.F. High in vivo antitumor activity of cobalt oxoisoaporphine complexes by targeting G-quadruplex DNA, telomerase and disrupting mitochondrial functions. Eur. J. Med. Chem. 2016 124 380 392 10.1016/j.ejmech.2016.08.063 27597414
    [Google Scholar]
  84. Karumban K.S. Muley A. Raut R. Gupta P. Giri B. Kumbhakar S. Misra A. Maji S. Mononuclear Co( ii ) polypyridyl complexes: Synthesis, molecular structure, DNA binding/cleavage, radical scavenging, docking studies and anticancer activities. Dalton Trans. 2022 51 18 7084 7099 10.1039/D1DT04144D 35357373
    [Google Scholar]
  85. Karumban K.S. Raut R. Gupta P. Muley A. Giri B. Kumbhakar S. Misra A. Maji S. Mononuclear cobalt(II) complexes with polypyridyl ligands: Synthesis, characterization, DNA interactions and in vitro cytotoxicity towards human cancer cells. J. Inorg. Biochem. 2022 233 111866 10.1016/j.jinorgbio.2022.111866 35636303
    [Google Scholar]
  86. Subhash J. Jyoti Chaudhary A. Synthesis, spectroscopic characterization, in vitro cytotoxic, antimicrobial and antioxidant studies of Co(II) complexes bearing pyridine-based macrocyclic ligands with density function theory (DFT) and molecular docking investigations. Res. Chem. Intermed. 2023 49 11 4729 4758 10.1007/s11164‑023‑05096‑2
    [Google Scholar]
  87. Nnabuike G.G. Salunke-Gawali S. Patil A.S. Butcher R.J. Obaleye J.A. Ashtekar H. Prakash B. Cobalt(II) complexes containing mefenamic acid with imidazole and pyridine based auxiliary ligands: Synthesis, structural investigation and cytotoxic evaluation. J. Mol. Struct. 2023 1285 135519 10.1016/j.molstruc.2023.135519
    [Google Scholar]
  88. Kovala-Demertzi D. Demertzis M.A. Miller J.R. Papadopoulou C. Dodorou C. Filousis G. Platinum(II) complexes with 2-acetyl pyridine thiosemicarbazone synthesis, crystal structure, spectral properties, antimicrobial and antitumour activity. J. Inorg. Biochem. 2001 86 2-3 555 563 10.1016/S0162‑0134(01)00224‑0 11566327
    [Google Scholar]
  89. Segapelo T.V. Guzei I.A. Spencer L.C. Zyl W.E.V. Darkwa J. (Pyrazolylmethyl)pyridine platinum(II) and gold(III) complexes: Synthesis, structures and evaluation as anticancer agents. Inorg. Chim. Acta 2009 362 9 3314 3324 10.1016/j.ica.2009.02.046
    [Google Scholar]
  90. Kovala-Demertzi D. Yadav P.N. Demertzis M.A. Coluccia M. Synthesis, crystal structure, spectral properties and cytotoxic activity of platinum(II) complexes of 2-acetyl pyridine and pyridine-2-carbaldehyde N(4)-ethyl-thiosemicarbazones. J. Inorg. Biochem. 2000 78 4 347 354 10.1016/S0162‑0134(00)00063‑5 10857916
    [Google Scholar]
  91. Masaryk L. Zoufalý P. Słoczyńska K. Zahradniková E. Milde D. Koczurkiewicz-Adamczyk P. Štarha P. New Pt(II) diiodido complexes containing bidentate 1,3,4-thiadiazole-based ligands: Synthesis, characterization, cytotoxicity. Inorg. Chim. Acta 2022 536 120891 10.1016/j.ica.2022.120891
    [Google Scholar]
  92. Hosseini-Hashemi Z. Eslami Moghadam M. Mirzaei M. Notash B. Biological activity of two anticancer pt complexes with a cyclohexylglycine ligand against a colon cancer cell line: Theoretical and experimental study. ACS Omega 2022 7 44 39794 39811 10.1021/acsomega.2c03776 36385884
    [Google Scholar]
  93. McGhie B.S. Sakoff J. Gilbert J. Gordon C.P. Aldrich-Wright J.R. Synthesis and characterisation of Platinum(II) Diaminocyclohexane complexes with pyridine derivatives as anticancer agents. Int. J. Mol. Sci. 2023 24 24 17150 10.3390/ijms242417150 38138979
    [Google Scholar]
  94. Bhaduri R. Moi S.C. Bio-physical and theoretical investigations on Pt(II)-pyridine based complexes with relevant bio-molecules for the development of potent anticancer drug candidates. J. Mol. Struct. 2024 1309 138261 10.1016/j.molstruc.2024.138261
    [Google Scholar]
  95. Kovala-Demertzi D. Alexandratos A. Papageorgiou A. Yadav P.N. Dalezis P. Demertzis M.A. Synthesis, characterization, crystal structures, in vitro and in vivo antitumor activity of palladium(II) and zinc(II) complexes with 2-formyl and 2-acetyl pyridine N(4)-1-(2-pyridyl)-piperazinyl thiosemicarbazone. Polyhedron 2008 27 13 2731 2738 10.1016/j.poly.2008.04.009
    [Google Scholar]
  96. Krogul A. Cedrowski J. Wiktorska K. Ozimiński W.P. Skupińska J. Litwinienko G. Crystal structure, electronic properties and cytotoxic activity of palladium chloride complexes with monosubstituted pyridines. Dalton Trans. 2012 41 2 658 666 10.1039/C1DT11412C 22068915
    [Google Scholar]
  97. Zhang L.Z. Ding T. Chen C.L. Li M.X. Zhang D. Niu J.Y. Biological activities of pyridine-2-carbaldehyde Schiff bases derived from S-methyl- and S-benzyldithiocarbazate and their zinc(II) and manganese(II) complexes. Crystal Structure of the Manganese(II) complex of pyridine-2-carbaldehyde S-benzyldithiocarbazate. Russ. J. Coord. Chem. 2011 37 5 356 361 10.1134/S1070328411040117
    [Google Scholar]
  98. Tamer Ö. Mahmoody H. Feyzioğlu K.F. Kılınç O. Avci D. Orun O. Dege N. Atalay Y. Synthesis of the first mixed ligand Mn (II) and Cd (II) complexes of 4‐methoxy‐pyridine‐2‐carboxylic acid, molecular docking studies and investigation of their anti‐tumor effects in vitro. Appl. Organomet. Chem. 2020 34 3 e5416 10.1002/aoc.5416
    [Google Scholar]
  99. Khalil T.E. Soliman S.M. Khalil N.A. El-Dissouky A. Foro S. Ali M. Barakat A. Self‐assembly of unexpected [Mn(2‐(1‐hydrazonoethyl)pyridine)Cl 2 ] n 1D coordination polymer: Synthesis, structural elucidation, and biological studies. Appl. Organomet. Chem. 2022 36 9 e6812 10.1002/aoc.6812
    [Google Scholar]
  100. Bhaduri R. Pan A. Kumar Tarai S. Mandal S. Bagchi A. Biswas A. Ch S. Moi, In vitro anticancer activity of Pd(II) complexes with pyridine scaffold: Their bioactivity, role in cell cycle arrest, and computational study. J. Mol. Liq. 2022 367 120540 10.1016/j.molliq.2022.120540
    [Google Scholar]
  101. Fathalla E.M. Abu-Youssef M.A.M. Sharaf M.M. El-Faham A. Barakat A. Badr A.M.A. Soliman S.M. Slawin A.M.Z. Woollins J.D. Synthesis, characterizations, antitumor and antimicrobial evaluations of novel Mn(II) and Cu(II) complexes with NNN-tridentate s-Triazine-Schiff base ligand. Inorg. Chim. Acta 2023 555 121586 10.1016/j.ica.2023.121586
    [Google Scholar]
  102. Selvam P. De S. Paira P. Kumar S.K.A. Kumar R S. Moorthy A. Ghosh A. Kuo Y.C. Banerjee S. Jenifer S.K. In vitro studies on the selective cytotoxic effect of luminescent Ru( ii )- p -cymene complexes of imidazo-pyridine and imidazo quinoline ligands. Dalton Trans. 2022 51 45 17263 17276 10.1039/D2DT02237K 36317406
    [Google Scholar]
  103. Li J. Chen M. Jiang J. Huang J. Chen H. Pan L. Nesterov D.S. Ma Z. Pombeiro A.J.L. A new concept of enhancing the anticancer activity of manganese terpyridine complex by oxygen-containing substituent modification. Int. J. Mol. Sci. 2023 24 4 3903 10.3390/ijms24043903 36835315
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206378693250414044912
Loading
/content/journals/acamc/10.2174/0118715206378693250414044912
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Heterocyclic ; bioavailability ; anticancer therapy ; pharmacological ; metal complexes ; pyridine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test