Skip to content
2000
image of Innovative Therapies for Oncogenic KRAS Mutations: Precision Strategies with PROTACs in Cancer Treatment

Abstract

The KRAS (Kirsten rat sarcoma viral oncogene homolog) gene mutation is commonly found in colorectal, lung, and pancreatic carcinomas. Unfortunately, blocking KRAS straight away has proven to be challenging. PROTACs (Proteolysis Targeting Chimeras), a class of bifunctional molecules, are designed to break down proteins, offering a unique strategy to target KRAS and overcome the limitations of traditional inhibition. This review discusses PROTACs targeting KRAS mutations in cancer, highlighting major findings, current limitations, and future perspectives. The review was performed using the databases, namely, Medline, Embase, Science Direct, and Scopus, using the keywords “PROTACs, protein degradation, anti-tumor action, cancer treatment, KRAS mutation”. Additional information was gathered from related textbooks, reviews, and documents. PROTAC treatment results in the suppression of downstream signalling pathways associated with KRAS, such as the MAPK and PI3K/AKT pathways. Animal studies demonstrate the ability of the PROTAC to effectively target KRAS-mutant tumors, inhibiting tumour growth without significant toxicities. New advances in this field can lead to cancer treatments that specifically target KRAS-mutant tumors.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206377691250523095407
2025-06-04
2025-09-26
Loading full text...

Full text loading...

References

  1. Xi J.Y. Zhang R.Y. Chen K. Yao L. Li M.Q. Jiang R. Li X.Y. Fan L. Advances and perspectives of proteolysis targeting chimeras (PROTACs) in drug discovery. Bioorg. Chem. 2022 125 105848 10.1016/j.bioorg.2022.105848 35533582
    [Google Scholar]
  2. Ashique S Bhowmick M Pal R Khatoon H Kumar P Sharma H Garg A Kumar S Das U Multi drug resistance in colorectal Cancer- approaches to overcome, advancements and future success. Adv. Cancer. Biol. Metastasis. 2024 10 100114 2024 10.1016/j.adcanc.2024.100114
    [Google Scholar]
  3. Kumar P. Pandey S. Ahmad F. Verma A. Sharma H. Ashique S. Bhattacharyya S. Bhattacharyya I. Kumar S. Mishra N. Garg A. Carbon nanotubes: A targeted drug delivery against cancer cell. Curr. Nanosci. 2023 9 1 31
    [Google Scholar]
  4. Bond M.J. Chu L. Nalawansha D.A. Li K. Crews C.M. Targeted degradation of oncogenic KRASG12C by VHL-recruiting PROTACs. ACS Cent. Sci. 2020 6 8 1367 1375 10.1021/acscentsci.0c00411 32875077
    [Google Scholar]
  5. Hyun S. Shin D. Small-molecule inhibitors and degraders targeting KRAS-driven cancers. Int. J. Mol. Sci. 2021 22 22 12142 10.3390/ijms222212142 34830024
    [Google Scholar]
  6. Yang F. Wen Y. Wang C. Zhou Y. Zhou Y. Zhang Z.M. Liu T. Lu X. Efficient targeted oncogenic KRASG12C degradation via first reversible-covalent PROTAC. Eur. J. Med. Chem. 2022 230 114088 10.1016/j.ejmech.2021.114088 35007863
    [Google Scholar]
  7. Duan X. Zhang T. Feng L. de Silva N. Greenspun B. Wang X. Moyer J. Martin M.L. Chandwani R. nlmo O. Leach S.D. Evans T. Chen S. Pan F.C. A pancreatic cancer organoid platform identifies an inhibitor specific to mutant KRAS. Cell Stem Cell 2024 31 1 71 88.e8 10.1016/j.stem.2023.11.011 38151022
    [Google Scholar]
  8. Das S. Mukherjee T. Mohanty S. Nayak N. Mal P. Ashique S. Pal R. Mohanto S. Sharma H. Impact of NF-κB signaling and sirtuin-1 protein for targeted inflammatory intervention. Curr. Pharm. Biotechnol. 2024 25 1 17 38638042
    [Google Scholar]
  9. Sharma H. Kaushik M. Goswami P. Sreevani S. Chakraborty A. Ashique S. Pal R. Role of miRNAs in brain development. MicroRNA 2024 13 2 96 109 10.2174/0122115366287127240322054519 38571343
    [Google Scholar]
  10. Angolkar M. Paramshetti S. Halagali P. Jain V. Patil A.B. Somanna P. Nanotechnological advancements in the brain tumor therapy: A novel approach. Ther. Deliv. 2022 13 11 531 557 10.4155/tde‑2022‑0035 36802944
    [Google Scholar]
  11. Ha D.P. Huang B. Wang H. Rangel D.F. Van Krieken R. Liu Z. Samanta S. Neamati N. Lee A.S. Targeting GRP78 suppresses oncogenic KRAS protein expression and reduces viability of cancer cells bearing various KRAS mutations. Neoplasia 2022 33 100837 10.1016/j.neo.2022.100837 36162331
    [Google Scholar]
  12. Cheng J. Li Y. Wang X. Dong G. Sheng C. Discovery of novel PDEδ degraders for the treatment of KRAS mutant colorectal cancer. J. Med. Chem. 2020 63 14 7892 7905 10.1021/acs.jmedchem.0c00929 32603594
    [Google Scholar]
  13. Li J.W. Zheng G. Kaye F.J. Wu L. PROTAC therapy as a new targeted therapy for lung cancer. Mol. Ther. 2023 31 3 647 656 10.1016/j.ymthe.2022.11.011 36415148
    [Google Scholar]
  14. Herdeis L. Gerlach D. McConnell D.B. Kessler D. Stopping the beating heart of cancer: KRAS reviewed. Curr. Opin. Struct. Biol. 2021 71 136 147 10.1016/j.sbi.2021.06.013 34303932
    [Google Scholar]
  15. Sharma H. Halagali P. Majumder A. Sharma V. Pathak R. Natural compounds targeting signaling pathways in breast cancer therapy. African J. Biol. Sci. 2024 6 10 5430 5479
    [Google Scholar]
  16. Pathak R. Kaur V. Sharma S. Bhandari M. Mishra R. Saxena A. Upreti A. Sharma H. Author C. Pazopanib: Effective monotherapy for precise cancer treatment, targeting specific mutations and tumors. AfrJBioSc. 2024 6 9 1311 1330
    [Google Scholar]
  17. Kumar P. Sharma H. Singh A. Durgapal S. Kukreti G. Bhowmick M. Bhowmick P. Ashique S. Targeting the interplay of proteins through PROTACs for management cancer and associated disorders. Curr. Cancer Ther. Rev. 2024 20 20 10.2174/0115733947304806240417092449
    [Google Scholar]
  18. Sharma H. Pathak R. Sachan N. Chandra P. Role of tumor antigens for cancer vaccine development. Cancer Vaccination and Challenges. New York Apple Academic Press 2024 57 94 10.1201/9781003501718‑3
    [Google Scholar]
  19. Zhang X. Zhao T. Sun M. Li P. Lai M. Xie L. Chen J. Ding J. Xie H. Zhou J. Zhang H. Design, synthesis and biological evaluation of KRASG12C-PROTACs. Bioorg. Med. Chem. 2023 78 117153 10.1016/j.bmc.2023.117153 36621179
    [Google Scholar]
  20. Yang N. Fan Z. Sun S. Hu X. Mao Y. Jia C. Cai X. Xu T. Li B. Li Y. Han L. Wei T. Qian X. Qin W. Li P. Zheng Z. Li S. Discovery of highly potent and selective KRASG12C degraders by VHL-recruiting PROTACs for the treatment of tumors with KRASG12C-Mutation. Eur. J. Med. Chem. 2023 261 115857 10.1016/j.ejmech.2023.115857 37852032
    [Google Scholar]
  21. Kaushik M. Kumar S. Singh M. Sharma H. Bhowmick M. Bhowmick P. Ashique S. Khatoon H. Pal R. Ansari M.A. Bio-inspired nanomaterials in cancer theranostics. Nanotheranostics for Diagnosis and Therapy. Singapore Springer Nature Singapore 2024 95 123 10.1007/978‑981‑97‑3115‑2_5
    [Google Scholar]
  22. Rathod L.S. Dabhade P.S. Mokale S.N. Recent progress in targeting KRAS mutant cancers with covalent G12C-specific inhibitors. Drug Discov. Today 2023 28 5 103557 10.1016/j.drudis.2023.103557 36934967
    [Google Scholar]
  23. Chhichholiya Y. Singh H.V. Vashistha R. Singh S. Munshi A. Deciphering the role of KRAS gene in oncogenesis: Focus on signaling pathways, genetic alterations in 3’UTR, KRAS specific miRNAs and therapeutic interventions. Crit. Rev. Oncol. Hematol. 2024 194 104250 10.1016/j.critrevonc.2023.104250 38143047
    [Google Scholar]
  24. Cheng R. Lv X. Bu H. Xu Q. Wu J. Xie K. Tang J. Wang L. Zhuang J. Zhang Y. Zhang Y. Yan C. Lai Y. Design, synthesis, and evaluation of 4(1H)-quinolinone and urea derivatives as KRASG12C inhibitors with potent antitumor activity against KRAS-mutant non-small cell lung cancer. Eur. J. Med. Chem. 2022 244 114808 10.1016/j.ejmech.2022.114808 36228411
    [Google Scholar]
  25. Kitajima S. Tani T. Springer B.F. Campisi M. Osaki T. Haratani K. Chen M. Knelson E.H. Mahadevan N.R. Ritter J. Yoshida R. Köhler J. Ogino A. Nozawa R.S. Sundararaman S.K. Thai T.C. Homme M. Piel B. Kivlehan S. Obua B.N. Purcell C. Yajima M. Barbie T.U. Lizotte P.H. Jänne P.A. Paweletz C.P. Gokhale P.C. Barbie D.A. MPS1 inhibition primes immunogenicity of KRAS-LKB1 mutant lung cancer. Cancer Cell 2022 40 10 1128 1144.e8 10.1016/j.ccell.2022.08.015 36150391
    [Google Scholar]
  26. Li K. Crews C.M. PROTACs: Past, present and future. Chem. Soc. Rev. 2022 51 12 5214 5236 10.1039/D2CS00193D 35671157
    [Google Scholar]
  27. Veluswamy R. Mack P.C. Houldsworth J. Elkhouly E. Hirsch F.R. KRAS G12C–mutant non–small cell lung cancer. J. Mol. Diagn. 2021 23 5 507 520 10.1016/j.jmoldx.2021.02.002 33618059
    [Google Scholar]
  28. Apprato G. Poongavanam V. Garcia Jimenez D. Atilaw Y. Erdelyi M. Ermondi G. Caron G. Kihlberg J. Exploring the chemical space of orally bioavailable PROTACs. Drug Discov. Today 2024 29 4 103917 10.1016/j.drudis.2024.103917 38360147
    [Google Scholar]
  29. Yokoo H. Tsuji G. Inoue T. Naito M. Demizu Y. Ohoka N. Expansion of targeted degradation by Gilteritinib-Warheaded PROTACs to ALK fusion proteins. Bioorg. Chem. 2024 145 107204 10.1016/j.bioorg.2024.107204 38377822
    [Google Scholar]
  30. Chen P. Li Q. Lei X. Review of the impact of fragment-based drug design on PROTAC degrader discovery. Trends Analyt. Chem. 2024 171 117539 10.1016/j.trac.2024.117539
    [Google Scholar]
  31. Wang C. Zhang Y. Yu W. Xu J. Xing D. PROTAC-biomacromolecule conjugates for precise protein degradation in cancer therapy: A review. Int. J. Biol. Macromol. 2024 261 Pt 2 129864 10.1016/j.ijbiomac.2024.129864 38302015
    [Google Scholar]
  32. Hall J. Zhang Z. Bhattacharya S. Wang D. Alcantara M. Liang Y. Swiderski P. Forman S. Kwak L. Vaidehi N. Kortylewski M. Oligo-PROTAC strategy for cell-selective and targeted degradation of activated STAT3. Mol. Ther. Nucleic Acids 2024 35 1 102137 10.1016/j.omtn.2024.102137 38384444
    [Google Scholar]
  33. Merz V. Gaule M. Zecchetto C. Cavaliere A. Casalino S. Pesoni C. Contarelli S. Sabbadini F. Bertolini M. Mangiameli D. Milella M. Fedele V. Melisi D. Targeting KRAS: The elephant in the room of epithelial cancers. Front. Oncol. 2021 11 638360 10.3389/fonc.2021.638360 33777798
    [Google Scholar]
  34. Lu M. Ji J. Lv Y. Zhao J. Liu Y. Jiao Q. Liu T. Mou Y. You Q. Jiang Z. Bivalent inhibitors of the BTB E3 ligase KEAP1 enable instant NRF2 activation to suppress acute inflammatory response. Cell Chem. Biol. 2023 38157852
    [Google Scholar]
  35. Wang P. Tang C.T. Li J. Huang X. Jin R. Yin F. Liu Z. Chen Y. Zeng C. The E3 ubiquitin ligase RNF31 mediates the development of ulcerative colitis by regulating NLRP3 inflammasome activation. Int. Immunopharmacol. 2023 125 Pt B 111194 10.1016/j.intimp.2023.111194 37951199
    [Google Scholar]
  36. Wang X. Su M. Wang L. Zhou Y. Li N. Yang B. NEDD4 Like E3 ubiquitin protein ligase represses astrocyte activation and aggravates neuroinflammation in mice with depression via paired box 6 ubiquitination. Neuroscience 2023 530 144 157 10.1016/j.neuroscience.2023.08.036 37661017
    [Google Scholar]
  37. Jiang Y. Li L. Wu R. Wu L. Zhang B. Wang J.Z. Liu R. Liu F. Wang J. Wang X. c-Src regulates δ-secretase activation and truncated Tau production by phosphorylating the E3 ligase Traf6. J. Biol. Chem. 2023 299 12 105462 10.1016/j.jbc.2023.105462 37977223
    [Google Scholar]
  38. Cheng W. Li S. Han S. Miao R. Wang S. Liu C. Wei H. Tian X. Zhang X. Design, synthesis and biological evaluation of the tumor hypoxia-activated PROTACs bearing caged CRBN E3 ligase ligands. Bioorg. Med. Chem. 2023 82 117237 10.1016/j.bmc.2023.117237 36906965
    [Google Scholar]
  39. Yang D. Li Q. Lu P. Wu D. Li W. Meng X. Xing M. Shangguan W. Chen B. Yang J. Zhang Z. Wang Z. Huang D.C.S. Zhao Q. FOXA2 activates HIF2α expression to promote tumor progression and is regulated by the E3 ubiquitin ligase VHL in renal cell carcinoma. J. Biol. Chem. 2024 300 1 105535 10.1016/j.jbc.2023.105535 38072043
    [Google Scholar]
  40. Kong L. Sui C. Chen T. Zhang L. Zhao W. Zheng Y. Liu B. Cheng X. Gao C. The ubiquitin E3 ligase TRIM10 promotes STING aggregation and activation in the Golgi apparatus. Cell Rep. 2023 42 4 112306 10.1016/j.celrep.2023.112306 36972172
    [Google Scholar]
  41. Roverato N.D. Sailer C. Catone N. Aichem A. Stengel F. Groettrup M. Parkin is an E3 ligase for the ubiquitin-like modifier FAT10, which inhibits Parkin activation and mitophagy. Cell Rep. 2021 34 11 108857 10.1016/j.celrep.2021.108857 33730565
    [Google Scholar]
  42. Lumpkin R.J. Ahmad A.S. Blake R. Condon C.J. Komives E.A. The mechanism of NEDD8 activation of CUL5 Ubiquitin E3 ligases. Mol. Cell. Proteomics 2021 20 100019 10.1074/mcp.RA120.002414 33268465
    [Google Scholar]
  43. Huang B. Wu H. Zheng L. Wei X. Zheng Z. Wu H. Chen J. Shan Z. Liu J. Zhao F. Activation of Nrf2 signaling by 4-octyl itaconate attenuates the cartilaginous endplate degeneration by inhibiting E3 ubiquitin ligase ZNF598. Osteoarthritis Cartilage 2023 31 2 213 227 10.1016/j.joca.2022.10.008 36270478
    [Google Scholar]
  44. Wang J. Peng Q. Lin Q. Childress C. Carey D. Yang W. Calcium activates Nedd4 E3 ubiquitin ligases by releasing the C2 domain-mediated auto-inhibition. J. Biol. Chem. 2010 285 16 12279 12288 10.1074/jbc.M109.086405 20172859
    [Google Scholar]
  45. Wang Z. Lu X. Liu C. Huang F. Lu T. Chen Y. Liu L. Lu S. Discovery of FLT3-targeting PROTACs with potent antiproliferative activity against acute myeloid leukemia cells harboring FLT3 mutations. Eur. J. Med. Chem. 2024 268 116237 10.1016/j.ejmech.2024.116237 38387337
    [Google Scholar]
  46. Bai N. Riching K.M. Makaju A. Wu H. Acker T.M. Ou S.C. Zhang Y. Shen X. Bulloch D.N. Rui H. Gibson B.W. Daniels D.L. Urh M. Rock B.M. Humphreys S.C. Modeling the CRL4A ligase complex to predict target protein ubiquitination induced by cereblon-recruiting PROTACs. J. Biol. Chem. 2022 298 4 101653 10.1016/j.jbc.2022.101653 35101445
    [Google Scholar]
  47. Zografou-Barredo N.A. Hallatt A.J. Goujon-Ricci J. Cano C. A beginner’s guide to current synthetic linker strategies towards VHL-recruiting PROTACs. Bioorg. Med. Chem. 2023 88-89 117334 10.1016/j.bmc.2023.117334 37224698
    [Google Scholar]
  48. Choudhary D. Kaur A. Singh P. Chaudhary G. Kaur R. Bayan M.F. Chandrasekaran B. Marji S.M. Ayman R. Target protein degradation by protacs: A budding cancer treatment strategy. Pharmacol. Ther. 2023 250 108525 10.1016/j.pharmthera.2023.108525 37696366
    [Google Scholar]
  49. Fan H. Zhou Z. Yu D. Sun J. Wang L. Jia Y. Tian J. Mi W. Sun H. Selective degradation of BRD4 suppresses lung cancer cell proliferation using GSH-responsive PROTAC precursors. Bioorg. Chem. 2023 140 106793 10.1016/j.bioorg.2023.106793 37683536
    [Google Scholar]
  50. Yang W. Saboo S. Zhou L. Askin S. Bak A. Early evaluation of opportunities in oral delivery of PROTACs to overcome their molecular challenges. Drug Discov. Today 2024 29 2 103865 10.1016/j.drudis.2023.103865 38154757
    [Google Scholar]
  51. Patel U. Smalley J.P. Hodgkinson J.T. PROTAC chemical probes for histone deacetylase enzymes. RSC Chemical Biol. 2023 4 9 623 634 10.1039/D3CB00105A 37654508
    [Google Scholar]
  52. Yang H. Qin J. Pei Y. Guan S. Zhao M. Wang Y. Yao Y. Duan Y. Sun M. Discovery of the cereblon-recruiting tubulin PROTACs effective in overcoming Taxol resistance in vitro and in vivo. Eur. J. Med. Chem. 2024 265 116067 10.1016/j.ejmech.2023.116067 38171146
    [Google Scholar]
  53. Zhang L. Li L. Wang X. Liu H. Zhang Y. Xie T. Zhang H. Li X. Peng T. Sun X. Dai J. Liu J. Wu W. Ye M. Tan W. Development of a novel PROTAC using the nucleic acid aptamer as a targeting ligand for tumor selective degradation of nucleolin. Mol. Ther. Nucleic Acids 2022 30 66 79 10.1016/j.omtn.2022.09.008 36250201
    [Google Scholar]
  54. Rana S. Dranchak P. Dahlin J.L. Lamy L. Li W. Oliphant E. Shrimp J.H. Rajacharya G.H. Tharakan R. Holland D.O. Whitten A.S. Wilson K.M. Singh P.K. Durum S.K. Tao D. Rai G. Inglese J. Methotrexate-based PROTACs as DHFR-specific chemical probes. Cell Chem. Biol. 2024 31 2 221 233.e14 10.1016/j.chembiol.2023.09.014 37875111
    [Google Scholar]
  55. Zeng S. Jin Y. Xia H. Shang Y. Li Y. Wang Z. Huang W. Discovery of highly efficient CRBN-recruiting HPK1-PROTAC as a potential chemical tool for investigation of scaffolding roles in TCR signaling. Bioorg. Chem. 2024 143 107016 10.1016/j.bioorg.2023.107016 38086239
    [Google Scholar]
  56. Klein V.G. Bond A.G. Craigon C. Lokey R.S. Ciulli A. Amide-to-ester substitution as a strategy for optimizing PROTAC permeability and cellular activity. J. Med. Chem. 2021 64 24 18082 18101 10.1021/acs.jmedchem.1c01496 34881891
    [Google Scholar]
  57. Mostofian B. Martin H.J. Razavi A. Patel S. Allen B. Sherman W. Izaguirre J.A. Targeted protein degradation: Advances, challenges, and prospects for computational methods. J. Chem. Inf. Model. 2023 63 17 5408 5432 10.1021/acs.jcim.3c00603 37602861
    [Google Scholar]
  58. Bulatov E. Ciulli A. Targeting Cullin–RING E3 ubiquitin ligases for drug discovery: Structure, assembly and small-molecule modulation. Biochem. J. 2015 467 3 365 386 10.1042/BJ20141450 25886174
    [Google Scholar]
  59. Tolani B. Celli A. Yao Y. Tan Y.Z. Fetter R. Liem C.R. de Smith A.J. Vasanthakumar T. Bisignano P. Cotton A.D. Seiple I.B. Rubinstein J.L. Jost M. Weissman J.S. Ras-mutant cancers are sensitive to small molecule inhibition of V-type ATPases in mice. Nat. Biotechnol. 2022 40 12 1834 1844 10.1038/s41587‑022‑01386‑z 35879364
    [Google Scholar]
  60. Riching K.M. Mahan S. Corona C.R. McDougall M. Vasta J.D. Robers M.B. Urh M. Daniels D.L. Quantitative live-cell kinetic degradation and mechanistic profiling of PROTAC mode of action. ACS Chem. Biol. 2018 13 9 2758 2770 10.1021/acschembio.8b00692 30137962
    [Google Scholar]
  61. Karnik I. Her Z. Neo S.H. Liu W.N. Chen Q. Emerging preclinical applications of humanized mouse models in the discovery and validation of novel immunotherapeutics and their mechanisms of action for improved cancer treatment. Pharmaceutics 2023 15 6 1600 10.3390/pharmaceutics15061600 37376049
    [Google Scholar]
  62. Awadasseid A. Wang R. Sun S. Zhang F. Wu Y. Zhang W. Small molecule and PROTAC molecule experiments in vitro and in vivo, focusing on mouse PD-L1 and human PD-L1 differences as targets. Biomed. Pharmacother. 2024 172 116257 10.1016/j.biopha.2024.116257 38350367
    [Google Scholar]
  63. Fei Y. Wang X. Yu S. Yao Y. Zhao G. Wang X. Zhang H. Preclinical efficacy and mechanism for a novel BTK-protacs against mantle cell lymphoma. Blood 2023 142 Suppl. 1 2267 10.1182/blood‑2023‑185275
    [Google Scholar]
  64. Tang K. Wang B. Yu B. Liu H.M. Indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors and PROTAC-based degraders for cancer therapy. Eur. J. Med. Chem. 2022 227 113967 10.1016/j.ejmech.2021.113967 34752953
    [Google Scholar]
  65. Trial of ARV-110 in patients with metastatic castration resistant prostate cancer (mCRPC). NC Patent T03888612 2025
  66. Study to evaluate the safety and tolerability of CC-94676 in participants with metastatic castration-resistant prostate cancer. NC Patent T04428788 2024
  67. A Phase 1/2 Trial of ARV-471 alone and in combination with Palbociclib (IBRANCE®) in patients with ER+/HER2- Locally advanced or metastatic breast cancer. NC Patent T04072952 2024
  68. A study of NX-2127 in adults with Relapsed/ Refractory B-cell malignancies. NC Patent T04830137 2025
  69. A study of DT2216 in Relapsed/Refractory malignancies. NC Patent T04886622 2024
  70. Bhole R.P. Kute P.R. Chikhale R.V. Bonde C.G. Pant A. Gurav S.S. Unlocking the potential of PROTACs: A comprehensive review of protein degradation strategies in disease therapy. Bioorg. Chem. 2023 139 106720 10.1016/j.bioorg.2023.106720 37480814
    [Google Scholar]
  71. Chen S. Cui J. Chen H. Yu B. Long S. Recent progress in degradation of membrane proteins by PROTACs and alternative targeted protein degradation techniques. Eur. J. Med. Chem. 2023 262 115911 10.1016/j.ejmech.2023.115911 37924709
    [Google Scholar]
  72. Osawa H. Kurohara T. Ito T. Shibata N. Demizu Y. CRBN ligand expansion for hematopoietic prostaglandin D2 synthase (H-PGDS) targeting PROTAC design and their in vitro ADME profiles. Bioorg. Med. Chem. 2023 84 117259 10.1016/j.bmc.2023.117259 37018877
    [Google Scholar]
  73. Bakulina O. Sapegin A. Bunev A.S. Krasavin M. Synthetic approaches to constructing proteolysis targeting chimeras (PROTACs). Mendeleev Commun. 2022 32 4 419 432 10.1016/j.mencom.2022.07.001
    [Google Scholar]
  74. Li J. Chen X. Lu A. Liang C. Targeted protein degradation in cancers: Orthodox PROTACs and beyond. Innovation 2023 4 3 100413 10.1016/j.xinn.2023.100413 37033156
    [Google Scholar]
  75. Gao J. Yang L. Lei S. Zhou F. Nie H. Peng B. Xu T. Chen X. Yang X. Sheng C. Rao Y. Pu K. Jin J. Xu Z. Yu H. Stimuli-activatable PROTACs for precise protein degradation and cancer therapy. Sci. Bull. (Beijing) 2023 68 10 1069 1085 10.1016/j.scib.2023.04.028 37169612
    [Google Scholar]
  76. Wang Y. Zhang Y. Su S. Tamukong P. Murali R. Kim H.L. Stimulation of antitumor immunity by FoxP3-targeting PROTAC. Biomed. Pharmacother. 2023 163 114871 10.1016/j.biopha.2023.114871 37182514
    [Google Scholar]
  77. Riching K.M. Schwinn M.K. Vasta J.D. Robers M.B. Machleidt T. Urh M. Daniels D.L. CDK family PROTAC profiling reveals distinct kinetic responses and cell cycle–dependent degradation of CDK2. SLAS Discov. 2021 26 4 560 569 10.1177/2472555220973602 33190579
    [Google Scholar]
  78. Liu R Liu Z Chen M Xing H Zhang P Zhang J. Cooperatively designed aptamer-PROTACs for spatioselective degradation of nucleocytoplasmic shuttling protein for enhanced combinational therapy. Chem Sci. 2023 15 1 134 10.1039/D3SC04249A
    [Google Scholar]
  79. Zhang J. Zhang J. Leung E.L.H. Yao X.J. Multiple initiatives to conquer KRAS G12C inhibitor resistance from the perspective of clinical therapy. Expert Opin. Investig. Drugs 2023 32 2 101 106 10.1080/13543784.2023.2178419 36749819
    [Google Scholar]
  80. Liu Z. Hu M. Yang Y. Du C. Zhou H. Liu C. Chen Y. Fan L. Ma H. Gong Y. Xie Y. An overview of PROTACs: A promising drug discovery paradigm. Molecular Biomedicine 2022 3 1 46 10.1186/s43556‑022‑00112‑0 36536188
    [Google Scholar]
  81. Zhang P. Wang W. Guo M. Zhou L. Dong G. Xu D. Sheng C. Discovery of potent NAMPT-Targeting PROTACs using FK866 as the warhead. Bioorg. Med. Chem. Lett. 2023 92 129393 10.1016/j.bmcl.2023.129393 37369332
    [Google Scholar]
  82. Wang C. Zhang Y. Chen W. Wang Y. Xing D. Epidermal growth factor receptor PROTACs as an effective strategy for cancer therapy: A review. Biochim. Biophys. Acta Rev. Cancer 2023 1878 4 188927 10.1016/j.bbcan.2023.188927 37245798
    [Google Scholar]
  83. Zhang J. Duan H. Gui R. Wu M. Shen L. Jin Y. Pang A. Yu X. Zeng S. Zhang B. Lin N. Huang W. Wang Y. Yao X. Li J. Dong X. Zhou Y. Che J. Structure-based identification of new orally bioavailable BRD9-PROTACs for treating acute myelocytic leukemia. Eur. J. Med. Chem. 2023 262 115872 10.1016/j.ejmech.2023.115872 39491427
    [Google Scholar]
  84. He Y. Khan S. Huo Z. Lv D. Zhang X. Liu X. Yuan Y. Hromas R. Xu M. Zheng G. Zhou D. Proteolysis targeting chimeras (PROTACs) are emerging therapeutics for hematologic malignancies. J. Hematol. Oncol. 2020 13 1 103 10.1186/s13045‑020‑00924‑z 32718354
    [Google Scholar]
  85. Rutherford K.A. McManus K.J. PROTACs: Current and future potential as a precision medicine strategy to combat cancer. Mol. Cancer Ther. 2024 23 4 454 463 10.1158/1535‑7163.MCT‑23‑0747 38205881
    [Google Scholar]
  86. Peng X. Hu Z. Zeng L. Zhang M. Xu C. Lu B. Tao C. Chen W. Hou W. Cheng K. Bi H. Pan W. Chen J. Overview of epigenetic degraders based on PROTAC, molecular glue, and hydrophobic tagging technologies. Acta Pharm. Sin. B 2024 14 2 533 578 10.1016/j.apsb.2023.09.003 38322348
    [Google Scholar]
  87. Li H. Yang W. Li H. Bai X. Zhang H. Fan W. Liu W. Sun L. PROTAC targeting cyclophilin A controls virus-induced cytokine storm. iScience 2023 26 9 107535 10.1016/j.isci.2023.107535 37636080
    [Google Scholar]
  88. Alfayomy A.M. Ashry R. Kansy A.G. Sarnow A.C. Erdmann F. Schmidt M. Krämer O.H. Sippl W. Design, synthesis, and biological characterization of proteolysis targeting chimera (PROTACs) for the ataxia telangiectasia and RAD3-related (ATR) kinase. Eur. J. Med. Chem. 2024 267 116167 10.1016/j.ejmech.2024.116167 38308949
    [Google Scholar]
  89. Xu M. Zhang Z. Zhang P. Wang Q. Xia Y. Lian C. Liu J. Liu J. Beyond traditional methods: Unveiling the skin whitening properties of Rhein-Embedded PROTACs. Bioorg. Med. Chem. 2023 96 117537 10.1016/j.bmc.2023.117537 37992440
    [Google Scholar]
  90. Liang J. Wu Y. Lan K. Dong C. Wu S. Li S. Zhou H.B. Antiviral PROTACs: Opportunity borne with challenge. Cell Insight 2023 2 3 100092 10.1016/j.cellin.2023.100092 37398636
    [Google Scholar]
  91. Liu M. Martyn A.P. Quinn R.J. Natural product-based PROteolysis TArgeting Chimeras (PROTACs). Nat. Prod. Rep. 2022 39 12 2292 2307 10.1039/D2NP00038E 36196977
    [Google Scholar]
  92. Villegas J.A. Vaid T.M. Johnson M.E. Moore T.W. Mapping the energy landscape of PROTAC-mediated protein-protein interactions. Comput. Struct. Biotechnol. J. 2023 21 1885 1892 10.1016/j.csbj.2023.02.049 36923472
    [Google Scholar]
  93. Gong L. Li R. Gong J. Ning X. Sun J. Ma Q. Zhu C. Yang Y. Lin K. Li Y. Zhang Q. Li T. Lin Z. Discovery of a miniaturized PROTAC with potent activity and high selectivity. Bioorg. Chem. 2023 136 106556 10.1016/j.bioorg.2023.106556 37105002
    [Google Scholar]
  94. Kaur S.D. Bedi N. Kumar D. Kapoor D.N. PROTACs: Promising approach for anticancer therapy. Cancer Lett. 2023 556 216065 10.1016/j.canlet.2023.216065 36642326
    [Google Scholar]
  95. Yang X. Yin H. Kim R.D. Fleming J.B. Xie H. Preclinical and clinical advances of targeted protein degradation as a novel cancer therapeutic strategy: An oncologist perspective. Target. Oncol. 2021 16 1 1 12 10.1007/s11523‑020‑00782‑2 33369705
    [Google Scholar]
  96. Zhang Y. Targeting epidermal growth factor receptor for cancer treatment: Abolishing both kinase-dependent and kinase-independent functions of the receptor. Pharmacol. Rev. 2023 75 6 1218 1232 10.1124/pharmrev.123.000906 37339882
    [Google Scholar]
  97. Chen Y. Yang Q. Xu J. Tang L. Zhang Y. Du F. Zhao Y. Wu X. Li M. Shen J. Ding R. Cao H. Li W. Li X. Chen M. Wu Z. Cho C.H. Du Y. Wen Q. Xiao Z. PROTACs in gastrointestinal cancers. Mol. Ther. Oncolytics 2022 27 204 223 10.1016/j.omto.2022.10.012 36420306
    [Google Scholar]
  98. Xu H. Kurohara T. Ohoka N. Tsuji G. Inoue T. Naito M. Demizu Y. Development of versatile solid-phase methods for syntheses of PROTACs with diverse E3 ligands. Bioorg. Med. Chem. 2023 86 117293 10.1016/j.bmc.2023.117293 37126968
    [Google Scholar]
  99. Sung Y. Hong S.T. Jang M. Kim E.S. Kim C. Jung Y. Youn I. Chan Kwon I. Cho S.W. Ryu J.H. Predicting response to anti-EGFR antibody, cetuximab, therapy by monitoring receptor internalization and degradation. Biomaterials 2023 303 122382 10.1016/j.biomaterials.2023.122382 37977005
    [Google Scholar]
  100. Tokheim C. Wang X. Timms R.T. Zhang B. Mena E.L. Wang B. Chen C. Ge J. Chu J. Zhang W. Elledge S.J. Brown M. Liu X.S. Systematic characterization of mutations altering protein degradation in human cancers. Mol. Cell 2021 81 6 1292 1308.e11 10.1016/j.molcel.2021.01.020 33567269
    [Google Scholar]
  101. Chen J. Qiu M. Ma F. Yang L. Glass Z. Xu Q. Enhanced protein degradation by intracellular delivery of pre-fused PROTACs using lipid-like nanoparticles. J. Control. Release 2021 330 1244 1249 10.1016/j.jconrel.2020.11.032 33234362
    [Google Scholar]
  102. Xie H. Xu W. Liang J. Liu Y. Zhuo C. Zou X. Luo W. Xiao J. Lin Y. Chen L. Li H. Design, synthesis and evaluation of EZH2-based PROTACs targeting PRC2 complex in lymphoma. Bioorg. Chem. 2023 140 106762 10.1016/j.bioorg.2023.106762 37572533
    [Google Scholar]
  103. Wang C. Zhang Y. Deng J. Liang B. Xing D. Developments of PROTACs technology in immune-related diseases. Eur. J. Med. Chem. 2023 249 115127 10.1016/j.ejmech.2023.115127 36724631
    [Google Scholar]
  104. Wang C. Zhang Y. Yang S. Xing D. Recent advances of PROTACs technology in neurodegenerative diseases. Arab. J. Chem. 2023 16 9 105015 10.1016/j.arabjc.2023.105015
    [Google Scholar]
  105. Wu J. Li L. Zhu Q. Zhang T. Miao F. Cui Z. Dong G. Tai Z. Chen Z. JAK1/JAK2 degraders based on PROTAC for topical treatment of atopic dermatitis. Biomed. Pharmacother. 2024 171 116167 10.1016/j.biopha.2024.116167 38262152
    [Google Scholar]
  106. Zhou X.L. Zhao F. Xu Y.T. Guan Y.Y. Yu T. Zhang Y.Z. Duan Y.C. Zhao Y. A comprehensive review of BET-targeting PROTACs for cancer therapy. Bioorg. Med. Chem. 2022 73 117033 10.1016/j.bmc.2022.117033 36202064
    [Google Scholar]
  107. Boiarsky D. Lydon C.A. Chambers E.S. Sholl L.M. Nishino M. Skoulidis F. Heymach J.V. Luo J. Awad M.M. Janne P.A. Van Allen E.M. Barbie D.A. Vokes N.I. Molecular markers of metastatic disease in KRAS-mutant lung adenocarcinoma. Ann. Oncol. 2023 34 7 589 604 10.1016/j.annonc.2023.04.514 37121400
    [Google Scholar]
  108. Kamiyama H. Noda H. Konishi F. Rikiyama T. Molecular biomarkers for the detection of metastatic colorectal cancer cells. World J. Gastroenterol. 2014 20 27 8928 8938 25083065
    [Google Scholar]
  109. Xiao Y. Hale S. Awasthee N. Meng C. Zhang X. Liu Y. Ding H. Huo Z. Lv D. Zhang W. He M. Zheng G. Liao D. HDAC3 and HDAC8 PROTAC dual degrader reveals roles of histone acetylation in gene regulation. Cell Chem. Biol. 2023 30 11 1421 1435.e12 10.1016/j.chembiol.2023.07.010 37572669
    [Google Scholar]
  110. Wu Y. Zhang J. Zhu X. Zhang Y. Developing PROteolysis TArgeting Chimeras (PROTACs) for hematologic malignancies. Cancer Lett. 2022 544 215808 10.1016/j.canlet.2022.215808 35764266
    [Google Scholar]
  111. Wang X.R. Wang S. Mu H.X. Xu K.Y. Wang X.T. Shi J.T. Cui Q.H. Zhang L.W. Chen S.W. Discovery of novel VEGFR-2-PROTAC degraders based on the localization of lysine residues via recruiting VHL for the treatment of gastric cancer. Eur. J. Med. Chem. 2022 244 114821 10.1016/j.ejmech.2022.114821 36242985
    [Google Scholar]
  112. Desantis J. Mercorelli B. Celegato M. Croci F. Bazzacco A. Baroni M. Siragusa L. Cruciani G. Loregian A. Goracci L. Indomethacin-based PROTACs as pan-coronavirus antiviral agents. Eur. J. Med. Chem. 2021 226 113814 10.1016/j.ejmech.2021.113814 34534839
    [Google Scholar]
  113. Guedeney N. Cornu M. Schwalen F. Kieffer C. Voisin-Chiret A.S. PROTAC technology: A new drug design for chemical biology with many challenges in drug discovery. Drug Discov. Today 2023 28 1 103395 10.1016/j.drudis.2022.103395 36228895
    [Google Scholar]
  114. Zhao C. Chen D. Suo F. Setroikromo R. Quax W.J. Dekker F.J. Discovery of highly potent HDAC8 PROTACs with anti-tumor activity. Bioorg. Chem. 2023 136 106546 10.1016/j.bioorg.2023.106546 37098288
    [Google Scholar]
  115. Saraswat A.L. Vartak R. Hegazy R. Patel A. Patel K. Drug delivery challenges and formulation aspects of proteolysis targeting chimera (PROTACs). Drug Discov. Today 2023 28 1 103387 10.1016/j.drudis.2022.103387 36184017
    [Google Scholar]
  116. Du G. Jiang J. Henning N.J. Safaee N. Koide E. Nowak R.P. Donovan K.A. Yoon H. You I. Yue H. Eleuteri N.A. He Z. Li Z. Huang H.T. Che J. Nabet B. Zhang T. Fischer E.S. Gray N.S. Exploring the target scope of KEAP1 E3 ligase-based PROTACs. Cell Chem. Biol. 2022 29 10 1470 1481.e31 10.1016/j.chembiol.2022.08.003 36070758
    [Google Scholar]
  117. Liao H. Li X. Zhao L. Wang Y. Wang X. Wu Y. Zhou X. Fu W. Liu L. Hu H.G. Chen Y.G. A PROTAC peptide induces durable β-catenin degradation and suppresses Wnt-dependent intestinal cancer. Cell Discov. 2020 6 1 35 10.1038/s41421‑020‑0171‑1 32550000
    [Google Scholar]
  118. Niu T. Li K. Jiang L. Zhou Z. Hong J. Chen X. Dong X. He Q. Cao J. Yang B. Zhu C.L. Noncovalent CDK12/13 dual inhibitors-based PROTACs degrade CDK12-Cyclin K complex and induce synthetic lethality with PARP inhibitor. Eur. J. Med. Chem. 2022 228 114012 10.1016/j.ejmech.2021.114012 34864331
    [Google Scholar]
  119. Riching K.M. Vasta J.D. Hughes S.J. Zoppi V. Maniaci C. Testa A. Urh M. Ciulli A. Daniels D.L. Translating PROTAC chemical series optimization into functional outcomes underlying BRD7 and BRD9 protein degradation. Curr. Res. Chemical. Biol. 2021 1 100009 10.1016/j.crchbi.2021.100009
    [Google Scholar]
  120. Weng W. Xue G. Pan Z. Development of visible-light-activatable photocaged PROTACs. Eur. J. Med. Chem. 2024 265 116062 10.1016/j.ejmech.2023.116062 38128235
    [Google Scholar]
  121. Zhang Q Kounde CS Mondal M Greenfield JL Baker JR Kotelnikov S Ignatov M Tinworth CP Zhang L Conole D De Vita E Kozakov D McCluskey A Harling JD Fuchter MJ Tate EW Light-mediated multi-target protein degradation using arylazopyrazole photoswitchable PROTACs (AP-PROTACs). Chem Commun (Camb). 2022 58 78 10933 10.1039/D2CC03092F
    [Google Scholar]
  122. Wang C. Zheng C. Wang H. Zhang L. Liu Z. Xu P. The state of the art of PROTAC technologies for drug discovery. Eur. J. Med. Chem. 2022 235 114290 10.1016/j.ejmech.2022.114290 35307618
    [Google Scholar]
  123. Ma S. Ji J. Tong Y. Zhu Y. Dou J. Zhang X. Xu S. Zhu T. Xu X. You Q. Jiang Z. Non-small molecule PROTACs (NSM-PROTACs): Protein degradation kaleidoscope. Acta Pharm. Sin. B 2022 12 7 2990 3005 10.1016/j.apsb.2022.02.022 35865099
    [Google Scholar]
  124. Jia X. Han X. Targeting androgen receptor degradation with PROTACs from bench to bedside. Biomed. Pharmacother. 2023 158 114112 10.1016/j.biopha.2022.114112 36508999
    [Google Scholar]
  125. Ao M. Wu J. Cao Y. He Y. Zhang Y. Gao X. Xue Y. Fang M. Wu Z. The synthesis of PROTAC molecule and new target KAT6A identification of CDK9 inhibitor iCDK9. Chin. Chem. Lett. 2023 34 4 107741 10.1016/j.cclet.2022.107741
    [Google Scholar]
  126. Zhu L. Hu S. Yan X. Zeng Q. Zhang B. Jiang L. Yao S.Q. Ge J. Ugi reaction-assisted assembly of covalent PROTACs against glutathione peroxidase 4. Bioorg. Chem. 2023 134 106461 10.1016/j.bioorg.2023.106461 36924654
    [Google Scholar]
  127. Simpson L.M. Glennie L. Brewer A. Zhao J.F. Crooks J. Shpiro N. Sapkota G.P. Target protein localization and its impact on PROTAC-mediated degradation. Cell Chem. Biol. 2022 29 10 1482 1504.e7 10.1016/j.chembiol.2022.08.004 36075213
    [Google Scholar]
  128. Zhai J. Li C. Sun B. Wang S. Cui Y. Gao Q. Sang F. Sunitinib-based Proteolysis Targeting Chimeras (PROTACs) reduced the protein levels of FLT-3 and c-KIT in leukemia cell lines. Bioorg. Med. Chem. Lett. 2022 78 129041 10.1016/j.bmcl.2022.129041 36332882
    [Google Scholar]
  129. Hsu J.H.R. Rasmusson T. Robinson J. Pachl F. Read J. Kawatkar S. O’ Donovan D.H. Bagal S. Code E. Rawlins P. Argyrou A. Tomlinson R. Gao N. Zhu X. Chiarparin E. Jacques K. Shen M. Woods H. Bednarski E. Wilson D.M. Drew L. Castaldi M.P. Fawell S. Bloecher A. EED-targeted PROTACs degrade EED, EZH2, and SUZ12 in the PRC2 complex. Cell Chem. Biol. 2020 27 1 41 46.e17 10.1016/j.chembiol.2019.11.004 31786184
    [Google Scholar]
  130. Jiang Q. Fu M. Tang Y. Li G. Tu G. Wu X. Wu Q. Huang X. Xu J. Liu Y. Wu L. Discovery of X10g as a selective PROTAC degrader of Hsp90α protein for treating breast cancer. Eur. J. Med. Chem. 2023 260 115690 10.1016/j.ejmech.2023.115690 37619298
    [Google Scholar]
  131. Han X. Sun Y. Strategies for the discovery of oral PROTAC degraders aimed at cancer therapy. Cell Reports. Physical. Sci. 2022 3 10 101062 10.1016/j.xcrp.2022.101062
    [Google Scholar]
  132. Aublette M.C. Harrison T.A. Thorpe E.J. Gadd M.S. Selective Wee1 degradation by PROTAC degraders recruiting VHL and CRBN E3 ubiquitin ligases. Bioorg. Med. Chem. Lett. 2022 64 128636 10.1016/j.bmcl.2022.128636 35231578
    [Google Scholar]
  133. Hati S. Zallocchi M. Hazlitt R. Li Y. Vijayakumar S. Min J. Rankovic Z. Lovas S. Zuo J. AZD5438-PROTAC: A selective CDK2 degrader that protects against cisplatin- and noise-induced hearing loss. Eur. J. Med. Chem. 2021 226 113849 10.1016/j.ejmech.2021.113849 34560429
    [Google Scholar]
  134. Li G. Lin S. Yu Z. Wu X. Liu J. Tu G. Liu Q. Tang Y. Jiang Q. Xu J. Huang Q. Wu L. A PARP1 PROTAC as a novel strategy against PARP inhibitor resistance via promotion of ferroptosis in p53-positive breast cancer. Biochem. Pharmacol. 2022 206 115329 10.1016/j.bcp.2022.115329 36309080
    [Google Scholar]
  135. Troup R.I. Fallan C. Baud M.G.J. Current strategies for the design of PROTAC linkers: A critical review. Explor. target. anti-tumor ther. 2020 1 5 273 312 10.37349/etat.2020.00018 36046485
    [Google Scholar]
  136. Zou Y. Ma D. Wang Y. The PROTAC technology in drug development. Cell Biochem. Funct. 2019 37 1 21 30 10.1002/cbf.3369 30604499
    [Google Scholar]
  137. Gao H. Sun X. Rao Y. PROTAC technology: Opportunities and challenges. ACS Med. Chem. Lett. 2020 11 3 237 240 10.1021/acsmedchemlett.9b00597 32184950
    [Google Scholar]
  138. Lai A.C. Toure M. Hellerschmied D. Salami J. Jaime-Figueroa S. Ko E. Hines J. Crews C.M. Modular PROTAC design for the degradation of oncogenic BCR‐ABL. Angew. Chem. Int. Ed. 2016 55 2 807 810 10.1002/anie.201507634 26593377
    [Google Scholar]
  139. Békés M. Langley D.R. Crews C.M. PROTAC targeted protein degraders: The past is prologue. Nat. Rev. Drug Discov. 2022 21 3 181 200 10.1038/s41573‑021‑00371‑6 35042991
    [Google Scholar]
  140. Bondeson D.P. Smith B.E. Burslem G.M. Buhimschi A.D. Hines J. Jaime-Figueroa S. Wang J. Hamman B.D. Ishchenko A. Crews C.M. Lessons in PROTAC design from selective degradation with a promiscuous warhead. Cell Chem. Biol. 2018 25 1 78 87.e5 10.1016/j.chembiol.2017.09.010 29129718
    [Google Scholar]
  141. Gadd M.S. Testa A. Lucas X. Chan K.H. Chen W. Lamont D.J. Zengerle M. Ciulli A. Structural basis of PROTAC cooperative recognition for selective protein degradation. Nat. Chem. Biol. 2017 13 5 514 521 10.1038/nchembio.2329 28288108
    [Google Scholar]
  142. Peng X. Pan W. Jiang F. Chen W. Qi Z. Peng W. Chen J. Selective PARP1 inhibitors, PARP1-based dual-target inhibitors, PROTAC PARP1 degraders, and prodrugs of PARP1 inhibitors for cancer therapy. Pharmacol. Res. 2022 186 106529 10.1016/j.phrs.2022.106529 36328301
    [Google Scholar]
  143. Nguyen T.M. Sreekanth V. Deb A. Kokkonda P. Tiwari P.K. Donovan K.A. Shoba V. Chaudhary S.K. Mercer J.A.M. Lai S. Sadagopan A. Jan M. Fischer E.S. Liu D.R. Ebert B.L. Choudhary A. Proteolysis-targeting chimeras with reduced off-targets. Nat. Chem. 2024 16 2 218 228 10.1038/s41557‑023‑01379‑8 38110475
    [Google Scholar]
  144. Al Noman A. Afrosa H. Lihu I.K. Sarkar O. Nabin N.R. Datta M. Pathak R. Sharma H. Vitamin D and neurological health: Unraveling risk factors, disease progression, and treatment potential. CNS Neurol. Disord. Drug Targets 2024 24 1 12 39440730
    [Google Scholar]
  145. Hamilton G. Eggerstorfer M.T. Stickler S. Development of PROTACS degrading KRAS and SOS1. Oncol. Res. 2024 32 8 1257 1264 10.32604/or.2024.051653 39055890
    [Google Scholar]
  146. Zhou Z. Zhou G. Zhou C. Fan Z. Cui R. Li Y. Li R. Gu Y. Li H. Ge Z. Cai X. Jiang B. Wang D. Zheng M. Xu T. Zhang S. Discovery of a potent, cooperative, and selective SOS1 PROTAC ZZ151 with in vivo antitumor efficacy in KRAS-mutant cancers. J. Med. Chem. 2023 66 6 4197 4214 10.1021/acs.jmedchem.3c00075 36897932
    [Google Scholar]
  147. Khan S. Wiegand J. Zhang P. Hu W. Thummuri D. Budamagunta V. Hua N. Jin L. Allegra C.J. Kopetz E.S. Zajac-Kaye M. Kaye F.J. Zheng G. Zhou D. Abstract 5313: A BCL-XL PROTAC degrader DT2216 synergizes with KRASG12C inhibitors for effectively treating KRASG12C-mutated cancers. Cancer Res. 2022 82 12_Supplement Suppl. 5313 10.1158/1538‑7445.AM2022‑5313
    [Google Scholar]
  148. Herrera-Montavez C. Kurimchak A.M. Hu X. Hu J. Jin J. Duncan J.S. MEK1/2-targeting PROTACs promote the collateral degradation of CRAF in KRAS mutant cells. bioRxiv 2023
    [Google Scholar]
  149. Zhou C. Fan Z. Zhou Z. Li Y. Cui R. Liu C. Zhou G. Diao X. Jiang H. Zheng M. Zhang S. Xu T. Discovery of the first-in-class agonist-based SOS1 PROTACs effective in human cancer cells harboring various KRAS mutations. J. Med. Chem. 2022 65 5 3923 3942 10.1021/acs.jmedchem.1c01774 35230841
    [Google Scholar]
  150. Casan J.M.L. Seymour J.F. Degraders upgraded: The rise of PROTACs in hematological malignancies. Blood 2024 143 13 1218 1230 10.1182/blood.2023022993 38170175
    [Google Scholar]
  151. Khan S. Wiegand J. Zhang P. Hu W. Thummuri D. Budamagunta V. Hua N. Jin L. Allegra C.J. Kopetz S.E. Zajac-Kaye M. Kaye F.J. Zheng G. Zhou D. BCL-XL PROTAC degrader DT2216 synergizes with sotorasib in preclinical models of KRASG12C-mutated cancers. J. Hematol. Oncol. 2022 15 1 23 10.1186/s13045‑022‑01241‑3 35260176
    [Google Scholar]
  152. Yu X. Xu J. Cahuzac K.M. Xie L. Shen Y. Chen X. Liu J. Parsons R.E. Jin J. Novel allosteric inhibitor-derived AKT Proteolysis Targeting Chimeras (PROTACs) enable potent and selective AKT degradation in KRAS/BRAF mutant cells. J. Med. Chem. 2022 65 20 14237 14260 10.1021/acs.jmedchem.2c01454 36197750
    [Google Scholar]
  153. Bery N. Miller A. Rabbitts T. A potent KRAS macromolecule degrader specifically targeting tumours with mutant KRAS. Nat. Commun. 2020 11 1 3233 10.1038/s41467‑020‑17022‑w 32591521
    [Google Scholar]
  154. Yoon G. Jo B.S. Lee D.W. Yang J. Park M-H. Seok S. Lee J.Y. Chung C.P. Park Y.S. Park Y.J. Abstract B039: BIO-PROTAC: Application of cell penetrating scFv to treat undruggable KRAS mutant cancer. Mol. Cancer Res. 2023 21 5_Supplement Suppl. B039 B039 10.1158/1557‑3125.RAS23‑B039
    [Google Scholar]
  155. Hu Z. Crews C.M. Recent developments in PROTAC‐mediated protein degradation: From bench to clinic. ChemBioChem 2022 23 2 e202100270 10.1002/cbic.202100270 34494353
    [Google Scholar]
  156. Posternak G. Tang X. Maisonneuve P. Jin T. Lavoie H. Daou S. Orlicky S. Goullet de Rugy T. Caldwell L. Chan K. Aman A. Prakesch M. Poda G. Mader P. Wong C. Maier S. Kitaygorodsky J. Larsen B. Colwill K. Yin Z. Ceccarelli D.F. Batey R.A. Taipale M. Kurinov I. Uehling D. Wrana J. Durocher D. Gingras A.C. Al-Awar R. Therrien M. Sicheri F. Functional characterization of a PROTAC directed against BRAF mutant V600E. Nat. Chem. Biol. 2020 16 11 1170 1178 10.1038/s41589‑020‑0609‑7 32778845
    [Google Scholar]
  157. Huang L. Guo Z. Wang F. Fu L. KRAS mutation: from undruggable to druggable in cancer. Signal Transduct. Target. Ther. 2021 6 1 386 10.1038/s41392‑021‑00780‑4 34776511
    [Google Scholar]
  158. Chirnomas D. Hornberger K.R. Crews C.M. Protein degraders enter the clinic: A new approach to cancer therapy. Nat. Rev. Clin. Oncol. 2023 20 4 265 278 10.1038/s41571‑023‑00736‑3 36781982
    [Google Scholar]
  159. Alabi S. Jaime-Figueroa S. Yao Z. Gao Y. Hines J. Samarasinghe K.T.G. Vogt L. Rosen N. Crews C.M. Mutant-selective degradation by BRAF-targeting PROTACs. Nat. Commun. 2021 12 1 920 10.1038/s41467‑021‑21159‑7 33568647
    [Google Scholar]
  160. Cook J.H. Melloni G.E.M. Gulhan D.C. Park P.J. Haigis K.M. The origins and genetic interactions of KRAS mutations are allele- and tissue-specific. Nat. Commun. 2021 12 1 1808 10.1038/s41467‑021‑22125‑z 33753749
    [Google Scholar]
  161. Li R. Liu M. Yang Z. Li J. Gao Y. Tan R. Proteolysis-targeting chimeras (PROTACs) in cancer therapy: Present and future. Molecules 2022 27 24 8828 10.3390/molecules27248828 36557960
    [Google Scholar]
  162. Li X. Pu W. Zheng Q. Ai M. Chen S. Peng Y. Proteolysis-targeting chimeras (PROTACs) in cancer therapy. Mol. Cancer 2022 21 1 99 10.1186/s12943‑021‑01434‑3 35410300
    [Google Scholar]
  163. Ma D. Zou Y. Chu Y. Liu Z. Liu G. Chu J. Li M. Wang J. Sun S. Chang Z. A cell-permeable peptide-based PROTAC against the oncoprotein CREPT proficiently inhibits pancreatic cancer. Theranostics 2020 10 8 3708 3721 10.7150/thno.41677 32206117
    [Google Scholar]
  164. Punekar S.R. Velcheti V. Neel B.G. Wong K.K. The current state of the art and future trends in RAS-targeted cancer therapies. Nat. Rev. Clin. Oncol. 2022 19 10 637 655 10.1038/s41571‑022‑00671‑9 36028717
    [Google Scholar]
  165. Erlanson D.A. Webster K.R. Targeting mutant KRAS. Curr. Opin. Chem. Biol. 2021 62 101 108 10.1016/j.cbpa.2021.02.010 33838397
    [Google Scholar]
  166. Samarasinghe K.T.G. Crews C.M. Targeted protein degradation: A promise for undruggable proteins. Cell Chem. Biol. 2021 28 7 934 951 10.1016/j.chembiol.2021.04.011 34004187
    [Google Scholar]
  167. Yu D. Zheng M. Liu Y. Chen L. Li H. Proteolysis-targeting chimera molecules targeting SHP2. Future Med. Chem. 2022 14 8 587 600 10.4155/fmc‑2021‑0324 35297283
    [Google Scholar]
  168. Rana S. Mallareddy J.R. Singh S. Boghean L. Natarajan A. Inhibitors, PROTACs and molecular glues as diverse therapeutic modalities to target cyclin-dependent kinase. Cancers 2021 13 21 5506 10.3390/cancers13215506 34771669
    [Google Scholar]
  169. Zenker M. Lehmann K. Schulz A.L. Barth H. Hansmann D. Koenig R. Korinthenberg R. Kreiss-Nachtsheim M. Meinecke P. Morlot S. Mundlos S. Quante A.S. Raskin S. Schnabel D. Wehner L.E. Kratz C.P. Horn D. Kutsche K. Expansion of the genotypic and phenotypic spectrum in patients with KRAS germline mutations. J. Med. Genet. 2006 44 2 131 135 10.1136/jmg.2006.046300 17056636
    [Google Scholar]
  170. Zagidullin A. Milyukov V. Rizvanov A. Bulatov E. Novel approaches for the rational design of PROTAC linkers. Explor. target. anti-tumor ther. 2020 1 5 381 390 10.37349/etat.2020.00023 36046487
    [Google Scholar]
  171. Bashore F.M. Foley C.A. Ong H.W. Rectenwald J.M. Hanley R.P. Norris-Drouin J.L. Cholensky S.H. Mills C.A. Pearce K.H. Herring L.E. Kireev D. Frye S.V. James L.I. PROTAC linkerology leads to an optimized bivalent chemical degrader of polycomb repressive complex 2 (PRC2) components. ACS Chem. Biol. 2023 18 3 494 507 10.1021/acschembio.2c00804 36877831
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206377691250523095407
Loading
/content/journals/acamc/10.2174/0118715206377691250523095407
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test