Skip to content
2000
image of Phytochemical Profiling and Anticancer Potential of Fagonia cretica L. Extracts on Liver Cancer (HepG2) Cells using In vitro and In silico Approaches

Abstract

Background

Cancer is a complex multifactorial disease charcterized by the progression of genetic and epigenetic changes in human cells. Plant-based derivatives with antioxidant and anticancer properties have been of great interest in treating several human ailments.

Objective

This study investigates the antioxidative, cytotoxic, and apoptotic activities of different L. () leaf extracts.

Methods

DPPH, nitric oxide, superoxide anion, and hydrogen peroxide assays were used to evaluate the antioxidative potential of ethanolic extract of (EFC) and hexane extract of (HFC). The antiproliferative potential was determined using MTT, crystal violet, and annexin V/PI staining protocols on liver cancer (HepG2) and noncancerous (HEK-293) cell lines. Through analysis, bioactive drug-like phytocompounds identified by GC-MS were evaluated.

Results

Higher concentrations of total flavonoid contents (TFCs), total phenolic contents (TPCs), and tannins with strong antioxidant potential were observed in EFC extract as compared to HFC extract. Furthermore, the EFC extract proved to be more cytotoxic with a selective index (SI) of 12.92 than HFC (SI; 5.46) towards experimental cell lines. Moreover, EFC extract showed 82.31% apoptotic induction on HepG2 cells compared to hexane extract and cisplatin (standard drug). From the GC-MS analysis of , 32 bioactive compounds were identified from the EFC extract and 21 from the HFC extract. study revealed that 5-(4,5-Dihydro-3H-pyrrol-2-ylmethylene)-4,4-dimethylpyrrolidine-2-thione showed the highest docking score of -8.9 kcal/mol and -8.6 kcal/mol against TNF-α and TGF-β, respectively.

Conclusion

In conclusion, EFC extract and its bioactive compounds have a scientifically proven role in liver cancer management, but further research is required to validate their therapeutics through clinical trials.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206377419250527105350
2025-05-03
2025-10-09
Loading full text...

Full text loading...

References

  1. Valery P.C. Laversanne M. Clark P.J. Petrick J.L. McGlynn K.A. Bray F. Projections of primary liver cancer to 2030 in 30 countries worldwide. Hepatology 2018 67 2 600 611 10.1002/hep.29498 28859220
    [Google Scholar]
  2. Budreviciute A. Damiati S. Sabir D.K. Onder K. Schuller-Goetzburg P. Plakys G. Katileviciute A. Khoja S. Kodzius R. Management and prevention strategies for non-communicable diseases (NCDs) and their risk factors. Front. Public Health 2020 8 574111 10.3389/fpubh.2020.574111 33324597
    [Google Scholar]
  3. Russo F.P. Zanetto A. Pinto E. Battistella S. Penzo B. Burra P. Farinati F. Hepatocellular carcinoma in chronic viral hepatitis: Where do we stand? Int. J. Mol. Sci. 2022 23 1 500 10.3390/ijms23010500 35008926
    [Google Scholar]
  4. Koyama Y. Brenner D.A. Liver inflammation and fibrosis. J. Clin. Invest. 2017 127 1 55 64 10.1172/JCI88881 28045404
    [Google Scholar]
  5. Brenner D. Blaser H. Mak T.W. Regulation of tumour necrosis factor signalling: Live or let die. Nat. Rev. Immunol. 2015 15 6 362 374 10.1038/nri3834 26008591
    [Google Scholar]
  6. Liu X. L. Li F. Q. Liu L. X. Li B. Zhou Z. P. TNF-α, HGF and macrophage in peritumoural liver tissue relate to major risk factors of HCC recurrence. Hepatogastroenterology 2013 60 125 1121 1126 10.5754/hge12982
    [Google Scholar]
  7. Pascual S. Herrera I. Irurzun J. New advances in hepatocellular carcinoma. World J. Hepatol. 2016 8 9 421 438 10.4254/wjh.v8.i9.421 27028578
    [Google Scholar]
  8. Sanoff H.K. Chang Y. Lund J.L. O’Neil B.H. Dusetzina S.B. (). Sorafenib effectiveness in advanced hepatocellular carcinoma. Oncologist 2016 21 9 1113 1120 10.1634/theoncologist.2015‑0478 27185615
    [Google Scholar]
  9. Tan W. Luo X. Li W. Zhong J. Cao J. Zhu S. Chen X. Zhou R. Shang C. Chen Y. TNF-α is a potential therapeutic target to overcome sorafenib resistance in hepatocellular carcinoma. EBioMedicine 2019 40 446 456 10.1016/j.ebiom.2018.12.047 30594557
    [Google Scholar]
  10. Atanasov A.G. Zotchev S.B. Dirsch V.M. Orhan I.E. Banach M. Rollinger J.M. Barreca D. Weckwerth W. Bauer R. Bayer E.A. Majeed M. Bishayee A. Bochkov V. Bonn G.K. Braidy N. Bucar F. Cifuentes A. D’Onofrio G. Bodkin M. Diederich M. Dinkova-Kostova A.T. Efferth T. El Bairi K. Arkells N. Fan T-P. Fiebich B.L. Freissmuth M. Georgiev M.I. Gibbons S. Godfrey K.M. Gruber C.W. Heer J. Huber L.A. Ibanez E. Kijjoa A. Kiss A.K. Lu A. Macias F.A. Miller M.J.S. Mocan A. Müller R. Nicoletti F. Perry G. Pittalà V. Rastrelli L. Ristow M. Russo G.L. Silva A.S. Schuster D. Sheridan H. Skalicka-Woźniak K. Skaltsounis L. Sobarzo-Sánchez E. Bredt D.S. Stuppner H. Sureda A. Tzvetkov N.T. Vacca R.A. Aggarwal B.B. Battino M. Giampieri F. Wink M. Wolfender J-L. Xiao J. Yeung A.W.K. Lizard G. Popp M.A. Heinrich M. Berindan-Neagoe I. Stadler M. Daglia M. Verpoorte R. Supuran C.T. International Natural Product Sciences Taskforce Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021 20 3 200 216 10.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  11. Mushtaq S. Abbasi B.H. Uzair B. Abbasi R. Natural products as reservoirs of novel therapeutic agents. EXCLI J. 2018 17 420 451 10.17179/excli2018‑1174 29805348
    [Google Scholar]
  12. Pan S.Y. Litscher G. Gao S.H. Zhou S.F. Yu Z.L. Chen H.Q. Zhang S.F. Tang M.K. Sun J.N. Ko K.M. Historical perspective of traditional indigenous medical practices: The current renaissance and conservation of herbal resources. Evid. Based Complement. Alternat. Med. 2014 2014 1 525340 10.1155/2014/525340 24872833
    [Google Scholar]
  13. Desai A. Qazi G. Ganju R. El-Tamer M. Singh J. Saxena A. Bedi Y. Taneja S. Bhat H. Medicinal plants and cancer chemoprevention. Curr. Drug Metab. 2008 9 7 581 591 10.2174/138920008785821657 18781909
    [Google Scholar]
  14. Tuni̇o Q. Rafi̇q M. Tuni̇o A.A. Qureshi̇ A.S. Rehman T. Bhutto M.A. Lashari Z. Determination of phytochemicals, antimicrobial, antioxidant and allelopathic effects of Fagonia cretica L., collected from Jamshoro, Pakistan. Yüz. Yil Üniv. Tarim Bilim. Derg. 2022 32 4 785 794 10.29133/yyutbd.1122798
    [Google Scholar]
  15. Patel D. Kumar V. Protective effects of Fagonia cretica L. Extract in cafeteria diet induced obesity in wistar rats. J. Nat. Rem. 2020 20 3 185 190 10.18311/jnr/2020/25223
    [Google Scholar]
  16. Lam M. Carmichael A.R. Griffiths H.R. An aqueous extract of Fagonia cretica induces DNA damage, cell cycle arrest and apoptosis in breast cancer cells via FOXO3a and p53 expression. PLoS One 2012 7 6 e40152 10.1371/journal.pone.0040152 22761954
    [Google Scholar]
  17. Russo G. L. Tedesco I. Spagnuolo C. Russo M. Antioxidant polyphenols in cancer treatment: Friend, foe or foil? Semin Cancer Biol 2017 46 1 13 10.1016/j.semcancer.2017.05.005
    [Google Scholar]
  18. Kelley R.K. Gane E. Assenat E. Siebler J. Galle P.R. Merle P. Hourmand I.O. Cleverly A. Zhao Y. Gueorguieva I. Lahn M. Faivre S. Benhadji K.A. Giannelli G. A phase 2 study of galunisertib (TGF-β1 receptor type I inhibitor) and sorafenib in patients with advanced hepatocellular carcinoma. Clin. Transl. Gastroenterol. 2019 10 7 e00056 10.14309/ctg.0000000000000056 31295152
    [Google Scholar]
  19. Wojtukiewicz M.Z. Rek M.M. Karpowicz K. Górska M. Polityńska B. Wojtukiewicz A.M. Moniuszko M. Radziwon P. Tucker S.C. Honn K.V. Inhibitors of immune checkpoints—PD-1, PD-L1, CTLA-4—new opportunities for cancer patients and a new challenge for internists and general practitioners. Cancer Metastasis Rev. 2021 40 3 949 982 10.1007/s10555‑021‑09976‑0 34236546
    [Google Scholar]
  20. Abdullah S. Mukherjee S. Shweta Debnath B. The prevention of multi-drug resistance in cancers through the application of nanotechnology-based targeted delivery systems for combination therapies involving traditional Chinese medicine. Pharmacol. Res. Mod. Chin. Med. 2024 10 100386 10.1016/j.prmcm.2024.100386
    [Google Scholar]
  21. Rajkumar P. Sundari S. Selvaraj S. Natarajan A. Suganya R. Jayaprakash R. Kasthuri K. Kumaresan S. GC-MS, phytochemical analysis and in silico approaches of a medicinal plant Acalypha indica. J. Sci. Res. 2022 14 2 671 684 10.3329/jsr.v14i2.56648
    [Google Scholar]
  22. Alqahtani S. In silico ADME-Tox modeling: Progress and prospects. Expert Opin. Drug Metab. Toxicol. 2017 13 11 1147 1158 10.1080/17425255.2017.1389897 28988506
    [Google Scholar]
  23. Archana P. Samatha T. Mahitha B. Chamundeswari C. Ramaswamy N. Preliminary phytochemical screening from leaf and seed extracts of Senna alata L. Roxb-an ethnomedicinalplant. Int. J. Biol. Res 2012 3 3 82 89
    [Google Scholar]
  24. Harborne J.B. Phytochemical methods: A guide to modern techniques of plant analysis. London, UK Chapman and Hall 1998
    [Google Scholar]
  25. Mathur R. Phytochemical and antimicrobial evaluation of plant extracts of Enicostemma hyssopifolium. J. Pharmacogn. Phytochem. 2013 2 4 30 36
    [Google Scholar]
  26. Hossain M.A. AL-Raqmi K.A.S. AL-Mijizy Z.H. Weli A.M. Al-Riyami Q. Study of total phenol, flavonoids contents and phytochemical screening of various leaves crude extracts of locally grown Thymus vulgaris. Asian Pac. J. Trop. Biomed. 2013 3 9 705 710 10.1016/S2221‑1691(13)60142‑2 23998010
    [Google Scholar]
  27. Khan M.F. Kader F.B. Arman M. Ahmed S. Lyzu C. Sakib S.A. Tanzil S.M. Zim A.F.M.I.U. Imran M.A.S. Venneri T. Romano B. Haque M.A. Capasso R. Pharmacological insights and prediction of lead bioactive isolates of Dita bark through experimental and computer-aided mechanism. Biomed. Pharmacother. 2020 131 110774 10.1016/j.biopha.2020.110774 33152933
    [Google Scholar]
  28. Al-Saeedi A.H. Al- Ghafri M.T.H. Hossain M.A. Comparative evaluation of total phenols, flavonoids content and antioxidant potential of leaf and fruit extracts of Omani Ziziphus jujuba L. Pac. Sci. Rev. A Nat. Sci. Eng. 2016 18 1 78 83 10.1016/j.psra.2016.09.001
    [Google Scholar]
  29. Aryal S. Baniya M.K. Danekhu K. Kunwar P. Gurung R. Koirala N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants 2019 8 4 96 10.3390/plants8040096 30978964
    [Google Scholar]
  30. Gurning K. Simanjuntak H.A. Purba H. Situmorang R.F.R. Barus L. Silaban S. Determination of total tannins and antibacterial activities ethanol extraction seri (Muntingia calabura L.) leaves. J Phys Conf Ser 2021 1811 1 012121 10.1088/1742‑6596/1811/1/012121
    [Google Scholar]
  31. Anggraini T. Wilma S. Syukri D. Azima F. Total phenolic, anthocyanin, Catechins, DPPH radical scavenging activity, and toxicity of Lepisanthes alata (Blume) Leenh. Int. J. Food Sci. 2019 2019 1 1 7 10.1155/2019/9703176 31275958
    [Google Scholar]
  32. Ruch R.J. Cheng S. Klaunig J.E. Prevention of cytotoxicity and inhibition of intercellular communication by antioxidant catechins isolated from Chinese green tea. Carcinogenesis 1989 10 6 1003 1008 10.1093/carcin/10.6.1003 2470525
    [Google Scholar]
  33. Adebayo S.A. Ondua M. Shai L.J. Lebelo S.L. Inhibition of nitric oxide production and free radical scavenging activities of four South African medicinal plants. J Inflamm Res 2019 195 203 10.2147/JIR.S199377
    [Google Scholar]
  34. Inbathamizh L. Ponnu T.M. Mary E.J. In vitro evaluation of antioxidant and anticancer potential of Morinda pubescens synthesized silver nanoparticles. J. Pharm. Res. 2013 6 1 32 38 10.1016/j.jopr.2012.11.010
    [Google Scholar]
  35. Arshad F. Altaf A. Lodhi M.S. Malik A. Sattar H. Zahid S. Ali Q. Evaluating the therapeutic efficacy of Swertia Chirayita in liver cancer management. J. Biol. Regul. Homeost. Agents 2024 38 2 1385 1408 10.23812/j.biol.regul.homeost.agents.20243802.110
    [Google Scholar]
  36. Kalsoom A. Altaf A. Sattar H. Maqbool T. Sajjad M. Jilani M.I. Shabbir G. Aftab S. Gene expression and anticancer evaluation of Kigelia africana (Lam.) Benth. Extracts using MDA-MB-231 and MCF-7 cell lines. PLoS One 2024 19 6 e0303134 10.1371/journal.pone.0303134 38837975
    [Google Scholar]
  37. Ahmed W. Mansoor Q. Ahmad M.S. Zainab T. Shah M.A. TRAIL mediated apoptosis ruling and anticancer trigger by fine-tuned nano spheres of Fagonia cretica methanolic extracts as novel cancer regime. Sci. Rep. 2023 13 1 671 10.1038/s41598‑023‑27441‑6 36635434
    [Google Scholar]
  38. M. Pereira, D.; Valentao, P.; Correia-da-Silva, G.; Teixeira, N.; B. Andrade, P. Plant secondary metabolites in cancer chemotherapy: Where are we? Curr. Pharm. Biotechnol. 2012 13 5 632 650 10.2174/138920112799857530 22122478
    [Google Scholar]
  39. Abotaleb M. Liskova A. Kubatka P. Büsselberg D. Therapeutic potential of plant phenolic acids in the treatment of cancer. Biomolecules 2020 10 2 221 10.3390/biom10020221 32028623
    [Google Scholar]
  40. Mondal A. Gandhi A. Fimognari C. Atanasov A.G. Bishayee A. Alkaloids for cancer prevention and therapy: Current progress and future perspectives. Eur. J. Pharmacol. 2019 858 172472 10.1016/j.ejphar.2019.172472 31228447
    [Google Scholar]
  41. Bajad P.N. Pardeshi A.B. Qualitative and quantitave analysis of saponin as bioactive agent of Sapindus emarginatus. Int. J. Sci. Res. 2016 5 10 351 354 10.1016/j.ejphar.2019.172472
    [Google Scholar]
  42. Yalcinkaya A. Öztaş Y.E. Sabuncuoğlu S. Sterols in inflammatory diseases: Implications and clinical utility. Implication of Oxysterols and Phytosterols in Aging and Human Diseases. Springer Sci 2023 261 275
    [Google Scholar]
  43. Ukoha P.O. Cemaluk E.A. Nnamdi O.L. Madus E.P. Tannins and other phytochemical of the Samanaea saman pods and their antimicrobial activities. Afr. J. Pure Appl. Chem 2011 5 8 237 244
    [Google Scholar]
  44. Ullah A. Munir S. Badshah S.L. Khan N. Ghani L. Poulson B.G. Emwas A.H. Jaremko M. Important flavonoids and their role as a therapeutic agent. Molecules 2020 25 22 5243 10.3390/molecules25225243 33187049
    [Google Scholar]
  45. Middleton E. Jr Kandaswami C. Theoharides T.C. The effects of plant flavonoids on mammalian cells: Implications for inflammation, heart disease, and cancer. Pharmacol. Rev. 2000 52 4 673 751 10.1016/S0031‑6997(24)01472‑8 11121513
    [Google Scholar]
  46. Shahidi F. Yeo J. Bioactivities of phenolics by focusing on suppression of chronic diseases: A review. Int. J. Mol. Sci. 2018 19 6 1573 10.3390/ijms19061573 29799460
    [Google Scholar]
  47. Qureshi H. Asif S. Ahmed H. Al-Kahtani H.A. Hayat K. Chemical composition and medicinal significance of Fagonia cretica : A review. Nat. Prod. Res. 2016 30 6 625 639 10.1080/14786419.2015.1036268 25921950
    [Google Scholar]
  48. Eman A.A. Morphological, phytochemical and biological screening on three Egyptian species of Fagonia. Acad Arena 2011 3 18 27
    [Google Scholar]
  49. El-Shabrawy O.A. El-Gindi O.D. Melek F.R. Abdel-Khalik S.M. Haggag M.Y. Biological properties of saponin mixtures of Fagonia cretica and Fagonia mollis. Fitoterapia 1997 68 3 219 222
    [Google Scholar]
  50. Auwal M.S. Saka S. Mairiga I.A. Sanda K.A. Shuaibu A. Ibrahim A. Preliminary phytochemical and elemental analysis of aqueous and fractionated pod extracts of Acacia nilotica (Thorn mimosa). Vet. Res. Forum 2014 5 2 95 100 25568701
    [Google Scholar]
  51. Rashid U. Khan M.R. Sajid M. Hepatoprotective potential of Fagonia olivieri DC. against acetaminophen induced toxicity in rat. BMC Complement. Altern. Med. 2016 16 1 449 10.1186/s12906‑016‑1445‑x 27829418
    [Google Scholar]
  52. Sarwar R. Farooq U. Khan A. Naz S. Khan S. Khan A. Rauf A. Bahadar H. Uddin R. Evaluation of antioxidant, free radical scavenging, and antimicrobial activity of Quercus incana Roxb. Front. Pharmacol. 2015 6 277 10.3389/fphar.2015.00277 26635607
    [Google Scholar]
  53. Mbaveng A.T. Damen F. Simo Mpetga J.D. Awouafack M.D. Tane P. Kuete V. Efferth T. Cytotoxicity of crude extract and isolated constituents of the Dichrostachys cinerea bark towards multifactorial drug-resistant cancer cells. Evid. Based Complement. Alternat. Med. 2019 2019 1 8450158 31360210
    [Google Scholar]
  54. Thusyanthan J. Wickramaratne N.S. Senathilake K.S. Rajagopalan U. Tennekoon K.H. Thabrew I. Samarakoon S.R. Cytotoxicity against human hepatocellular carcinoma (HepG2) cells and anti-oxidant activity of selected endemic or medicinal plants in Sri Lanka. Adv. Pharmacol. Pharm. Sci. 2022 2022 1 1 9 10.1155/2022/6407688 35402917
    [Google Scholar]
  55. Kalsoom A. Altaf A. Jilani M.I. Sattar H. Maqbool T. Muhammad T. In vitro antiproliferative potential of Cassia angustifolia extracts on HepG2 cells to combat liver cancer. Int. J. Appl. Exp. Biol 2024 3 2 113 123
    [Google Scholar]
  56. Maiuolo J. Gliozzi M. Carresi C. Musolino V. Oppedisano F. Scarano F. Nucera S. Scicchitano M. Bosco F. Macri R. Ruga S. Cardamone A. Coppoletta A. Mollace A. Cognetti F. Mollace V. Nutraceuticals and cancer: Potential for natural polyphenols. Nutrients 2021 13 11 3834 10.3390/nu13113834 34836091
    [Google Scholar]
  57. Al-Sheddi E.S. Al-Zaid N.A. Al-Oqail M.M. Al-Massarani S.M. El-Gamal A.A. Farshori N.N. Evaluation of cytotoxicity, cell cycle arrest and apoptosis induced by Anethum graveolens L. essential oil in human hepatocellular carcinoma cell line. Saudi Pharm. J. 2019 27 7 1053 1060 10.1016/j.jsps.2019.09.001 31997913
    [Google Scholar]
  58. Kiran A. Altaf A. Sarwar M. Malik A. Maqbool T. Ali Q. Phytochemical profiling and cytotoxic potential of Arnebia nobilis root extracts against hepatocellular carcinoma using in-vitro and in-silico approaches. Sci. Rep. 2023 13 1 11376 10.1038/s41598‑023‑38517‑8 37452082
    [Google Scholar]
  59. Marino P. Pepe G. Basilicata M.G. Vestuto V. Marzocco S. Autore G. Procino A. Gomez-Monterrey I.M. Manfra M. Campiglia P. Potential role of natural antioxidant products in oncological diseases. Antioxidants 2023 12 3 704 10.3390/antiox12030704 36978952
    [Google Scholar]
  60. Marino A. Battaglini M. Moles N. Ciofani G. Natural antioxidant compounds as potential pharmaceutical tools against neurodegenerative diseases. ACS Omega 2022 7 30 25974 25990 10.1021/acsomega.2c03291 35936442
    [Google Scholar]
  61. Cui W. Aouidate A. Wang S. Yu Q. Li Y. Yuan S. Discovering anticancer drugs via computational methods. Front. Pharmacol. 2020 11 733 10.3389/fphar.2020.00733 32508653
    [Google Scholar]
  62. Abramson J. Adler J. Dunger J. Evans R. Green T. Pritzel A. Ronneberger O. Willmore L. Ballard A.J. Bambrick J. Bodenstein S.W. Evans D.A. Hung C.C. O’Neill M. Reiman D. Tunyasuvunakool K. Wu Z. Žemgulytė A. Arvaniti E. Beattie C. Bertolli O. Bridgland A. Cherepanov A. Congreve M. Cowen-Rivers A.I. Cowie A. Figurnov M. Fuchs F.B. Gladman H. Jain R. Khan Y.A. Low C.M.R. Perlin K. Potapenko A. Savy P. Singh S. Stecula A. Thillaisundaram A. Tong C. Yakneen S. Zhong E.D. Zielinski M. Žídek A. Bapst V. Kohli P. Jaderberg M. Hassabis D. Jumper J.M. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 2024 630 8016 493 500 10.1038/s41586‑024‑07487‑w 38718835
    [Google Scholar]
  63. Desai D. Kantliwala S.V. Vybhavi J. Ravi R. Patel H. Patel J. Review of alphafold 3: Transformative advances in drug design and therapeutics. Cureus 2024 16 7 e63646 10.7759/cureus.63646 39092344
    [Google Scholar]
  64. Kalsoom A. Altaf A. Sarwar M. Maqbool T. Ashraf M.A.B. Sattar H. Shabbir G. Ali Q. Javed M.A. GC–MS analysis, molecular docking, and apoptotic-based cytotoxic effect of Caladium lindenii Madison extracts toward the HeLa cervical cancer cell line. Sci. Rep. 2024 14 1 18438 10.1038/s41598‑024‑69582‑2 39117897
    [Google Scholar]
  65. Zhang Y. Zhang Z. The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications. Cell. Mol. Immunol. 2020 17 8 807 821 10.1038/s41423‑020‑0488‑6 32612154
    [Google Scholar]
  66. Li Y. Wang X. Ma X. Liu C. Wu J. Sun C. Natural polysaccharides and their derivates: A promising natural adjuvant for tumor immunotherapy. Front. Pharmacol. 2021 12 621813 10.3389/fphar.2021.621813 33935714
    [Google Scholar]
  67. Jing Y. Sun K. Liu W. Sheng D. Zhao S. Gao L. Wei L. Tumor necrosis factor-α promotes hepatocellular carcinogenesis through the activation of hepatic progenitor cells. Cancer Lett. 2018 434 22 32 10.1016/j.canlet.2018.07.001 29981431
    [Google Scholar]
  68. Vachliotis I.D. Valsamidis I. Polyzos S.A. Tumor necrosis factor-alpha and adiponectin in nonalcoholic fatty liver disease-associated hepatocellular carcinoma. Cancers 2023 15 21 5306 10.3390/cancers15215306 37958479
    [Google Scholar]
  69. Fabregat I. Moreno-Càceres J. Sánchez A. Dooley S. Dewidar B. Giannelli G. ten Dijke P. IT-LIVER Consortium TGF ‐β signalling and liver disease. FEBS J. 2016 283 12 2219 2232 10.1111/febs.13665 26807763
    [Google Scholar]
  70. Prud’homme G.J. Kurt M. Wang Q. Pathobiology of the klotho antiaging protein and therapeutic considerations. Front. Aging 2022 3 931331 10.3389/fragi.2022.931331 35903083
    [Google Scholar]
  71. Zhang Y. Alexander P.B. Wang X.F. TGF-β family signaling in the control of cell proliferation and survival. Cold Spring Harb. Perspect. Biol. 2017 9 4 a022145 10.1101/cshperspect.a022145 27920038
    [Google Scholar]
  72. Zhang K. Zhang M. Luo Z. Wen Z. Yan X. The dichotomous role of TGF-β in controlling liver cancer cell survival and proliferation. J. Genet. Genomics 2020 47 9 497 512 10.1016/j.jgg.2020.09.005 33339765
    [Google Scholar]
  73. Gotzmann J. Fischer A.N.M. Zojer M. Mikula M. Proell V. Huber H. Jechlinger M. Waerner T. Weith A. Beug H. Mikulits W. A crucial function of PDGF in TGF-β-mediated cancer progression of hepatocytes. Oncogene 2006 25 22 3170 3185 10.1038/sj.onc.1209083 16607286
    [Google Scholar]
  74. Caja L. Sancho P. Bertran E. Fabregat I. Dissecting the effect of targeting the epidermal growth factor receptor on TGF-β-induced-apoptosis in human hepatocellular carcinoma cells. J. Hepatol. 2011 55 2 351 358 10.1016/j.jhep.2010.10.041 21147185
    [Google Scholar]
  75. Drabsch Y. ten Dijke P. TGF-β signalling and its role in cancer progression and metastasis. Cancer Metastasis Rev. 2012 31 3-4 553 568 10.1007/s10555‑012‑9375‑7 22714591
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206377419250527105350
Loading
/content/journals/acamc/10.2174/0118715206377419250527105350
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test