Skip to content
2000
image of Analytical Techniques as Indicators of Biomarkers in Proteomics Cancer Diagnosis

Abstract

Background

Cancer is a complex disease marked by changes in the levels and functions of key cellular proteins, including oncogenes and tumor suppressors. Proteomics technology enables the identification of crucial protein targets and signaling pathways involved in cancer cell proliferation and metastasis. Various proteomics techniques have been employed to investigate the molecular mechanisms of cancer, aiding in the confirmation and characterization of heritable disorders.

Methods

A comprehensive literature search was conducted using PubMed, ScienceDirect, and Google Scholar with search terms like “Cancer and proteomics” and “Mass spectrometry in oncology,” utilizing Boolean operators for refinement. Selection criteria included peer-reviewed articles in English on MS-based biomarker detection, tumor-specific proteins, and drug resistance markers, excluding non-peer-reviewed works and pre-2000 publications unless foundational. Extracted data focused on MS methodologies, biomarker sensitivity, and clinical applications, particularly advances in detecting low-abundance biomarkers and monitoring treatment response. Methodological quality was assessed using PRISMA, evaluating study design, sample size, reproducibility, and statistical analysis. Ethical approval was not required, but adherence to systematic review guidelines and proper citation were ensured.

Results

In this review, we highlighted the advanced analytical technique for cancer diagnosis and management of cancer, and described the objective of novel cancer biomarkers. Mass spectrometry (MS) is transforming cancer diagnostics and personalized medicine by enabling precise biomarker detection and monitoring. Unlike traditional antibody-based methods, MS provides high-throughput, quantitative analysis of tumor-specific proteins in clinical samples like blood and tissue. Advanced MS techniques improve sensitivity, allowing for the identification of low-abundance biomarkers and tumor-associated proteoforms, including post-translational modifications and drug resistance markers. In research, MS-based proteomics supports multi-center biomarker validation studies with standardized protocols, enhancing reproducibility. The integration of proteomic data with genomic and transcriptomic datasets through proteogenomics is refining precision oncology strategies. These advancements are bridging the gap between research and clinical application, making MS a critical tool for early cancer detection, prognosis, and therapy selection.

Conclusion

Advancements in technology and analytical techniques have helped to produce more accurate and sensitive cancer-specific biomarkers. These methods are advancing rapidly, and developing high-throughput platforms has yielded great results. However, the substantial variation in protein concentrations makes cancer protein profiling extremely complicated. This shows that more technical developments are required in the future to improve proteome broad screening of cancer cells.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206377391250526054417
2025-05-29
2025-09-27
Loading full text...

Full text loading...

References

  1. Zhang D.Y. Ye F. Gao L. Liu X. Zhao X. Che Y. Wang H. Wang L. Wu J. Song D. Liu W. Xu H. Jiang B. Zhang W. Wang J. Lee P. Proteomics, pathway array and signaling network-based medicine in cancer. Cell Div. 2009 4 1 20 10.1186/1747‑1028‑4‑20 19863813
    [Google Scholar]
  2. Nass S.J. Amankwah F.K. Madhavan G. Johns M.M. Eds. Guiding cancer control: A path to transformation.
    [Google Scholar]
  3. Agrwal A. Mittal S. Opportunities with nano-formulations in cancer chemoprevention. In:Natural Products and Nano-Formulations in Cancer Chemoprevention. Boca Raton, FL CRC Press 2023
    [Google Scholar]
  4. Islami F. Goding Sauer A. Miller K.D. Siegel R.L. Fedewa S.A. Jacobs E.J. McCullough M.L. Patel A.V. Ma J. Soerjomataram I. Flanders W.D. Brawley O.W. Gapstur S.M. Jemal A. Proportion and number of cancer cases and deaths attributable to potentially modifiable risk factors in the United States. CA Cancer J. Clin. 2018 68 1 31 54 10.3322/caac.21440 29160902
    [Google Scholar]
  5. de Martel C. Georges D. Bray F. Ferlay J. Clifford G.M. Global burden of cancer attributable to infections in 2018: A worldwide incidence analysis. Lancet Glob. Health 2020 8 2 e180 e190 10.1016/S2214‑109X(19)30488‑7 31862245
    [Google Scholar]
  6. Weiderpass E. Lifestyle and cancer risk. J. Prev. Med. Public Health 2010 43 6 459 471 10.3961/jpmph.2010.43.6.459 21139406
    [Google Scholar]
  7. Kushi L.H. Byers T. Doyle C. Bandera E.V. McCullough M. Gansler T. Andrews K.S. Thun M.J. Thun M.J. American Cancer Society Guidelines on Nutrition and Physical Activity for cancer prevention: Reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J. Clin. 2006 56 5 254 281 10.3322/canjclin.56.5.254 17005596
    [Google Scholar]
  8. Colditz G.A. Wei E.K. Preventability of cancer: The relative contributions of biologic and social and physical environmental determinants of cancer mortality. Annu. Rev. Public Health 2012 33 1 137 156 10.1146/annurev‑publhealth‑031811‑124627 22224878
    [Google Scholar]
  9. Baker M.J. Hussain S.R. Lovergne L. Untereiner V. Hughes C. Lukaszewski R.A. Thiéfin G. Sockalingum G.D. Developing and understanding biofluid vibrational spectroscopy: A critical review. Chem. Soc. Rev. 2016 45 7 1803 1818 10.1039/C5CS00585J 26612430
    [Google Scholar]
  10. Thakkar V. Patel P. Prajapati N. Kaur R. Nandave M. Serum levels of glycoproteins are elevated in patients with ovarian cancer. Indian J. Clin. Biochem. 2014 29 3 345 350 10.1007/s12291‑013‑0380‑6 24966484
    [Google Scholar]
  11. Wu L. Qu X. Cancer biomarker detection: Recent achievements and challenges. Chem. Soc. Rev. 2015 44 10 2963 2997 10.1039/C4CS00370E 25739971
    [Google Scholar]
  12. WHO Cancer. 2025 Available from [https://www.who.int/news-room/fact-sheets/detail/cancer
  13. Dreger M. Proteome analysis at the level of subcellular structures. Eur. J. Biochem. 2003 270 4 589 599 10.1046/j.1432‑1033.2003.03426.x 12581199
    [Google Scholar]
  14. Mann M. Jensen O.N. Proteomic analysis of post-translational modifications. Nat. Biotechnol. 2003 21 3 255 261 10.1038/nbt0303‑255 12610572
    [Google Scholar]
  15. Wilkins M.R. Sanchez J.C. Gooley A.A. Appel R.D. Humphery-Smith I. Hochstrasser D.F. Williams K.L. Progress with proteome projects: Why all proteins expressed by a genome should be identified and how to do it. Biotechnol. Genet. Eng. Rev. 1996 13 1 19 50 10.1080/02648725.1996.10647923 8948108
    [Google Scholar]
  16. Sallam R.M. Proteomics in cancer biomarkers discovery: Challenges and applications. Dis. Markers 2015 2015 321370 10.1155/2015/321370 25999657
    [Google Scholar]
  17. Wilhelm M. Schlegl J. Hahne H. Gholami A.M. Lieberenz M. Savitski M.M. Ziegler E. Butzmann L. Gessulat S. Marx H. Mathieson T. Lemeer S. Schnatbaum K. Reimer U. Wenschuh H. Mollenhauer M. Slotta-Huspenina J. Boese J.H. Bantscheff M. Gerstmair A. Faerber F. Kuster B. Mass-spectrometry-based draft of the human proteome. Nature 2014 509 7502 582 587 10.1038/nature13319 24870543
    [Google Scholar]
  18. Brunet S. Thibault P. Gagnon E. Kearney P. Bergeron J.J. Desjardins M. Organelle proteomics: Looking at less to see more. Trends Cell Biol. 2003 13 12 629 638 10.1016/j.tcb.2003.10.006 14624841
    [Google Scholar]
  19. Nicholson J.K. Lindon J.C. Holmes E. ‘Metabonomics’: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica 1999 29 11 1181 1189 10.1080/004982599238047 10598751
    [Google Scholar]
  20. Aslam B. Basit M. Nisar M.A. Khurshid M. Rasool M.H. Proteomics: Technologies and their applications. J. Chromatogr. Sci. 2017 55 2 182 196 [PMID: 28087761
    [Google Scholar]
  21. Wait R. Miller I. Eberini I. Cairoli F. Veronesi C. Battocchio M. Gemeiner M. Gianazza E. Strategies for proteomics with incompletely characterized genomes: The proteome of Bos taurus serum. Electrophoresis 2002 23 19 3418 3427 10.1002/1522‑2683(200210)23:19<3418:AID‑ELPS3418>3.0.CO;2‑7 12373772
    [Google Scholar]
  22. Twyman R. Cfe P.D. George A. Principles of proteomics. New York Garland Science 2013
    [Google Scholar]
  23. Altelaar A.F.M. Munoz J. Heck A.J.R. Next-generation proteomics: Towards an integrative view of proteome dynamics. Nat. Rev. Genet. 2013 14 1 35 48 10.1038/nrg3356 23207911
    [Google Scholar]
  24. Joshi S. Wang T. Araujo T.L.S. Sharma S. Brodsky J.L. Chiosis G. Adapting to stress — Chaperome networks in cancer. Nat. Rev. Cancer 2018 18 9 562 575 10.1038/s41568‑018‑0020‑9 29795326
    [Google Scholar]
  25. Alessandro R. Fontana S. Kohn E. De Leo G. Proteomic strategies and their application in cancer research. Tumori 2005 91 6 447 455 10.1177/030089160509100601 16457140
    [Google Scholar]
  26. Alfaro J.A. Sinha A. Kislinger T. Boutros P.C. Onco-proteogenomics: Cancer proteomics joins forces with genomics. Nat. Methods 2014 11 11 1107 1113 10.1038/nmeth.3138 25357240
    [Google Scholar]
  27. Kumar S. Mohan A. Guleria R. Biomarkers in cancer screening, research and detection: Present and future: A review. Biomarkers 2006 11 5 385 405 10.1080/13547500600775011 16966157
    [Google Scholar]
  28. Srinivas P.R. Srivastava S. Hanash S. Wright G.L. Proteomics in early detection of cancer. Clin. Chem. 2001 47 10 1901 1911 10.1093/clinchem/47.10.1901 11568117
    [Google Scholar]
  29. Hanash S.M. Bobek M.P. Rickman D.S. Williams T. Rouillard J.M. Kuick R. Integrating cancer genomics and proteomics in the post-genome era. Proteomics 2002 2 69 75 [PMID: 11788993
    [Google Scholar]
  30. Jung E. Heller M. Sanchez J.C. Hochstrasser D.F. Proteomics meets cell biology: The establishment of subcellular proteomes. Electrophoresis 2000 21 16 3369 3377 10.1002/1522‑2683(20001001)21:16<3369:AID‑ELPS3369>3.0.CO;2‑7 11079557
    [Google Scholar]
  31. Adonna TA Abbatiello SE Schilling B Skates SJ Mani DR Bunk DM Spiegelman CH Zimmerman LJ Ham AJL Keshishian H Hall SC Allen S Blackman RK Borchers CH Buck C Cardasis HL Cusack MP Dodder NG Bigxon BW Held JM Hiltke T Jackson A Johansen EB Kinsinger CR Li J Mesri M Neubert TA Niles RK Pulsipher TC Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat. Biotechnol. 2009 27 7 633 641 10.1038/nbt.1546 19561596
    [Google Scholar]
  32. Angerer J. Ewers U. Wilhelm M. Human biomonitoring: State of the art. Int. J. Hyg. Environ. Health 2007 210 3-4 201 228 10.1016/j.ijheh.2007.01.024 17376741
    [Google Scholar]
  33. Mishra A. Verma M. Cancer biomarkers: Are we ready for the prime time? Cancers 2010 2 1 190 208 10.3390/cancers2010190 24281040
    [Google Scholar]
  34. Odegaard J.I. Vincent J.J. Mortimer S. Vowles J.V. Ulrich B.C. Banks K.C. Validation of a plasma-based comprehensive cancer genotyping assay utilizing orthogonal tissue-and plasma-based methodologiesvalidation of a comprehensive cancer liquid biopsy test. Clin. Cancer Res. 2018 24 15 3539 3549 10.1158/1078‑0432.CCR‑17‑3831 29691297
    [Google Scholar]
  35. Takabe K. Benesch M.G.K. Biomarker research in world journal of oncology. World J. Oncol. 2023 14 1 1 3 10.14740/wjon1577 36895990
    [Google Scholar]
  36. Shaw A. Bradley M.D. Elyan S. Kurian K.M. Tumour biomarkers: Diagnostic, prognostic, and predictive. BMJ 2015 351 h3449 10.1136/bmj.h3449 26141725
    [Google Scholar]
  37. Zhu C.Q. da Cunha Santos G. Ding K. Sakurada A. Cutz J.C. Liu N. Zhang T. Marrano P. Whitehead M. Squire J.A. Kamel-Reid S. Seymour L. Shepherd F.A. Tsao M.S. Role of KRAS and EGFR as biomarkers of response to erlotinib in national cancer institute of canada clinical trials group study BR.21. J. Clin. Oncol. 2008 26 26 4268 4275 10.1200/JCO.2007.14.8924 18626007
    [Google Scholar]
  38. Ray S. Reddy P.J. Choudhary S. Raghu D. Srivastava S. Emerging nanoproteomics approaches for disease biomarker detection: A current perspective. J. Proteomics 2011 74 12 2660 2681 10.1016/j.jprot.2011.04.027 21596164
    [Google Scholar]
  39. Henry N.L. Hayes D.F. Cancer biomarkers. Mol. Oncol. 2012 6 2 140 146 10.1016/j.molonc.2012.01.010 22356776
    [Google Scholar]
  40. Mnatsakanyan R. Shema G. Basik M. Batist G. Borchers C.H. Sickmann A. Zahedi R.P. Detecting post-translational modification signatures as potential biomarkers in clinical mass spectrometry. Expert Rev. Proteomics 2018 15 6 515 535 10.1080/14789450.2018.1483340 29893147
    [Google Scholar]
  41. Gstaiger M. Aebersold R. Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat. Rev. Genet. 2009 10 9 617 627 10.1038/nrg2633 19687803
    [Google Scholar]
  42. The role of proteomics in oncology biomarker 2020 Available from https://blog.crownbio.com/role-of-proteomics-in-oncology-biomarker-discovery
  43. Sheu B.C. Chang W.C. Lin H.H. Chow S.N. Huang S.C. Immune concept of human papillomaviruses and related antigens in local cancer milieu of human cervical neoplasia. J. Obstet. Gynaecol. Res. 2007 33 2 103 113 10.1111/j.1447‑0756.2007.00492.x 17441881
    [Google Scholar]
  44. Cho W.C.S. Contribution of oncoproteomics to cancer biomarker discovery. Mol. Cancer 2007 6 1 25 10.1186/1476‑4598‑6‑25 17407558
    [Google Scholar]
  45. Hicks D.G. Tubbs R.R. Assessment of the HER2 status in breast cancer by fluorescence in situ hybridization: A technical review with interpretive guidelines. Hum. Pathol. 2005 36 3 250 261 10.1016/j.humpath.2004.11.010 15791569
    [Google Scholar]
  46. Veenstra T.D. Prieto D.A. Conrads T.P. Proteomic patterns for early cancer detection. Drug Discov. Today 2004 9 20 889 897 10.1016/S1359‑6446(04)03246‑5 15475322
    [Google Scholar]
  47. Labib M. Kelley S.O. Single-cell analysis targeting the proteome. Nat. Rev. Chem. 2020 4 3 143 158 10.1038/s41570‑020‑0162‑7 37128021
    [Google Scholar]
  48. Pinho S.S. Reis C.A. Glycosylation in cancer: Mechanisms and clinical implications. Nat. Rev. Cancer 2015 15 9 540 555 10.1038/nrc3982 26289314
    [Google Scholar]
  49. Dai L. Li C. Shedden K.A. Lee C.J. Li C. Quoc H. Simeone D.M. Lubman D.M. Quantitative proteomic profiling studies of pancreatic cancer stem cells. J. Proteome Res. 2010 9 7 3394 3402 10.1021/pr100231m 20486718
    [Google Scholar]
  50. Anderson N.L. Anderson N.G. The human plasma proteome: History, character, and diagnostic prospects. Mol. Cell. Proteomics 2002 1 11 845 867 10.1074/mcp.R200007‑MCP200 12488461
    [Google Scholar]
  51. Honda K. Ono M. Shitashige M. Masuda M. Kamita M. Miura N. Yamada T. Proteomic approaches to the discovery of cancer biomarkers for early detection and personalized medicine. Jpn. J. Clin. Oncol. 2013 43 2 103 109 10.1093/jjco/hys200 23248327
    [Google Scholar]
  52. Li H. Li G. Zhao X. Wu Y. Ma W. Liu Y. Gong F. Liang S. Complementary serum proteomic analysis of autoimmune hepatitis in mice and patients. J. Transl. Med. 2013 11 1 146 10.1186/1479‑5876‑11‑146 23763817
    [Google Scholar]
  53. Batis N. Brooks J.M. Payne K. Sharma N. Nankivell P. Mehanna H. Lack of predictive tools for conventional and targeted cancer therapy: Barriers to biomarker development and clinical translation. Adv. Drug Deliv. Rev. 2021 176 113854 10.1016/j.addr.2021.113854 34192550
    [Google Scholar]
  54. Tatischeff I. Current search through liquid biopsy of effective biomarkers for early cancer diagnosis into the rich cargoes of extracellular vesicles. Int. J. Mol. Sci. 2021 22 11 5674 10.3390/ijms22115674 34073560
    [Google Scholar]
  55. Duffy M.J. Evoy D. McDermott E.W. CA 15-3: Uses and limitation as a biomarker for breast cancer. Clin. Chim. Acta 2010 411 23-24 1869 1874 10.1016/j.cca.2010.08.039 20816948
    [Google Scholar]
  56. Toren P. Zoubeidi A. Targeting the PI3K/Akt pathway in prostate cancer: Challenges and opportunities.(Review) Int. J. Oncol. 2014 45 5 1793 1801 10.3892/ijo.2014.2601 25120209
    [Google Scholar]
  57. Soppimath K.S. Aminabhavi T.M. Kulkarni A.R. Rudzinski W.E. Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release 2001 70 1-2 1 20 10.1016/S0168‑3659(00)00339‑4 11166403
    [Google Scholar]
  58. Chakraborty S. Rahman T. The difficulties in cancer treatment. Ecancermedicalscience 2012 6 ed16 [PMID: 24883085
    [Google Scholar]
  59. Copland M. Jørgensen H.G. Holyoake T.L. Evolving molecular therapy for chronic myeloid leukaemia—Are we on target? Hematology 2005 10 5 349 359 10.1080/10245330500234195 16203604
    [Google Scholar]
  60. Otto T. Sicinski P. Cell cycle proteins as promising targets in cancer therapy. Nat. Rev. Cancer 2017 17 2 93 115 10.1038/nrc.2016.138 28127048
    [Google Scholar]
  61. Chang L. Ruiz P. Ito T. Sellers W.R. Targeting pan-essential genes in cancer: Challenges and opportunities. Cancer Cell 2021 39 4 466 479 10.1016/j.ccell.2020.12.008 33450197
    [Google Scholar]
  62. Irobi E.O. Time to Diagnosis of Second Primary Cancers among Patients with Breast Cancer. Walden University 2016
    [Google Scholar]
  63. Agliano A. Calvo A. Box C. The challenge of targeting cancer stem cells to halt metastasis Seminars in Cancer Biology. Elsevier 2017
    [Google Scholar]
  64. Nagamune T. Biomolecular engineering for nanobio/bionanotechnology. Nano Converg. 2017 4 1 9 10.1186/s40580‑017‑0103‑4 28491487
    [Google Scholar]
  65. Elbashir S.M. Lendeckel W. Tuschl T. RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev. 2001 15 2 188 200 10.1101/gad.862301 11157775
    [Google Scholar]
  66. Lin L.L. Huang H.C. Juan H.F. Discovery of biomarkers for gastric cancer: A proteomics approach. J. Proteomics 2012 75 11 3081 3097 10.1016/j.jprot.2012.03.046 22498886
    [Google Scholar]
  67. Grønborg M. Kristiansen T.Z. Iwahori A. Chang R. Reddy R. Sato N. Molina H. Jensen O.N. Hruban R.H. Goggins M.G. Maitra A. Pandey A. Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach. Mol. Cell. Proteomics 2006 5 1 157 171 10.1074/mcp.M500178‑MCP200 16215274
    [Google Scholar]
  68. Maurya P. Meleady P. Dowling P. Clynes M. Proteomic approaches for serum biomarker discovery in cancer. Anticancer Res. 2007 27 3A 1247 1255 [PMID: 17593616
    [Google Scholar]
  69. Cheng A.L. Huang W.G. Chen Z.C. Peng F. Zhang P.F. Li M.Y. Li F. Li J.L. Li C. Yi H. Yi B. Xiao Z.Q. Identification of novel nasopharyngeal carcinoma biomarkers by laser capture microdissection and proteomic analysis. Clin. Cancer Res. 2008 14 2 435 445 10.1158/1078‑0432.CCR‑07‑1215 18223218
    [Google Scholar]
  70. Álvarez-Chaver P. Otero-Estévez O. Páez de la Cadena M. Rodríguez-Berrocal F.J. Martínez-Zorzano V.S. Proteomics for discovery of candidate colorectal cancer biomarkers. World J. Gastroenterol. 2014 20 14 3804 3824 10.3748/wjg.v20.i14.3804 24744574
    [Google Scholar]
  71. Drake R.R. Cazares L.H. Semmes O.J. Wadsworth J.T. Serum, salivary and tissue proteomics for discovery of biomarkers for head and neck cancers. Expert Rev. Mol. Diagn. 2005 5 1 93 100 10.1586/14737159.5.1.93 15723595
    [Google Scholar]
  72. Do S.K. Choi S.H. Lee S.Y. Choi J.E. Kang H.G. Hong M.J. Kim J.H. Baek S.A. Lee J.H. Lee W.K. Do Y.W. Lee E.B. Shin K.M. Jeong J.Y. Lee Y.H. Seo H. Yoo S.S. Lee J. Cha S.I. Kim C.H. Seok Y. Cho S. Jheon S. Park J.Y. Genetic variants in one-carbon metabolism pathway predict survival outcomes of early-stage non-small cell lung cancer. Oncology 2020 98 12 897 904 10.1159/000509658 32791502
    [Google Scholar]
  73. Zhou M. Kong Y. Wang X. Li W. Chen S. Wang, L LC-MS/MS-based quantitative proteomics analysis of different stages of non-small-cell lung cancer. BioMed Res. Int. 2021 2021 5561569 10.1155/2021/5561569 33728331
    [Google Scholar]
  74. Jayson G.C. Kohn E.C. Kitchener H.C. Ledermann J.A. Ovarian cancer. Lancet 2014 384 9951 1376 1388 10.1016/S0140‑6736(13)62146‑7 24767708
    [Google Scholar]
  75. Staicu C.E. Predescu D.V. Rusu C.M. Radu B.M. Cretoiu D. Suciu N. Crețoiu S.M. Voinea S.C. Role of microRNAs as clinical cancer biomarkers for ovarian cancer: A short overview. Cells 2020 9 1 169 10.3390/cells9010169 31936634
    [Google Scholar]
  76. Briggs M.T. Condina M.R. Klingler-Hoffmann M. Arentz G. Everest-Dass A.V. Kaur G. Oehler M.K. Packer N.H. Hoffmann P. Translating N‐glycan analytical applications into clinical strategies for ovarian cancer. Proteomics Clin. Appl. 2019 13 3 1800099 10.1002/prca.201800099 30367710
    [Google Scholar]
  77. Jung J.H. Kim H.J. Yeom J. Yoo C. Shin J. Yoo J. Kang C.S. Lee C. Lowered expression of galectin-2 is associated with lymph node metastasis in gastric cancer. J. Gastroenterol. 2012 47 1 37 48 10.1007/s00535‑011‑0463‑1 22015694
    [Google Scholar]
  78. Jia S.Q. Niu Z.J. Zhang L.H. Zhong X.Y. Shi T. Du H. Zhang G.G. Hu Y. Su X.L. Ji J.F. Identification of prognosis-related proteins in advanced gastric cancer by mass spectrometry-based comparative proteomics. J. Cancer Res. Clin. Oncol. 2009 135 3 403 411 10.1007/s00432‑008‑0474‑3 18830628
    [Google Scholar]
  79. Kon O.L. Yip T.T. Ho M.F. Chan W.H. Wong W.K. Tan S.Y. Ng W.H. Kam S.Y. Eng A.K.H. Ho P. Viner R. Ong H.S. Kumarasinghe M.P. The distinctive gastric fluid proteome in gastric cancer reveals a multi-biomarker diagnostic profile. BMC Med. Genomics 2008 1 1 54 10.1186/1755‑8794‑1‑54 18950519
    [Google Scholar]
  80. Koopmann J. Thuluvath P.J. Zahurak M.L. Kristiansen T.Z. Pandey A. Schulick R. Argani P. Hidalgo M. Iacobelli S. Goggins M. Maitra A. Mac‐2‐binding protein is a diagnostic marker for biliary tract carcinoma. Cancer 2004 101 7 1609 1615 10.1002/cncr.20469 15378479
    [Google Scholar]
  81. Kashyap M.K. Harsha H.C. Renuse S. Pawar H. Sahasrabuddhe N.A. Kim M.S. Marimuthu A. Keerthikumar S. Muthusamy B. Kandasamy K. Subbannayya Y. Prasad T.S.K. Mahmood R. Chaerkady R. Meltzer S.J. Kumar R.V. Rustgi A.K. Pandey A. SILAC-based quantitative proteomic approach to identify potential biomarkers from the esophageal squamous cell carcinoma secretome. Cancer Biol. Ther. 2010 10 8 796 810 10.4161/cbt.10.8.12914 20686364
    [Google Scholar]
  82. Girard S. Shalhoub P. Lescure P. Sabile A. Misek D.E. Hanash S. Bréchot C. Beretta L. An altered cellular response to interferon and up-regulation of interleukin-8 induced by the hepatitis C viral protein NS5A uncovered by microarray analysis. Virology 2002 295 2 272 283 10.1006/viro.2002.1373 12033786
    [Google Scholar]
  83. Huang L.J. Chen S.X. Huang Y. Luo W.J. Jiang H.H. Hu Q.H. Zhang P.F. Yi H. Proteomics-based identification of secreted protein dihydrodiol dehydrogenase as a novel serum markers of non-small cell lung cancer. Lung Cancer 2006 54 1 87 94 10.1016/j.lungcan.2006.06.011 16876904
    [Google Scholar]
  84. Rui Z. Jian-Guo J. Yuan-Peng T. Hai P. Bing-Gen R. Use of serological proteomic methods to find biomarkers associated with breast cancer. Proteomics 2003 3 4 433 439 10.1002/pmic.200390058 12687611
    [Google Scholar]
  85. Pedrero J.M. Fernandez M.P. Morgan R.O. Herrero Zapatero A. Gonzalez M.V. Suarez Nieto C. Rodrigo J.P. Annexin A1 down-regulation in head and neck cancer is associated with epithelial differentiation status. Am. J. Pathol. 2004 164 1 73 79 10.1016/S0002‑9440(10)63098‑2 14695321
    [Google Scholar]
  86. Rodrigo J.P. Garcia-Pedrero J.M. Fernandez M.P. Morgan R.O. Suárez C. Herrero A. Annexin A1 expression in nasopharyngeal carcinoma correlates with squamous differentiation. Am. J. Rhinol. 2005 19 5 483 487 10.1177/194589240501900511 16270603
    [Google Scholar]
  87. Staack A. Tolic D. Kristiansen G. Schnorr D. Loening S.A. Jung K. Expression of cathepsins B, H, and L and their inhibitors as markers of transitional cell carcinoma of the bladder. Urology 2004 63 6 1089 1094 10.1016/j.urology.2004.01.018 15183956
    [Google Scholar]
  88. Song D. Chaerkady R. Tan A.C. García-García E. Nalli A. Suárez-Gauthier A. López-Ríos F. Zhang X.F. Solomon A. Tong J. Read M. Fritz C. Jimeno A. Pandey A. Hidalgo M. Antitumor activity and molecular effects of the novel heat shock protein 90 inhibitor, IPI-504, in pancreatic cancer. Mol. Cancer Ther. 2008 7 10 3275 3284 10.1158/1535‑7163.MCT‑08‑0508 18852131
    [Google Scholar]
  89. Wong C. Wong V. Chan C. Ma B. Hui E. Wong M. Lam M. Au T. Chan W.H. Cheuk W. Chan A. Identification of 5-fluorouracil response proteins in colorectal carcinoma cell line SW480 by two-dimensional electrophoresis and MALDI-TOF mass spectrometry. Oncol. Rep. 2008 20 1 89 98 10.3892/or.20.1.89 18575723
    [Google Scholar]
  90. Mlynarek M.A. Proteomics and the identification of serum biomarkers in a mouse model of oral squamous cell carcinoma. Head Neck 2008 30 3 287 295 10.1002/hed.20684
    [Google Scholar]
  91. Melle C. Ernst G. Schimmel B. Bleul A. Koscielny S. Wiesner A. Bogumil R. Möller U. Osterloh D. Halbhuber K.J. von Eggeling F. A technical triade for proteomic identification and characterization of cancer biomarkers. Cancer Res. 2004 64 12 4099 4104 10.1158/0008‑5472.CAN‑03‑3807 15205318
    [Google Scholar]
  92. Makridakis M. Vlahou A. Secretome proteomics for discovery of cancer biomarkers. J. Proteomics 2010 73 12 2291 2305 10.1016/j.jprot.2010.07.001 20637910
    [Google Scholar]
  93. Bandu R. Mok H.J. Kim K.P. Phospholipids as cancer biomarkers: Mass spectrometry‐based analysis. Mass Spectrom. Rev. 2018 37 2 107 138 10.1002/mas.21510 27276657
    [Google Scholar]
  94. Fliser D. Novak J. Thongboonkerd V. Argilés A. Jankowski V. Girolami M.A. Jankowski J. Mischak H. Advances in urinary proteome analysis and biomarker discovery. J. Am. Soc. Nephrol. 2007 18 4 1057 1071 10.1681/ASN.2006090956 17329573
    [Google Scholar]
  95. Xiao GG Recker RR Deng H-W. Recent advances in proteomics and cancer biomarker discovery. Clin. Med. Oncol. 2008 2 63 72 10.4137/cmo.s539 21892267
    [Google Scholar]
  96. Kikuchi T. Carbone D.P. Proteomics analysis in lung cancer: Challenges and opportunities. Respirology 2007 12 1 22 28 10.1111/j.1440‑1843.2006.00957.x 17207021
    [Google Scholar]
  97. Wulfkuhle J.D. Liotta L.A. Petricoin E.F. Proteomic applications for the early detection of cancer. Nat. Rev. Cancer 2003 3 4 267 275 10.1038/nrc1043 12671665
    [Google Scholar]
  98. Schneider R. Kotseridis Y. Ray J.L. Augier C. Baumes R. Quantitative determination of sulfur-containing wine odorants at sub parts per billion levels. 2. Development and application of a stable isotope dilution assay. J. Agric. Food Chem. 2003 51 11 3243 3248 10.1021/jf0211128 12744649
    [Google Scholar]
  99. Kaspar S. Peukert M. Svatos A. Matros A. Mock H.P. MALDI‐imaging mass spectrometry – An emerging technique in plant biology. Proteomics 2011 11 9 1840 1850 10.1002/pmic.201000756 21462348
    [Google Scholar]
  100. McArthur S.L. Vendettuoli M.C. Ratner B.D. Castner D.G. Methods for generating protein molecular ions in ToF-SIMS. Langmuir 2004 20 9 3704 3709 10.1021/la0358419 15875403
    [Google Scholar]
  101. Zhao S.S. Zhong X. Tie C. Chen D.D.Y. Capillary electrophoresis‐mass spectrometry for analysis of complex samples. Proteomics 2012 12 19-20 2991 3012 10.1002/pmic.201200221 22888086
    [Google Scholar]
  102. Pontillo C. Filip S. Borràs D.M. Mullen W. Vlahou A. Mischak H. CE‐MS‐based proteomics in biomarker discovery and clinical application. Proteomics Clin. Appl. 2015 9 3-4 322 334 10.1002/prca.201400115 25641774
    [Google Scholar]
  103. Issaq H.J. Veenstra T.D. Conrads T.P. Felschow D. The SELDI-TOF MS approach to proteomics: Protein profiling and biomarker identification. Biochem. Biophys. Res. Commun. 2002 292 3 587 592 10.1006/bbrc.2002.6678 11922607
    [Google Scholar]
  104. Bitarte N. Bandrés E. Zárate R. Ramirez N. Garcia-Foncillas J. Moving forward in colorectal cancer research, what proteomics has to tell. World J. Gastroenterol. 2007 13 44 5813 5821 10.3748/wjg.v13.i44.5813 17990347
    [Google Scholar]
  105. Liang S. Xu Z. Xu X. Zhao X. Huang C. Wei Y. Quantitative proteomics for cancer biomarker discovery. Comb. Chem. High Throughput Screen. 2012 15 3 221 231 10.2174/138620712799218635 22221055
    [Google Scholar]
  106. Ren X.Y. Yang W.B. Tian Y. Overexpression of long noncoding RNA PTPRG-AS1 is associated with poor prognosis in epithelial ovarian cancer. Rev. Assoc. Med. Bras. 2020 66 7 948 953 10.1590/1806‑9282.66.7.948 32844927
    [Google Scholar]
  107. Bast R.C. Klug T.L. John E.S. Jenison E. Niloff J.M. Lazarus H. Berkowitz R.S. Leavitt T. Griffiths C.T. Parker L. Zurawski V.R. Knapp R.C. A radioimmunoassay using a monoclonal antibody to monitor the course of epithelial ovarian cancer. N. Engl. J. Med. 1983 309 15 883 887 10.1056/NEJM198310133091503 6310399
    [Google Scholar]
  108. Barakat R.R. Markman M. Randall M. Principles and practice of gynecologic oncology. 2009 5th ed Philadelphia Lippincott Williams & Wilkins
    [Google Scholar]
  109. Menon U. Jacobs I.J. Recent developments in ovarian cancer screening. Curr. Opin. Obstet. Gynecol. 2000 12 1 39 42 10.1097/00001703‑200002000‑00007 10752515
    [Google Scholar]
  110. Jacobs I.J. Skates S.J. MacDonald N. Menon U. Rosenthal A.N. Davies A.P. Woolas R. Jeyarajah A.R. Sibley K. Lowe D.G. Oram D.H. Screening for ovarian cancer: A pilot randomised controlled trial. Lancet 1999 353 9160 1207 1210 10.1016/S0140‑6736(98)10261‑1 10217079
    [Google Scholar]
  111. Cohen L.S. Escobar P.F. Scharm C. Glimco B. Fishman D.A. Three-dimensional power Doppler ultrasound improves the diagnostic accuracy for ovarian cancer prediction. Gynecol. Oncol. 2001 82 1 40 48 10.1006/gyno.2001.6253 11426960
    [Google Scholar]
  112. Herbert B.R. Sanchez J-C. Bini L. Two-dimensional electrophoresis: The state of the art and future directions. In:Proteome Research: New Frontiers in Functional Genomics Principles and Practice. Berlin, Heidelberg Springer 1997 13 34 10.1007/978‑3‑662‑03493‑4_2
    [Google Scholar]
  113. Richter R. Schulz-Knappe P. Schrader M. Ständker L. Jürgens M. Tammen H. Forssmann W.G. Composition of the peptide fraction in human blood plasma: Database of circulating human peptides. J. Chromatogr., Biomed. Appl. 1999 726 1-2 25 35 10.1016/S0378‑4347(99)00012‑2 10348167
    [Google Scholar]
  114. Paweletz C.P. Gillespie J.W. Ornstein D.K. Simone N.L. Brown M.R. Cole K.A. Wang Q-H. Huang J. Hu N. Yip T-T. Rich W.E. Kohn E.C. Linehan W.M. Weber T. Taylor P. Emmert-Buck M.R. Liotta L.A. Petricoin E.F. Rapid protein display profiling of cancer progression directly from human tissue using a protein biochip. Drug Dev. Res. 2000 49 1 34 42 10.1002/(SICI)1098‑2299(200001)49:1<34:AID‑DDR6>3.0.CO;2‑W
    [Google Scholar]
  115. Alizadeh A.A. Eisen M.B. Davis R.E. Ma C. Lossos I.S. Rosenwald A. Boldrick J.C. Sabet H. Tran T. Yu X. Powell J.I. Yang L. Marti G.E. Moore T. Hudson J. Lu L. Lewis D.B. Tibshirani R. Sherlock G. Chan W.C. Greiner T.C. Weisenburger D.D. Armitage J.O. Warnke R. Levy R. Wilson W. Grever M.R. Byrd J.C. Botstein D. Brown P.O. Staudt L.M. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 2000 403 6769 503 511 10.1038/35000501 10676951
    [Google Scholar]
  116. Golub TR Slonim DK Tamayo P Huard C. Gaasenbeek M. Mesirov JP Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 1999 286 5439 531 537 10.1126/science.286.5439.531 10521349
    [Google Scholar]
  117. Lindahl D. Palmer J. Edenbrandt L. Myocardial SPET: Artificial neural networks describe extent and severity of perfusion defects. Clin. Physiol. 1999 19 6 497 503 10.1046/j.1365‑2281.1999.00203.x 10583343
    [Google Scholar]
  118. Lapuerta P. L’Italien G.J. Paul S. Hendel R.C. Leppo J.A. Fleisher L.A. Cohen M.C. Eagle K.A. Giugliano R.P. Neural network assessment of perioperative cardiac risk in vascular surgery patients. Med. Decis. Making 1998 18 1 70 75 10.1177/0272989X9801800114 9456211
    [Google Scholar]
  119. Mardamshina M. Geiger T. Next-generation proteomics and its application to clinical breast cancer research. Am. J. Pathol. 2017 187 10 2175 2184 10.1016/j.ajpath.2017.07.003 28736317
    [Google Scholar]
  120. Megger D.A. Naboulsi W. Meyer H.E. Sitek B. Proteome analyses of hepatocellular carcinoma. J. Clin. Transl. Hepatol. 2014 2 1 23 30 [PMID: 26357614
    [Google Scholar]
  121. Toby T.K. Fornelli L. Kelleher N.L. Progress in top-down proteomics and the analysis of proteoforms. Annu. Rev. Anal. Chem. 2016 9 1 499 519 10.1146/annurev‑anchem‑071015‑041550 27306313
    [Google Scholar]
  122. Zhang Y. Fonslow B.R. Shan B. Baek M.C. Yates J.R. Protein analysis by shotgun/bottom-up proteomics. Chem. Rev. 2013 113 4 2343 2394 10.1021/cr3003533 23438204
    [Google Scholar]
  123. Huang H. Shukla H. Wu C. Saxena S. Challenges and solutions in proteomics. Curr. Genomics 2007 8 1 21 28 10.2174/138920207780076910 18645629
    [Google Scholar]
  124. Schubert O.T. Röst H.L. Collins B.C. Rosenberger G. Aebersold R. Quantitative proteomics: Challenges and opportunities in basic and applied research. Nat. Protoc. 2017 12 7 1289 1294 10.1038/nprot.2017.040 28569762
    [Google Scholar]
  125. Amiri-Dashatan N. Koushki M. Abbaszadeh H-A. Rostami-Nejad M. Rezaei-Tavirani M. Proteomics applications in health: Biomarker and drug discovery and food industry. Iran. J. Pharm. Res. 2018 17 4 1523 1536 [PMID: 30568709
    [Google Scholar]
  126. Geyer P.E. Holdt L.M. Teupser D. Mann M. Revisiting biomarker discovery by plasma proteomics. Mol. Syst. Biol. 2017 13 9 942 10.15252/msb.20156297 28951502
    [Google Scholar]
  127. Ignjatovic V. Geyer P.E. Palaniappan K.K. Chaaban J.E. Omenn G.S. Baker M.S. Deutsch E.W. Schwenk J.M. Mass spectrometry-based plasma proteomics: Considerations from sample collection to achieving translational data. J. Proteome Res. 2019 18 12 4085 4097 10.1021/acs.jproteome.9b00503 31573204
    [Google Scholar]
  128. Geyer P.E. Voytik E. Treit P.V. Doll S. Kleinhempel A. Niu L. Müller J.B. Buchholtz M.L. Bader J.M. Teupser D. Holdt L.M. Mann M. Plasma proteome profiling to detect and avoid sample‐related biases in biomarker studies. EMBO Mol. Med. 2019 11 11 e10427 10.15252/emmm.201910427 31566909
    [Google Scholar]
  129. Allen D. McWhinney B. Quadrupole time-of-flight mass spectrometry: A paradigm shift in toxicology screening applications. Clin. Biochem. Rev. 2019 40 3 135 146 10.33176/AACB‑19‑00023 31530964
    [Google Scholar]
  130. Lin H. Zhang F. Geng Q. Yu T. Cui Y. Liu X. Li J. Yan M. Liu L. He X. Li J. Yao M. Quantitative proteomic analysis identifies CPNE3 as a novel metastasis-promoting gene in NSCLC. J. Proteome Res. 2013 12 7 3423 3433 10.1021/pr400273z 23713811
    [Google Scholar]
  131. Iwamoto N. Shimada T. Recent advances in mass spectrometry-based approaches for proteomics and biologics: Great contribution for developing therapeutic antibodies. Pharmacol. Ther. 2018 185 147 154 10.1016/j.pharmthera.2017.12.007 29274706
    [Google Scholar]
  132. Chakraborty P. Pradeep T. The emerging interface of mass spectrometry with materials. NPG Asia Mater. 2019 11 1 48 10.1038/s41427‑019‑0149‑3
    [Google Scholar]
  133. Alharbi R.A. Proteomics approach and techniques in identification of reliable biomarkers for diseases. Saudi J. Biol. Sci. 2020 27 3 968 974 10.1016/j.sjbs.2020.01.020 32127776
    [Google Scholar]
  134. Gebreyesus S.T. Siyal A.A. Kitata R.B. Chen E.S.W. Enkhbayar B. Angata T. Lin K.I. Chen Y.J. Tu H.L. Streamlined single-cell proteomics by an integrated microfluidic chip and data-independent acquisition mass spectrometry. Nat. Commun. 2022 13 1 37 10.1038/s41467‑021‑27778‑4 35013269
    [Google Scholar]
  135. Burnum-Johnson K.E. Nie S. Casey C.P. Monroe M.E. Orton D.J. Ibrahim Y.M. Gritsenko M.A. Clauss T.R.W. Shukla A.K. Moore R.J. Purvine S.O. Shi T. Qian W. Liu T. Baker E.S. Smith R.D. Simultaneous proteomic discovery and targeted monitoring using liquid chromatography, ion mobility spectrometry, and mass spectrometry. Mol. Cell. Proteomics 2016 15 12 3694 3705 10.1074/mcp.M116.061143 27670688
    [Google Scholar]
  136. Zhang Z. Bast R.C. Yu Y. Li J. Sokoll L.J. Rai A.J. Rosenzweig J.M. Cameron B. Wang Y.Y. Meng X.Y. Berchuck A. van Haaften-Day C. Hacker N.F. de Bruijn H.W.A. van der Zee A.G.J. Jacobs I.J. Fung E.T. Chan D.W. Three biomarkers identified from serum proteomic analysis for the detection of early stage ovarian cancer. Cancer Res. 2004 64 16 5882 5890 10.1158/0008‑5472.CAN‑04‑0746 15313933
    [Google Scholar]
  137. Kirwan A. Utratna M. O’Dwyer ME Joshi L. Kilcoyne M. Glycosylation-based serum biomarkers for cancer diagnostics and prognostics. Biomed Res. Int. 2015 2015 490531 10.1155/2015/490531 26509158
    [Google Scholar]
  138. Kailemia M.J. Park D. Lebrilla C.B. Glycans and glycoproteins as specific biomarkers for cancer. Anal. Bioanal. Chem. 2017 409 2 395 410 10.1007/s00216‑016‑9880‑6 27590322
    [Google Scholar]
  139. Islam Khan M.Z. Tam S.Y. Law H.K.W. Advances in high throughput proteomics profiling in establishing potential biomarkers for gastrointestinal cancer. Cells 2022 11 6 973 10.3390/cells11060973 35326424
    [Google Scholar]
  140. Menyhárt O. Győrffy B. Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis. Comput. Struct. Biotechnol. J. 2021 19 949 960 10.1016/j.csbj.2021.01.009 33613862
    [Google Scholar]
  141. Mani D.R. Krug K. Zhang B. Satpathy S. Clauser K.R. Ding L. Ellis M. Gillette M.A. Carr S.A. Cancer proteogenomics: Current impact and future prospects. Nat. Rev. Cancer 2022 22 5 298 313 10.1038/s41568‑022‑00446‑5 35236940
    [Google Scholar]
  142. Röst H.L. Malmström L. Aebersold R. Reproducible quantitative proteotype data matrices for systems biology. Mol. Biol. Cell 2015 26 22 3926 3931 10.1091/mbc.E15‑07‑0507 26543201
    [Google Scholar]
  143. Gu W. Wang Y. Gene discovery for disease models. John Wiley Sons Hoboken, NJ John Wiley Sons 2011 10.1002/9780470933947
    [Google Scholar]
  144. Russell M.R. Walker M.J. Williamson A.J.K. Gentry-Maharaj A. Ryan A. Kalsi J. Skates S. D’Amato A. Dive C. Pernemalm M. Humphryes P.C. Fourkala E.O. Whetton A.D. Menon U. Jacobs I. Graham R.L.J. Protein Z. A putative novel biomarker for early detection of ovarian cancer. Int. J. Cancer 2016 138 12 2984 2992 10.1002/ijc.30020 26815306
    [Google Scholar]
  145. Jeffery D.A. Bogyo M. Chemical proteomics and its application to drug discovery. Curr. Opin. Biotechnol. 2003 14 1 87 95 10.1016/S0958‑1669(02)00010‑1 12566007
    [Google Scholar]
  146. Aebersold R. Mann M. Mass spectrometry-based proteomics. Nature 2003 422 6928 198 207 10.1038/nature01511 12634793
    [Google Scholar]
  147. López-Otín C. Overall C.M. Protease degradomics: A new challenge for proteomics. Nat. Rev. Mol. Cell Biol. 2002 3 7 509 519 10.1038/nrm858 12094217
    [Google Scholar]
  148. Graves P.R. Haystead T.A.J. Molecular biologist’s guide to proteomics. Microbiol. Mol. Biol. Rev. 2002 66 1 39 63 10.1128/MMBR.66.1.39‑63.2002 11875127
    [Google Scholar]
  149. Kim P.S. Baldwin R.L. Intermediates in the folding reactions of small proteins. Annu. Rev. Biochem. 1990 59 1 631 660 10.1146/annurev.bi.59.070190.003215 2197986
    [Google Scholar]
  150. Cho W.C.S. Proteomics technologies and challenges. Genomics Proteomics Bioinformatics 2007 5 2 77 85 10.1016/S1672‑0229(07)60018‑7 17893073
    [Google Scholar]
  151. Kolch W. Mischak H. Pitt A.R. The molecular make-up of a tumour: Proteomics in cancer research. Clin. Sci. 2005 108 5 369 383 10.1042/CS20050006 15831087
    [Google Scholar]
  152. Suhre K. McCarthy M.I. Schwenk J.M. Genetics meets proteomics: Perspectives for large population-based studies. Nat. Rev. Genet. 2021 22 1 19 37 10.1038/s41576‑020‑0268‑2 32860016
    [Google Scholar]
  153. Thul P.J. Åkesson L. Wiking M. Mahdessian D. Geladaki A. Ait Blal H. Alm T. Asplund A. Björk L. Breckels L.M. Bäckström A. Danielsson F. Fagerberg L. Fall J. Gatto L. Gnann C. Hober S. Hjelmare M. Johansson F. Lee S. Lindskog C. Mulder J. Mulvey C.M. Nilsson P. Oksvold P. Rockberg J. Schutten R. Schwenk J.M. Sivertsson Å. Sjöstedt E. Skogs M. Stadler C. Sullivan D.P. Tegel H. Winsnes C. Zhang C. Zwahlen M. Mardinoglu A. Pontén F. von Feilitzen K. Lilley K.S. Uhlén M. Lundberg E. A subcellular map of the human proteome. Science 2017 356 6340 eaal3321 10.1126/science.aal3321 28495876
    [Google Scholar]
  154. Hristova V.A. Chan D.W. Cancer biomarker discovery and translation: Proteomics and beyond. Expert Rev. Proteomics 2019 16 2 93 103 10.1080/14789450.2019.1559062 30556752
    [Google Scholar]
  155. Esteve-Pastor M.A. Roldán V. Rivera-Caravaca J.M. Ramírez-Macías I. Lip G.Y.H. Marín F. The use of biomarkers in clinical management guidelines: A critical appraisal. Thromb. Haemost. 2019 119 12 1901 1919 10.1055/s‑0039‑1696955 31499565
    [Google Scholar]
  156. Zhang M. Wang B. Xu J. Wang X. Xie L. Zhang B. Li Y. Li J. CanProVar 2.0: An updated database of human cancer proteome variation. J. Proteome Res. 2017 16 2 421 432 10.1021/acs.jproteome.6b00505 27977206
    [Google Scholar]
  157. Patel S.K. George B. Rai V. Artificial intelligence to decode cancer mechanism: Beyond patient stratification for precision oncology. Front. Pharmacol. 2020 11 1177 10.3389/fphar.2020.01177 32903628
    [Google Scholar]
  158. Xu Y. Su G.H. Ma D. Xiao Y. Shao Z.M. Jiang Y.Z. Technological advances in cancer immunity: From immunogenomics to single-cell analysis and artificial intelligence. Signal Transduct. Target. Ther. 2021 6 1 312 10.1038/s41392‑021‑00729‑7 34417437
    [Google Scholar]
  159. Yang Q. Zhang Y. Cui H. Chen L. Zhao Y. Lin, Y dbDEPC 3.0: The database of differentially expressed proteins in human cancer with multi-level annotation and drug indication. Database 2018 2018 bay015 10.1093/database/bay015 29688359
    [Google Scholar]
  160. Shao X. Taha I.N. Clauser K.R. Gao Y.T. Naba A. Matrisome DB The ECM-protein knowledge database. Nucleic Acids Res. 2020 48 D1 D1136 D1144 10.1093/nar/gkz849 31586405
    [Google Scholar]
  161. Jones P. C^ote, R. The PRIDE proteomics identifications database: Data submission, query, and dataset comparison. Methods Mol. Biol. 2008 484 287 303 10.1007/978‑1‑59745‑398‑1_19 18592187
    [Google Scholar]
  162. Wu P. Heins Z.J. Muller J.T. Katsnelson L. de Bruijn I. Abeshouse A.A. Schultz N. Fenyö D. Gao J. Integration and analysis of CPTAC proteomics data in the context of cancer genomics in the cBioPortal. Mol. Cell. Proteomics 2019 18 9 1893 1898 10.1074/mcp.TIR119.001673 31308250
    [Google Scholar]
  163. Aggarwal S. Raj A. Kumar D. Dash D. Yadav A.K. False discovery rate: The Achilles’ heel of proteogenomics. Brief. Bioinform. 2022 23 5 bbac163 10.1093/bib/bbac163 35534181
    [Google Scholar]
  164. Mueller L.N. Brusniak M.Y. Mani D.R. Aebersold R. An assessment of software solutions for the analysis of mass spectrometry based quantitative proteomics data. J. Proteome Res. 2008 7 1 51 61 10.1021/pr700758r 18173218
    [Google Scholar]
  165. Zhang GL DeLuca DS Brusic V Database resources for proteomics-based analysis of cancer. Methods Mol. Biol. 2011 723 349 364 10.1007/978‑1‑61779‑043‑0_22 21370076
    [Google Scholar]
  166. Mattes W.B. Pettit S.D. Sansone S.A. Bushel P.R. Waters M.D. Database development in toxicogenomics: Issues and efforts. Environ. Health Perspect. 2004 112 4 495 505 10.1289/ehp.6697 15033600
    [Google Scholar]
  167. ATLAS A.B. Quantification of gene expression. Mol. Syst. Biol. 2016 12 862
    [Google Scholar]
  168. Kato K. Yamashita R. Matoba R. Monden M. Noguchi S. Takagi T. Nakai K. Cancer gene expression database (CGED): A database for gene expression profiling with accompanying clinical information of human cancer tissues. Nucleic Acids Res. 2004 33 Database issue D533 D536 10.1093/nar/gki117 15608255
    [Google Scholar]
  169. Heidary M. Auer M. Ulz P. Heitzer E. Petru E. Gasch C. Riethdorf S. Mauermann O. Lafer I. Pristauz G. Lax S. Pantel K. Geigl J.B. Speicher M.R. The dynamic range of circulating tumor DNA in metastatic breast cancer. Breast Cancer Res. 2014 16 4 421 10.1186/s13058‑014‑0421‑y 25107527
    [Google Scholar]
  170. Rhee H. Lee J.S. MedRefSNP: A database of medically investigated SNPs. Hum. Mutat. 2009 30 3 E460 E466 10.1002/humu.20914 19105187
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206377391250526054417
Loading
/content/journals/acamc/10.2174/0118715206377391250526054417
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: analytical techniques ; proteomics ; database ; biomarkers ; mass spectrometry ; Cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test