Skip to content
2000
image of Precision-engineered Carrageenan Gels: Boosting the Efficacy, Selectivity, and 
Release of Celecoxib for Lung Cancer Therapy

Abstract

Background

Lung cancer is one of the most widespread malignancies among all types of cancers. There is uncertainty in its treatment because of the selectivity. The investigation is aimed to enhance therapeutic efficacy through targeted improvements in drug selectivity and reduced toxicity by analyzing well-accepted cyclooxygenase (COX)-2, which is an enzyme target and a known therapeutic target for anti-inflammatory and antitumor agents.

Objective

The objective of the present research was to identify the most suitable counterpart for celecoxib, which would produce synergistic effects and improve the selectivity index, safety, and efficacy of targeting cancer cells.

Methods

The HOPE-62 cancer cell line and noncancerous LLC-MK2 cell line were used to analyze the activity of the prepared formulations. The effectiveness was compared by calculating the half-maximal inhibitory concentration (IC) values of carrageenan, celecoxib, and celecoxib embedded with carrageenan. The release pattern of celecoxib from the carrageenan matrix was also determined by using a trans-diffusion cell; moreover, the binding sites of carrageenan and celecoxib were also evaluated through molecular docking studies.

Results

Carrageenan showed promising anticancer activity, with an IC value of 17.3±2 µM against the HOPE-62 cell line. When blended with celecoxib (15.6±2 µM), the combination achieved enhanced efficacy and improved selectivity over celecoxib alone (IC of 10.3±1.5 µM). In noncancerous LLC-MK2 cells, the IC values were observed to be significantly higher: 1484 ±6 µM in the combined formulation and with IC values of 559±3 µM and 878±4 µM, respectively, in celecoxib and carrageenan alone.

Conclusion

The carrageenan-embedded celecoxib exhibited a significant increase in the selectivity index from 32 to 144, which suggests enhanced anticancer activity with a favorable safety profile. Initially, sustained release of celecoxib from the blend was at a higher rate, but steadily maintained rates were. The docking studies also supported the synergistic activity of the combined form through separate interaction patterns without interfering with others. These findings underscore the therapeutic potential of excipient–drug blending strategies to achieve synergistic effects, excellent selectivity, and reduced toxicity in cancer treatments.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206376021250506104129
2025-05-12
2025-09-27
Loading full text...

Full text loading...

References

  1. Siegel R.L. Kratzer T.B. Giaquinto A.N. Sung H. Jemal A. Cancer statistics, 2025. CA Cancer J. Clin. 2025 75 1 10 45 10.3322/caac.21871 39817679
    [Google Scholar]
  2. Sathishkumar K. Chaturvedi M. Das P. Stephen S. Mathur P. Cancer incidence estimates for 2022 & projection for 2025: Result from national cancer registry programme, India. Indian J Med Res 2022 156 4&5 598 607 10.4103/ijmr.ijmr_1821_22 36510887
    [Google Scholar]
  3. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J Clin 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  4. Olsen A.H. Parkin D.M. Sasieni P. Cancer mortality in the United Kingdom: Projections to the year 2025. Br. J. Cancer 2008 99 9 1549 1554 10.1038/sj.bjc.6604710 18854832
    [Google Scholar]
  5. Bizuayehu H.M. Dadi A.F. Ahmed K.Y. Tegegne T.K. Hassen T.A. Kibret G.D. Ketema D.B. Bore M.G. Thapa S. Odo D.B. Kassa Z.Y. Shifti D.M. Amsalu E. Sarich P. Venchiarutti R.L. Melaku Y.A. Kibret K.T. Habte A. Mefsin Y.M. Seid A. Belachew S.A. Burden of 30 cancers among men: Global statistics in 2022 and projections for 2050 using population‐based estimates. Cancer 2024 130 21 cncr.35458 10.1002/cncr.35458 39129420
    [Google Scholar]
  6. Gridelli C. Rossi A. Carbone D.P. Guarize J. Karachaliou N. Mok T. Petrella F. Spaggiari L. Rosell R. Non-small-cell lung cancer. Nat. Rev. Dis. Primers 2015 1 1 15009 10.1038/nrdp.2015.9 27188576
    [Google Scholar]
  7. Bertolaccini L. Casiraghi M. Uslenghi C. Maiorca S. Spaggiari L. Recent advances in lung cancer research: Unravelling the future of treatment. Updates Surg. 2024 76 6 2129 2140 10.1007/s13304‑024‑01841‑3 38581618
    [Google Scholar]
  8. Garg P. Singhal S. Kulkarni P. Horne D. Malhotra J. Salgia R. Singhal S.S. Advances in non-small cell lung cancer: Current insights and future directions. J. Clin. Med. 2024 13 14 4189 10.3390/jcm13144189 39064229
    [Google Scholar]
  9. Joseph JR Selvakumar K Bridging the nano-Frontier: Revolutionizing lung cancer diagnosis and therapy with nanoparticles. Int. J. Polym. Mater. Polym. Biomater. 2024 74 7 595 611 10.1080/00914037.2024.2355182
    [Google Scholar]
  10. Luo G. Zhang Y. Rumgay H. Morgan E. Langselius O. Vignat J. Colombet M. Bray F. Estimated worldwide variation and trends in incidence of lung cancer by histological subtype in 2022 and over time: A population-based study. Lancet Respir. Med. 2025 13 4 348 363 S2213-2600(24)00428-4 10.1016/S2213‑2600(24)00428‑4 39914442
    [Google Scholar]
  11. Aggarwal A. Lewison G. Idir S. Peters M. Aldige C. Boerckel W. Boyle P. Trimble E.L. Roe P. Sethi T. Fox J. Sullivan R. The state of lung cancer research: A global analysis. J. Thorac. Oncol. 2016 11 7 1040 1050 10.1016/j.jtho.2016.03.010 27013405
    [Google Scholar]
  12. Nooreldeen R. Bach H. Current and future development in lung cancer diagnosis. Int. J. Mol. Sci. 2021 22 16 8661 10.3390/ijms22168661 34445366
    [Google Scholar]
  13. Rudin C.M. Brambilla E. Faivre-Finn C. Sage J. Small-cell lung cancer. Nat. Rev. Dis. Primers 2021 7 1 3 10.1038/s41572‑020‑00235‑0 33446664
    [Google Scholar]
  14. Leiter A. Veluswamy R.R. Wisnivesky J.P. The global burden of lung cancer: Current status and future trends. Nat. Rev. Clin. Oncol. 2023 20 9 624 639 10.1038/s41571‑023‑00798‑3 37479810
    [Google Scholar]
  15. Kim E.S. Herbst R.S. Wistuba I.I. Lee J.J. Blumenschein G.R. Jr Tsao A. Stewart D.J. Hicks M.E. Erasmus J. Jr Gupta S. Alden C.M. Liu S. Tang X. Khuri F.R. Tran H.T. Johnson B.E. Heymach J.V. Mao L. Fossella F. Kies M.S. Papadimitrakopoulou V. Davis S.E. Lippman S.M. Hong W.K. The BATTLE trial: Personalizing therapy for lung cancer. Cancer Discov. 2011 1 1 44 53 10.1158/2159‑8274.CD‑10‑0010 22586319
    [Google Scholar]
  16. Chaitanya Thandra K. Barsouk A. Saginala K. Sukumar Aluru J. Barsouk A. Epidemiology of lung cancer. Contemp. Oncol. 2021 25 1 45 52 10.5114/wo.2021.103829 33911981
    [Google Scholar]
  17. Abou-Issa H. Alshafie G. Celecoxib: A novel treatment for lung cancer. Expert Rev. Anticancer Ther. 2004 4 5 725 734 10.1586/14737140.4.5.725 15485309
    [Google Scholar]
  18. Hosomi Y. Yokose T. Hirose Y. Nakajima R. Nagai K. Nishiwaki Y. Ochiai A. Increased cyclooxygenase 2 (COX-2) expression occurs frequently in precursor lesions of human adenocarcinoma of the lung. Lung Cancer 2000 30 2 73 81 10.1016/S0169‑5002(00)00132‑X 11086200
    [Google Scholar]
  19. Yi L. Zhang W. Zhang H. Shen J. Zou J. Luo P. Zhang J. Systematic review and meta-analysis of the benefit of celecoxib in treating advanced non-small-cell lung cancer. Drug Des. Devel. Ther. 2018 12 2455 2466 10.2147/DDDT.S169627 30122902
    [Google Scholar]
  20. Saxena P. Sharma P.K. Purohit P. A journey of celecoxib from pain to cancer. Prostaglandins Other Lipid Mediat. 2020 147 106379 10.1016/j.prostaglandins.2019.106379 31726219
    [Google Scholar]
  21. Yona D. Arber N. Coxibs and cancer prevention. J. Cardiovasc. Pharmacol. 2006 47 Suppl. 1 S76 S81 10.1097/00005344‑200605001‑00014 16785835
    [Google Scholar]
  22. Li D. Guo S. Wang K. Liu Z. Yu T. Zhang Y. The COX-2 inhibitor celecoxib sensitizes nasopharyngeal carcinoma cells to ferroptosis. Curr. Cancer Drug Targets 2025 25 10.2174/0115680096337720241030055036 39779575
    [Google Scholar]
  23. Ajikanari O. Miaadi E. Hedayat M. Jafari R. Asghari R. Zolbanin N.M. Antitumor activity of celecoxib with docetaxel on human triple-negative breast cancer cells. Gene Rep. 2025 38 102141 10.1016/j.genrep.2025.102141
    [Google Scholar]
  24. Dewangan R. Agrawal N. Lanjhiyana S.K. Jaiswal M. Exploring the antineoplastic potential of novel NSAID derivatives in combatting mammary tumorigenesis: A comprehensive review. Med. Chem. Res. 2025 34 4 764 790 10.1007/s00044‑025‑03377‑6
    [Google Scholar]
  25. Kan X. Zhou Z. Liu L. Aiskikaer R. Zou Y. Significance of non-steroidal anti-inflammatory drugs in the prevention and treatment of cervical cancer. Heliyon 2025 11 3 e42055 10.1016/j.heliyon.2025.e42055 39916829
    [Google Scholar]
  26. Sigler S. Abdel-Halim M. Fathalla R.K. Da Silva L.M. Keeton A.B. Maxuitenko Y.Y. Berry K.L. Zhou G. Engel M. Abadi A.H. Piazza G.A. Novel celecoxib derivative, RF26, blocks colon cancer cell growth by inhibiting PDE5, activating cGMP/PKG signaling, and suppressing β-catenin-dependent transcription. Anticancer. Agents Med. Chem. 2025 25 1 52 62 10.2174/0118715206318802240821114353 39225209
    [Google Scholar]
  27. Wei K.C. Lin J.T. Lin C.H. Celecoxib paradoxically induces COX-2 expression and astrocyte activation through the ERK/JNK/AP-1 signaling pathway in the cerebral cortex of rats. Neurochem. Int. 2025 183 105926 10.1016/j.neuint.2024.105926 39734024
    [Google Scholar]
  28. Nowak J.A. Shi Q. Twombly T. Pederson L.D. Ma C. Väyrynen J.P. Zhao M.M. Takashima Y. Shergill A. Kumar P. Couture F. Kuebler J.P. Krishnamurthi S.S. Tan B.R. O’Reilly E.M. Shields A.F. Ogino S. Aleshin A. Meyerhardt J.A. Prognostic and predictive role of circulating tumor DNA (ctDNA) in stage III colon cancer treated with celecoxib: Findings from CALGB (Alliance)/SWOG 80702. J. Clin. Oncol. 2025 43 4_suppl Suppl. LBA14 10.1200/JCO.2025.43.4_suppl.LBA14
    [Google Scholar]
  29. Sobolewski C Legrand N Celecoxib analogues for cancer treatment: An update on OSU-03012 and 2,5-Dimethyl-Celecoxib. Biomolecules 2021 11 7 1049 10.3390/biom11071049 34356673
    [Google Scholar]
  30. Bhatt A. Kailkhura S. Shukla A. Kumar S. Purohit P. Abdellattif M.H. Modulating ionic linkages in the heterocyclic sulfated polysaccharide carrageenan for enhanced selectivity against amelanotic melanoma cells. ChemistrySelect 2024 9 20 e202400185 10.1002/slct.202400185
    [Google Scholar]
  31. Shukla A. Kumar S. Bhatt A. Purohit P. Kailkhura S. Abdellattif M.H. Iota carrageenan linked barium ion nanoparticle synthesis for the selective targeted imaging and inhibition of cancer cells. J. Polym. Eng. 2024 44 5 338 346 10.1515/polyeng‑2023‑0278
    [Google Scholar]
  32. Geyik G. Işıklan N. Multi-stimuli-sensitive superparamagnetic κ-carrageenan based nanoparticles for controlled 5-fluorouracil delivery. Colloids Surf. A Physicochem. Eng. Asp. 2022 634 127960 10.1016/j.colsurfa.2021.127960
    [Google Scholar]
  33. Tang M. Zhai L. Chen J. Wang F. Chen H. Wu W. The antitumor potential of λ-carrageenan oligosaccharides on gastric carcinoma by immunomodulation. Nutrients 2023 15 9 2044 10.3390/nu15092044 37432179
    [Google Scholar]
  34. Kumar S. Bhatt A. Purohit P. Carrageenan modifications: Improving biomedical applications. J. Polym. Environ. 2025 ••• 1 22 10.1007/s10924‑025‑03501‑y
    [Google Scholar]
  35. Bhatt A. Nainwal N. Purohit P. The impact of carrageenan on pharmascience. Curr. Tradit. Med. 2024 10 6 e110124225504 10.2174/0122150838266638231117180516
    [Google Scholar]
  36. Shukla A. Kumar S. Bhatt A. Purohit P. Conversion of iota carrageenan hydrocolloids to hydrophobic hydrocolloids, by the replacement of potassium to barium ion, for the entrapment of water insoluble drugs. Discover Applied Sciences 2024 6 5 244 10.1007/s42452‑024‑05925‑y
    [Google Scholar]
  37. Bhatt A. Kailkhura S. Purohit P. Benzoylation of iota carrageenan: Development of a stable, conductive, and hydrophobic drug carrier with reduced toxicity and improved gel‐forming ability. Macromol. Chem. Phys. 2024 225 12 2400017 10.1002/macp.202400017
    [Google Scholar]
  38. Kailkhura S. Purohit P. Bhatt A. Abdellattif M.H. Eclipsed conformational locking: Exploring iota carrageenan’s distinct behavior in ethanol–water systems via hydrogen bonding with the disulfate group. Chem. Zvesti 2024 78 12 7097 7109 10.1007/s11696‑024‑03590‑4
    [Google Scholar]
  39. Sun Z. Song C. Wang C. Hu Y. Wu J. Hydrogel-based controlled drug delivery for cancer treatment: A review. Mol. Pharm. 2020 17 2 acs.molpharmaceut.9b01020 10.1021/acs.molpharmaceut.9b01020 31877054
    [Google Scholar]
  40. Chen X. Tao J. Zhang M. Lu Z. Yu Y. Song P. Wang T. Jiang T. Zhao X. Iota carrageenan gold-silver NPs photothermal hydrogel for tumor postsurgical anti-recurrence and wound healing. Carbohydr. Polym. 2022 298 120123 10.1016/j.carbpol.2022.120123 36241295
    [Google Scholar]
  41. Chen X. Jiang T. Li Y. Zhang Y. Chen J. Zhao X. Yang H. Carrageenan-ferrocene-eicosapentaenoic acid composite hydrogel induce ferroptosis and apoptosis for anti-tumor recurrence and metastasis. Int. J. Biol. Macromol. 2024 276 Pt 2 133942 10.1016/j.ijbiomac.2024.133942 39025181
    [Google Scholar]
  42. Saccol C.P. Meinerz M. Prado V.C. Sari M.H.M. Mathes D. Macedo L.B. Nogueira-Librelotto D.R. Cruz L. Mucoadhesive Xanthan-Carrageenan Hydrogel: A Nanocomposite Dosage Form with Sesame Components Designed for Local Therapy of Cervical Cancer. Bionanoscience 2025 15 2 212 10.1007/s12668‑025‑01835‑4
    [Google Scholar]
  43. Venkatachalam G. Giri J. Mallik S. Arumugam G.S. Arulmani M. Dewangan V.K. Doble M. Zhao Z. Immunomodulatory zymosan/ι-carrageenan/ agarose hydrogel for targeting M2 to M1 macrophages (antitumoral). RSC Advances 2024 14 17 11694 11705 10.1039/D3RA06978H 38605900
    [Google Scholar]
  44. Shabani F. Karimi-Soflou R. Karkhaneh A. Folate-mediated targeting of carrageenan-cholesterol micelles for enhanced breast cancer treatment. Eur. Polym. J. 2024 208 112852 10.1016/j.eurpolymj.2024.112852
    [Google Scholar]
  45. Bhuyan P.P. Nayak R. Patra S. Abdulabbas H.S. Jena M. Pradhan B. Seaweed-derived sulfated polysaccharides; the new age chemopreventives: A comprehensive review. Cancers 2023 15 3 715 10.3390/cancers15030715 36765670
    [Google Scholar]
  46. Seth K. Garg S.K. Kumar R. Purohit P. Meena V.S. Goyal R. Banerjee U.C. Chakraborti A.K. 2-(2-Arylphenyl) benzoxazole as a novel anti-inflammatory scaffold: Synthesis and biological evaluation. ACS Med. Chem. Lett. 2014 5 5 512 516 10.1021/ml400500e 24900871
    [Google Scholar]
  47. Celecoxib Powder, C17H14F3N3O2S, 169590-42-5. 2025
  48. Babgi B.A. Alsayari J.H. Davaasuren B. Emwas A.H. Jaremko M. Abdellattif M.H. Hussien M.A. Synthesis, structural studies, and anticancer properties of [CuBr(PPh3)2(4,6-Dimethyl-2-Thiopyrimidine-κS]. Crystals 2021 11 6 688 10.3390/cryst11060688
    [Google Scholar]
  49. Huang X. Huang J. Zhang L. Zhu Y. Li Y. A novel ER α -mediated reporter gene assay for screening estrogenic/antiestrogenic chemicals based on LLC-MK2 cells. Toxicol. Mech. Methods 2014 24 9 627 632 10.3109/15376516.2014.945107 25045971
    [Google Scholar]
  50. Mathada B.S. Basha N.J. Javeed M. Karunakar P. Venkatesulu A. Erappa K. Varsha A. Novel pyrimidines as COX-2 selective inhibitors: Synthesis, DFT analysis, molecular docking and dynamic simulation studies. J. Biomol. Struct. Dyn. 2024 42 4 1751 1764 10.1080/07391102.2023.2202248 37102863
    [Google Scholar]
  51. Cancer Dependency Map. 2021 Available from: https://depmap.org/portal/
  52. Liebenberg W. Engelbrecht E. Wessels A. Devarakonda B. Yang W. De V.M.M. A comparative study of the release of active ingredients from semisolid cosmeceuticals measured with Franz, enhancer or flow-through cell diffusion apparatus. Yao Wu Shi Pin Fen Xi 2020 12 1 10 10.38212/2224‑6614.2669
    [Google Scholar]
  53. Ng S.F. Rouse J.J. Sanderson F.D. Meidan V. Eccleston G.M. Validation of a static Franz diffusion cell system for in vitro permeation studies. AAPS PharmSciTech 2010 11 3 1432 1441 10.1208/s12249‑010‑9522‑9 20842539
    [Google Scholar]
  54. Yang X. Tong Y. Ye W. Chen L. HOXB2 increases the proliferation and invasiveness of colon cancer cells through the upregulation of CCT6A. Mol. Med. Rep. 2022 25 5 174 10.3892/mmr.2022.12690 35315492
    [Google Scholar]
  55. Alsaedi S. Babgi B.A. Abdellatif M.H. Emwas A-H. Jaremko M. Humphrey M.G. Hussien M.A. Effect of net charge on DNA-binding, protein-binding and anticancer properties of copper(i) phosphine-diimine complexes. J. Inorg. Organomet. Polym. Mater. 2021 31 10 3943 3952 10.1007/s10904‑021‑02063‑5
    [Google Scholar]
  56. Fernández C.Y. Rocha A. Azam M. Alvarez N. Min K. Batista A.A. Costa-Filho A.J. Ellena J. Facchin G. Synthesis, characterization, DNA binding and cytotoxicity of copper(II) phenylcarboxylate complexes. Inorganics 2023 11 10 398 10.3390/inorganics11100398
    [Google Scholar]
  57. Hagar F.F. Abbas S.H. Atef E. Benzimidazole scaffold as a potent anticancer agent with different mechanisms of action (2016–2023). Mol. Divers. 2024 29 2 1821 1849 10.1007/s11030‑024‑10907‑8 39031290
    [Google Scholar]
  58. Bernacki R. Periyakoil V.S. Best practices in caring for seriously ill patients. Ann. Intern. Med. 2024 177 7 ITC97 ITC112 10.7326/AITC202407160 38976884
    [Google Scholar]
  59. Rozemberczki B. Gogleva A. Nilsson S. Edwards G. Nikolov A. Papa E. Moomin: Deep molecular omics network for anti-cancer drug combination therapy. 2022 17 3472 3483 10.48550/arXiv.2110.15087
    [Google Scholar]
  60. Alfarouk K.O. Verduzco D. Rauch C. Muddathir A.K. Bashir A.H.H. Elhassan G.O. Ibrahim M.E. Orozco J.D.P. Cardone R.A. Reshkin S.J. Harguindey S. Glycolysis, tumor metabolism, cancer growth and dissemination. A new pH-based etiopathogenic perspective and therapeutic approach to an old cancer question. Oncoscience 2014 1 12 777 802 10.18632/oncoscience.109 25621294
    [Google Scholar]
  61. Moreno-Sánchez R. Rodríguez-Enríquez S. Marín-Hernández A. Saavedra E. Energy metabolism in tumor cells. FEBS J. 2007 274 6 1393 1418 10.1111/j.1742‑4658.2007.05686.x 17302740
    [Google Scholar]
  62. Gillies R.J. Robey I. Gatenby R.A. Causes and consequences of increased glucose metabolism of cancers. J. Nucl. Med. 2008 49 Suppl. 2 24S 42S 10.2967/jnumed.107.047258 18523064
    [Google Scholar]
  63. Lee S.H. Griffiths J.R. How and why are cancers acidic? carbonic anhydrase IX and the homeostatic control of tumour extracellular pH. Cancers 2020 12 6 1616 10.3390/cancers12061616 32570870
    [Google Scholar]
  64. Kellum J.A. Song M. Li J. Science review: extracellular acidosis and the immune response: Clinical and physiologic implications. Crit. Care 2004 8 5 331 336 10.1186/cc2900 15469594
    [Google Scholar]
  65. Sahu V. Lu C. Metabolism-driven chromatin dynamics: Molecular principles and technological advances. Mol. Cell 2025 85 2 262 275 10.1016/j.molcel.2024.12.012 39824167
    [Google Scholar]
  66. Ohshima K. Morii E. Metabolic reprogramming of cancer cells during tumor progression and metastasis. Metabolites 2021 11 1 28 10.3390/metabo11010028 33401771
    [Google Scholar]
  67. Kuo C.L. Ponneri Babuharisankar A. Lin Y.C. Lien H.W. Lo Y.K. Chou H.Y. Tangeda V. Cheng L.C. Cheng A.N. Lee A.Y.L. Mitochondrial oxidative stress in the tumor microenvironment and cancer immunoescape: Foe or friend? J. Biomed. Sci. 2022 29 1 74 10.1186/s12929‑022‑00859‑2 36154922
    [Google Scholar]
  68. Barkley D. Moncada R. Pour M. Liberman D.A. Dryg I. Werba G. Wang W. Baron M. Rao A. Xia B. França G.S. Weil A. Delair D.F. Hajdu C. Lund A.W. Osman I. Yanai I. Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment. Nat. Genet. 2022 54 8 1192 1201 10.1038/s41588‑022‑01141‑9 35931863
    [Google Scholar]
  69. Oliveri V. Selective targeting of cancer cells by copper ionophores: An overview. Front Mol Biosci 2022 9 841814 10.3389/fmolb.2022.841814 35309510
    [Google Scholar]
  70. Mittal R.K. Purohit P. Quinoline-3-Carboxylic acids: A step toward highly selective antiproliferative agent. Anticancer. Agents Med. Chem. 2021 21 13 1708 1716 10.2174/1871520620999201124214112 33238852
    [Google Scholar]
  71. Purohit P. Mittal R.K. Khatana K. Quinoline-3-Carboxylic acids “DNA minor groove-binding agent”. Anticancer. Agents Med. Chem. 2022 22 2 344 348 10.2174/1871520621666210513160714 33992065
    [Google Scholar]
  72. Mittal R.K. Purohit P. Quinoline-3-carboxylate derivatives: A new hope as an antiproliferative agent. Anticancer. Agents Med. Chem. 2020 20 16 1981 1991 10.2174/1871520620666200619175906 32560612
    [Google Scholar]
  73. Wu F. Fan J. He Y. Xiong A. Yu J. Li Y. Zhang Y. Zhao W. Zhou F. Li W. Zhang J. Zhang X. Qiao M. Gao G. Chen S. Chen X. Li X. Hou L. Wu C. Su C. Ren S. Odenthal M. Buettner R. Fang N. Zhou C. Single-cell profiling of tumor heterogeneity and the microenvironment in advanced non-small cell lung cancer. Nat. Commun. 2021 12 1 2540 10.1038/s41467‑021‑22801‑0 33953163
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206376021250506104129
Loading
/content/journals/acamc/10.2174/0118715206376021250506104129
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keywords: therapeutic efficacy ; celecoxib ; Carrageenan ; drug delivery ; encapsulation ; lung cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test