Skip to content
2000
image of Exploring the Therapeutic Potential of Ocimum sanctum and Phanera variegata in Breast Cancer Treatment: A Promising Natural Approach

Abstract

Breast cancer is one of the most common malignancies affecting women worldwide. It is a complex, heterogeneous disease, classified into several subtypes, including hormone receptor-positive and triple-negative breast cancer (TNBC), each with distinct therapeutic challenges. TNBC, in particular, is characterized by its aggressive nature and lack of targeted therapies due to the absence of estrogen, progesterone, and HER2 receptors. This review explores the potential of natural plant-based compounds, especially focusing on Clove Basil () and , in combating breast cancer. These plants have been traditionally used for their medicinal properties and are now being studied for their anticancer effects. has demonstrated significant antiproliferative and pro-apoptotic effects against breast cancer cells, particularly the MCF-7 line, through mitochondrial pathway activation and gene regulation. Similarly, exhibits potential through its rich content of flavonoids and other bioactive compounds, which have been shown to induce apoptosis, reduce tumor growth, and offer antioxidant benefits. The review highlights how these plant extracts, with their multiple mechanisms, including immune modulation and direct cytotoxic effects, hold promise as adjunctive or alternative therapies in breast cancer treatment, particularly for hard-to-treat subtypes like TNBC. Continued research into their molecular pathways and therapeutic efficacy could lead to new, less toxic treatment options.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206375507250603074251
2025-06-11
2025-09-12
Loading full text...

Full text loading...

References

  1. Petrovska B. Historical review of medicinal plants′ usage. Pharmacogn. Rev. 2012 6 11 1 5 10.4103/0973‑7847.95849 22654398
    [Google Scholar]
  2. Cosme P. Rodríguez A.B. Espino J. Garrido M. Plant phenolics: Bioavailability as a key determinant of their potential health-promoting applications. Antioxidants 2020 9 12 1263 10.3390/antiox9121263 33322700
    [Google Scholar]
  3. Linnewiel-Hermoni K. Khanin M. Danilenko M. Zango G. Amosi Y. Levy J. Sharoni Y. The anti-cancer effects of carotenoids and other phytonutrients resides in their combined activity. Arch. Biochem. Biophys. 2015 572 28 35 10.1016/j.abb.2015.02.018 25711533
    [Google Scholar]
  4. Habli Z. Toumieh G. Fatfat M. Rahal O. Gali-Muhtasib H. Emerging cytotoxic alkaloids in the battle against cancer: Overview of molecular mechanisms. Molecules 2017 22 2 250 10.3390/molecules22020250 28208712
    [Google Scholar]
  5. National action to improve the early detection of breast cancer. 2023 Available from: https://www.uicc.org/news-and-updates/news/national-action-improve-early-detection-breast-cancer
  6. Ginsburg O. Yip C.H. Brooks A. Cabanes A. Caleffi M. Dunstan Yataco J.A. Gyawali B. McCormack V. McLaughlin de Anderson M. Mehrotra R. Mohar A. Murillo R. Pace L.E. Paskett E.D. Romanoff A. Rositch A.F. Scheel J.R. Schneidman M. Unger-Saldaña K. Vanderpuye V. Wu T.Y. Yuma S. Dvaladze A. Duggan C. Anderson B.O. Breast cancer early detection: A phased approach to implementation. Cancer 2020 126 Suppl. 10 2379 2393 10.1002/cncr.32887 32348566
    [Google Scholar]
  7. Early Detection 2025 Available from: https://www.nationalbreastcancer.org/early-detection-of-breast-cancer/
  8. Loibl S. André F. Bachelot T. Barrios C.H. Bergh J. Burstein H.J. Cardoso M.J. Carey L.A. Dawood S. Del Mastro L. Denkert C. Fallenberg E.M. Francis P.A. Gamal-Eldin H. Gelmon K. Geyer C.E. Gnant M. Guarneri V. Gupta S. Kim S.B. Krug D. Martin M. Meattini I. Morrow M. Janni W. Paluch-Shimon S. Partridge A. Poortmans P. Pusztai L. Regan M.M. Sparano J. Spanic T. Swain S. Tjulandin S. Toi M. Trapani D. Tutt A. Xu B. Curigliano G. Harbeck N. Early breast cancer: ESMO clinical practice guideline for diagnosis, treatment and follow-up. Ann. Oncol. 2024 35 2 159 182 10.1016/j.annonc.2023.11.016 38101773
    [Google Scholar]
  9. Nagai H. Kim Y.H. Cancer prevention from the perspective of global cancer burden patterns. J. Thorac. Dis. 2017 9 3 448 451 10.21037/jtd.2017.02.75 28449441
    [Google Scholar]
  10. Kondov B. Milenkovikj Z. Kondov G. Petrushevska G. Basheska N. Bogdanovska-Todorovska M. Tolevska N. Ivkovski L. Presentation of the molecular subtypes of breast cancer detected by immunohistochemistry in surgically treated patients. Open Access Maced. J. Med. Sci. 2018 6 6 961 967 10.3889/oamjms.2018.231 29983785
    [Google Scholar]
  11. Redig A.J. McAllister S.S. Breast cancer as a systemic disease: A view of metastasis. J. Intern. Med. 2013 274 2 113 126 10.1111/joim.12084 23844915
    [Google Scholar]
  12. Aguilar Cordero M.J. Mur Villar N. Neri Sánchez M. Pimentel-Ramírez M.L. García-Rillo A. Gómez Valverde E. Breast cancer and body image as a prognostic factor of depression: A case study in México City. Nutr. Hosp. 2014 31 1 371 379 10.3305/nh.2015.31.1.7547 25561132
    [Google Scholar]
  13. Pan S.Y. Zhou S.F. Gao S.H. Yu Z.L. Zhang S.F. Tang M.K. Sun J.N. Ma D.L. Han Y.F. Fong W.F. Ko K.M. New perspectives on how to discover drugs from herbal medicines: CAM’s outstanding contribution to modern therapeutics. Evid. Based Complement. Alternat. Med. 2013 2013 1 25 10.1155/2013/627375 23634172
    [Google Scholar]
  14. Laskar Y.B. Lourembam R.M. Mazumder P.B. Herbal remedies for breast cancer prevention and treatment. In: Medicinal Plants—Use in Prevention and Treatment of Diseases. London, UK InTech Open 2020 10.5772/intechopen.89669
    [Google Scholar]
  15. Li Y. Li S. Meng X. Gan R.Y. Zhang J.J. Li H.B. Dietary natural products for prevention and treatment of breast cancer. Nutrients 2017 9 7 728 10.3390/nu9070728 28698459
    [Google Scholar]
  16. Solowey E. Lichtenstein M. Sallon S. Paavilainen H. Solowey E. Lorberboum-Galski H. Evaluating medicinal plants for anticancer activity. ScientificWorldJournal 2014 2014 1 12 10.1155/2014/721402 25478599
    [Google Scholar]
  17. Nutrition services for cancer patients Available from: https://stanfordhealthcare.org/medical-clinics/cancer-nutrition-services/reducing-cancer-risk/antioxidants.html
  18. Briguglio G. Costa C. Pollicino M. Giambò F. Catania S. Fenga C. Polyphenols in cancer prevention: New insights (Review). Int. J. Funct. Nutr. 2020 1 2 9 10.3892/ijfn.2020.9
    [Google Scholar]
  19. Huang W.Y. Cai Y.Z. Zhang Y. Natural phenolic compounds from medicinal herbs and dietary plants: Potential use for cancer prevention. Nutr. Cancer 2009 62 1 1 20 10.1080/01635580903191585 20043255
    [Google Scholar]
  20. Sharma A. Kaur M. Katnoria J.K. Nagpal A.K. Polyphenols in food: Cancer prevention and apoptosis induction. Curr. Med. Chem. 2018 25 36 4740 4757 10.2174/0929867324666171006144208 28990504
    [Google Scholar]
  21. Filetti V. Falzone L. Rapisarda V. Caltabiano R. Eleonora Graziano A.C. Ledda C. Loreto C. Modulation of microRNA expression levels after naturally occurring asbestiform fibers exposure as a diagnostic biomarker of mesothelial neoplastic transformation. Ecotoxicol. Environ. Saf. 2020 198 110640 10.1016/j.ecoenv.2020.110640 32330788
    [Google Scholar]
  22. Fenga C. Gangemi S. Di Salvatore V. Falzone L. Libra M. Immunological effects of occupational exposure to lead. Mol. Med. Rep. 2017 15 5 3355 3360 10.3892/mmr.2017.6381 28339013
    [Google Scholar]
  23. Antioxidants and cancer prevention. 2017 Available from: https://www.cancer.gov/about-cancer/causes-prevention/risk/diet/antioxidants-fact-sheet
  24. Bozorgi A. Khazaei S. Khademi A. Khazaei M. Natural and herbal compounds targeting breast cancer, a review based on cancer stem cells. Iran. J. Basic Med. Sci. 2020 23 8 970 983 10.22038/ijbms.2020.43745.10270 32952942
    [Google Scholar]
  25. Ahmad R. AlLehaibi L.H. Alshammari A.K. Alkhaldi S.M. Quality evaluation of the clinical trials for natural products used in cancer: An evidence-based literature review. Appl. Sci. 2020 10 22 7961 10.3390/app10227961
    [Google Scholar]
  26. Telang N. Natural products as drug candidates for breast cancer (Review). Oncol. Lett. 2023 26 2 349 10.3892/ol.2023.13935 37427344
    [Google Scholar]
  27. Chung S.S. Vadgama J.V. Curcumin and epigallocatechin gallate inhibit the cancer stem cell phenotype via down-regulation of STAT3-NFκB signaling. Anticancer Res. 2015 35 1 39 46 25550533
    [Google Scholar]
  28. Wei W. Rasul A. Sadiqa A. Sarfraz I. Hussain G. Nageen B. Liu X. Watanabe N. Selamoglu Z. Ali M. Li X. Li J. Curcumol: From plant roots to cancer roots. Int. J. Biol. Sci. 2019 15 8 1600 1609 10.7150/ijbs.34716 31360103
    [Google Scholar]
  29. Hu C. Li M. Guo T. Wang S. Huang W. Yang K. Liao Z. Wang J. Zhang F. Wang H. Anti-metastasis activity of curcumin against breast cancer via the inhibition of stem cell-like properties and EMT. Phytomedicine 2019 58 152740 10.1016/j.phymed.2018.11.001 31005718
    [Google Scholar]
  30. Rahmani F. Abdeahad H. Jaberi N. Hanaie R. Soleimani A. Avan A. Khazaei M. Hassanian S.M. The protective effect of curcumin on thrombin-induced hyper-permeability. Avicenna J. Phytomed. 2023 13 1 97 108 10.22038/AJP.2022.21025 36698738 PMC9840778
    [Google Scholar]
  31. Yuan J.D. ZhuGe D.L Tong M.Q. Lin M.T. Xu X.F. Tang X Zhao Y.Z. Xu H.L. pH-sensitive polymeric nanoparticles of mPEG-PLGA-PGlu with hybrid core for simultaneous encapsulation of curcumin and doxorubicin to kill the heterogeneous tumour cells in breast cancer. Artif. Cells Nanomed. Biotechnol. 2018 46 sup1 302 313 10.1080/21691401.2017.1423495 29301415
    [Google Scholar]
  32. Dai Z. Nair V. Khan M. Ciolino H.P. Pomegranate extract inhibits the proliferation and viability of MMTV-Wnt-1 mouse mammary cancer stem cells in vitro. Oncol. Rep. 2010 24 4 1087 1091 20811693
    [Google Scholar]
  33. Chen H.S. Bai M.H. Zhang T. Li G.D. Liu M. Ellagic acid induces cell cycle arrest and apoptosis through TGF-β/Smad3 signaling pathway in human breast cancer MCF-7 cells. Int. J. Oncol. 2015 46 4 1730 1738 10.3892/ijo.2015.2870 25647396
    [Google Scholar]
  34. Liu Y. Zou T. Wang S. Chen H. Su D. Fu X. Zhang Q. Kang X. Genistein-induced differentiation of breast cancer stem/progenitor cells through a paracrine mechanism. Int. J. Oncol. 2016 48 3 1063 1072 10.3892/ijo.2016.3351 26794366
    [Google Scholar]
  35. Moshiri M. Hamid F. Etemad L. Ricin toxicity: Clinical and molecular aspects. Rep. Biochem. Mol. Biol. 2016 4 2 60 65 27536698
    [Google Scholar]
  36. Leitzmann M. Powers H. Anderson A.S. European Code against Cancer 4th Edition: Physical activity and cancer. Cancer Epidemiol. 2015 39 Suppl 1 S46 S5 10.1016/j.canep.2015.03.013
    [Google Scholar]
  37. Sharma V. Sarkar I.N. Bioinformatics opportunities for identification and study of medicinal plants. Brief. Bioinform. 2013 14 2 238 250 10.1093/bib/bbs021 22589384
    [Google Scholar]
  38. Cui Z.J. Gao M. Quan Y. Lv B.M. Tong X.Y. Dai T.F. Zhou X.H. Zhang H.Y. Systems pharmacology-based precision therapy and drug combination discovery for breast cancer. Cancers 2021 13 14 3586 10.3390/cancers13143586 34298802
    [Google Scholar]
  39. Wishart DS Introduction to cheminformatics. Curr. Protoc. Bioinformatics 2007 14 14.1 1 9 10.1002/0471250953.bi1401s18
    [Google Scholar]
  40. Carey L.A. Through a glass darkly: Advances in understanding breast cancer biology, 2000-2010. Clin. Breast Cancer 2010 10 3 188 195 10.3816/CBC.2010.n.026 20497917
    [Google Scholar]
  41. Shao M.M. Chan S.K. Yu A.M.C. Lam C.C.F. Tsang J.Y.S. Lui P.C.W. Law B.K.B. Tan P.H. Tse G.M. Keratin expression in breast cancers. Virchows Arch. 2012 461 3 313 322 10.1007/s00428‑012‑1289‑9 22851038
    [Google Scholar]
  42. Yersal O. Barutca S. Biological subtypes of breast cancer: Prognostic and therapeutic implications. World J. Clin. Oncol. 2014 5 3 412 424 10.5306/wjco.v5.i3.412 25114856
    [Google Scholar]
  43. Jia R. Li Z. Liang W. Ji Y. Weng Y. Liang Y. Ning P. Identification of key genes unique to the luminal a and basal-like breast cancer subtypes via bioinformatic analysis. World J. Surg. Oncol. 2020 18 1 268 10.1186/s12957‑020‑02042‑z 33066779
    [Google Scholar]
  44. Rakha E.A. Elsheikh S.E. Aleskandarany M.A. Habashi H.O. Green A.R. Powe D.G. El-Sayed M.E. Benhasouna A. Brunet J.S. Akslen L.A. Evans A.J. Blamey R. Reis-Filho J.S. Foulkes W.D. Ellis I.O. Triple-negative breast cancer: Distinguishing between basal and nonbasal subtypes. Clin. Cancer Res. 2009 15 7 2302 2310 10.1158/1078‑0432.CCR‑08‑2132 19318481
    [Google Scholar]
  45. Alluri P. Newman L.A. Basal-like and triple-negative breast cancers: Searching for positives among many negatives. Surg. Oncol. Clin. N. Am. 2014 23 3 567 577 10.1016/j.soc.2014.03.003 24882351
    [Google Scholar]
  46. Kreike B. van Kouwenhove M. Horlings H. Weigelt B. Peterse H. Bartelink H. van de Vijver M.J. Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res. 2007 9 5 R65 10.1186/bcr1771 17910759
    [Google Scholar]
  47. Kumar P. Aggarwal R. An overview of triple-negative breast cancer. Arch. Gynecol. Obstet. 2016 293 2 247 269 10.1007/s00404‑015‑3859‑y 26341644
    [Google Scholar]
  48. Schettini F. Prat A. Dissecting the biological heterogeneity of HER2-positive breast cancer. Breast 2021 59 339 350 10.1016/j.breast.2021.07.019 34392185
    [Google Scholar]
  49. Yin L. Duan J.J. Bian X.W. Yu S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res. 2020 22 1 61 10.1186/s13058‑020‑01296‑5 32517735
    [Google Scholar]
  50. Bose S. Chandran S. Mirocha J.M. Bose N. The Akt pathway in human breast cancer: A tissue-array-based analysis. Mod. Pathol. 2006 19 2 238 245 10.1038/modpathol.3800525 16341149
    [Google Scholar]
  51. Zakikhani M. Blouin M.J. Piura E. Pollak M.N. Metformin and rapamycin have distinct effects on the AKT pathway and proliferation in breast cancer cells. Breast Cancer Res. Treat. 2010 123 1 271 279 10.1007/s10549‑010‑0763‑9 20135346
    [Google Scholar]
  52. Wang W. Eddy R. Condeelis J. The cofilin pathway in breast cancer invasion and metastasis. Nat. Rev. Cancer 2007 7 6 429 440 10.1038/nrc2148 17522712
    [Google Scholar]
  53. Hui M. Cazet A. Nair R. Watkins D.N. O’Toole S.A. Swarbrick A. The Hedgehog signalling pathway in breast development, carcinogenesis and cancer therapy. Breast Cancer Res. 2013 15 2 203 10.1186/bcr3401 23547970
    [Google Scholar]
  54. Habib J.G. O’Shaughnessy J.A. The hedgehog pathway in triple‐negative breast cancer. Cancer Med. 2016 5 10 2989 3006 10.1002/cam4.833 27539549
    [Google Scholar]
  55. Kubo M. Nakamura M. Tasaki A. Yamanaka N. Nakashima H. Nomura M. Kuroki S. Katano M. Hedgehog signaling pathway is a new therapeutic target for patients with breast cancer. Cancer Res. 2004 64 17 6071 6074 10.1158/0008‑5472.CAN‑04‑0416 15342389
    [Google Scholar]
  56. Souzaki M. Kubo M. Kai M. Kameda C. Tanaka H. Taguchi T. Tanaka M. Onishi H. Katano M. Hedgehog signaling pathway mediates the progression of non‐invasive breast cancer to invasive breast cancer. Cancer Sci. 2011 102 2 373 381 10.1111/j.1349‑7006.2010.01779.x 21091847
    [Google Scholar]
  57. Zhou Y. Eppenberger-Castori S. Eppenberger U. Benz C.C. The NFκB pathway and endocrine-resistant breast cancer. Endocr. Relat. Cancer 2005 12 Suppl. 1 S37 S46 10.1677/erc.1.00977 16113098
    [Google Scholar]
  58. Zhou J. Zhang H. Gu P. Bai J. Margolick J.B. Zhang Y. NF-κB pathway inhibitors preferentially inhibit breast cancer stem-like cells. Breast Cancer Res. Treat. 2008 111 3 419 427 10.1007/s10549‑007‑9798‑y 17965935
    [Google Scholar]
  59. Gong L. Li Y. Nedeljkovic-Kurepa A. Sarkar F.H. Inactivation of NF-κB by genistein is mediated via Akt signaling pathway in breast cancer cells. Oncogene 2003 22 30 4702 4709 10.1038/sj.onc.1206583 12879015
    [Google Scholar]
  60. Cidado J. Park B.H. Targeting the PI3K/Akt/mTOR pathway for breast cancer therapy. J. Mammary Gland Biol. Neoplasia 2012 17 3-4 205 216 10.1007/s10911‑012‑9264‑2 22865098
    [Google Scholar]
  61. López-Knowles E. O’Toole S.A. McNeil C.M. Millar E.K.A. Qiu M.R. Crea P. Daly R.J. Musgrove E.A. Sutherland R.L. PI3K pathway activation in breast cancer is associated with the basal‐like phenotype and cancer‐specific mortality. Int. J. Cancer 2010 126 5 1121 1131 10.1002/ijc.24831 19685490
    [Google Scholar]
  62. Pascual J. Turner N.C. Targeting the PI3-kinase pathway in triple-negative breast cancer. Ann. Oncol. 2019 30 7 1051 1060 10.1093/annonc/mdz133 31050709
    [Google Scholar]
  63. Paplomata E. O’Regan R. The PI3K/AKT/mTOR pathway in breast cancer: Targets, trials and biomarkers. Ther. Adv. Med. Oncol. 2014 6 4 154 166 10.1177/1758834014530023 25057302
    [Google Scholar]
  64. Yang S.X. Polley E. Lipkowitz S. New insights on PI3K/AKT pathway alterations and clinical outcomes in breast cancer. Cancer Treat. Rev. 2016 45 87 96 10.1016/j.ctrv.2016.03.004 26995633
    [Google Scholar]
  65. Chandarlapaty S. Sakr R.A. Giri D. Patil S. Heguy A. Morrow M. Modi S. Norton L. Rosen N. Hudis C. King T.A. Frequent mutational activation of the PI3K-AKT pathway in trastuzumab-resistant breast cancer. Clin. Cancer Res. 2012 18 24 6784 6791 10.1158/1078‑0432.CCR‑12‑1785 23092874
    [Google Scholar]
  66. Pierobon M. Ramos C. Wong S. Hodge K.A. Aldrich J. Byron S. Anthony S.P. Robert N.J. Northfelt D.W. Jahanzeb M. Vocila L. Wulfkuhle J. Gambara G. Gallagher R.I. Dunetz B. Hoke N. Dong T. Craig D.W. Cristofanilli M. Leyland-Jones B. Liotta L.A. O’Shaughnessy J.A. Carpten J.D. Petricoin E.F. Enrichment of PI3K-AKT-mTOR pathway activation in hepatic metastases from breast cancer. Clin. Cancer Res. 2017 23 16 4919 4928 10.1158/1078‑0432.CCR‑16‑2656 28446508
    [Google Scholar]
  67. Ghayad S. Cohen P. Inhibitors of the PI3K/Akt/mTOR pathway: New hope for breast cancer patients. Recent Patents Anticancer Drug Discov. 2010 5 1 29 57 10.2174/157489210789702208 19751211
    [Google Scholar]
  68. Ciruelos Gil E.M. Targeting the PI3K/AKT/mTOR pathway in estrogen receptor-positive breast cancer. Cancer Treat. Rev. 2014 40 7 862 871 10.1016/j.ctrv.2014.03.004 24774538
    [Google Scholar]
  69. Chinedu E. Ofili C. Ocimum species: Ethnomedicinal uses, phytochemistry and pharmacological importance. Int. J. Curr. Res. Physiol. Pharmacol. 2021 5 2 1 12 10.31878/ijcrpp.2021.52.01
    [Google Scholar]
  70. Mukherjee N. Bhattacharya N. Alam N. Roy A. Roychoudhury S. Panda C.K. Expression of concern: Subtype‐specific alterations of the Wnt signaling pathway in breast cancer: Clinical and prognostic significance. Cancer Sci. 2012 103 2 210 220 10.1111/j.1349‑7006.2011.02131.x 22026417
    [Google Scholar]
  71. Loh Y.N. Hedditch E.L. Baker L.A. Jary E. Ward R.L. Ford C.E. The Wnt signalling pathway is upregulated in an in vitro model of acquired tamoxifen resistant breast cancer. BMC Cancer 2013 13 1 174 10.1186/1471‑2407‑13‑174 23547709
    [Google Scholar]
  72. Voduc K.D. Nielsen T.O. Perou C.M. Harrell J.C. Fan C. Kennecke H. Minn A.J. Cryns V.L. Cheang M.C.U. αB-crystallin expression in breast cancer is associated with brain metastasis. NPJ Breast Cancer 2015 1 1 15014 10.1038/npjbcancer.2015.14 27656679
    [Google Scholar]
  73. Boral D. Vishnoi M. Liu H.N. Yin W. Sprouse M.L. Scamardo A. Hong D.S. Tan T.Z. Thiery J.P. Chang J.C. Marchetti D. Molecular characterization of breast cancer CTCs associated with brain metastasis. Nat. Commun. 2017 8 1 196 10.1038/s41467‑017‑00196‑1 28775303
    [Google Scholar]
  74. Chung B. Esmaeili A.A. Gopalakrishna-Pillai S. Murad J.P. Andersen E.S. Kumar Reddy N. Srinivasan G. Armstrong B. Chu C. Kim Y. Tong T. Waisman J. Yim J.H. Badie B. Lee P.P. Human brain metastatic stroma attracts breast cancer cells via chemokines CXCL16 and CXCL12. NPJ Breast Cancer 2017 3 1 6 10.1038/s41523‑017‑0008‑8 28649646
    [Google Scholar]
  75. Giannoudis A. Clarke K. Zakaria R. Varešlija D. Farahani M. Rainbow L. Platt-Higgins A. Ruthven S. Brougham K.A. Rudland P.S. Jenkinson M.D. Young L.S. Falciani F. Palmieri C. A novel panel of differentially-expressed microRNAs in breast cancer brain metastasis may predict patient survival. Sci. Rep. 2019 9 1 18518 10.1038/s41598‑019‑55084‑z 31811234
    [Google Scholar]
  76. Zari A.T. Zari T.A. Hakeem K.R. Anticancer properties of eugenol: A review. Molecules 2021 26 23 7407 10.3390/molecules26237407 34885992
    [Google Scholar]
  77. Chenni M. El Abed D. Rakotomanomana N. Fernandez X. Chemat F. Comparative study of essential oils extracted from Egyptian basil leaves (Ocimum basilicum L.) using hydro-distillation and solvent-free microwave extraction. Molecules 2016 21 1 113 10.3390/molecules21010113 26797599
    [Google Scholar]
  78. Al-Trad B. Alkhateeb H. Alsmadi W. Al-Zoubi M. Eugenol ameliorates insulin resistance, oxidative stress and inflammation in high fat-diet/streptozotocin-induced diabetic rat. Life Sci. 2019 216 183 188 10.1016/j.lfs.2018.11.034 3048265
    [Google Scholar]
  79. da Silva Bruckmann F. Viana A.R. Lopes L.Q.S. Santos R.C.V. Muller E.I. Mortari S.R. Rhoden C.R.B. Synthesis, characterization, and biological activity evaluation of magnetite-functionalized eugenol. J. Inorg. Organomet. Polym. Mater. 2022 32 4 1459 1472 10.1007/s10904‑021‑02207‑7
    [Google Scholar]
  80. Yi J.L. Shi S. Shen Y.L. Wang L. Chen H.Y. Zhu J. Ding Y. Myricetin and methyl eugenol combination enhances the anticancer activity, cell cycle arrest and apoptosis induction of cis-platin against HeLa cervical cancer cell lines. Int. J. Clin. Exp. Pathol. 2015 8 2 1116 1127 25972998
    [Google Scholar]
  81. Imran M. Rauf A. Abu-Izneid T. Nadeem M. Shariati M.A. Khan I.A. Imran A. Orhan I.E. Rizwan M. Atif M. Gondal T.A. Mubarak M.S. Luteolin, a flavonoid, as an anticancer agent: A review. Biomed. Pharmacother. 2019 112 108612 10.1016/j.biopha.2019.108612 30798142
    [Google Scholar]
  82. Nweze E. Eze E. Justification for the use of Ocimum gratissimum L in herbal medicine and its interaction with disc antibiotics. BMC Complement. Altern. Med. 2009 9 37 10.1186/1472‑6882‑9‑37
    [Google Scholar]
  83. Khalil A.A. Rahman U. Khan M.R. Sahar A. Mehmood T. Khan M. Essential oil eugenol: Sources, extraction techniques and nutraceutical perspectives. RSC Advances 2017 7 52 32669 32681 10.1039/C7RA04803C
    [Google Scholar]
  84. El-Saber Batiha G. Magdy Beshbishy A. El-Mleeh A. Abdel-Daim M.M. Prasad Devkota H. Traditional uses, bioactive chemical constituents, and pharmacological and toxicological activities of Glycyrrhiza glabra L. (Fabaceae). Biomolecules 2020 10 3 352 10.3390/biom10030352 32106571
    [Google Scholar]
  85. Marchese A. Barbieri R. Coppo E. Orhan I.E. Daglia M. Nabavi S.F. Izadi M. Abdollahi M. Nabavi S.M. Ajami M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol. 2017 43 6 668 689 10.1080/1040841X.2017.1295225 28346030
    [Google Scholar]
  86. Aggarwal B.B. Prasad S. Reuter S. Kannappan R. Yadev V.R. Park B. Kim J.H. Gupta S.C. Phromnoi K. Sundaram C. Prasad S. Chaturvedi M.M. Sung B. Identification of novel anti-inflammatory agents from Ayurvedic medicine for prevention of chronic diseases: “Reverse pharmacology” and “bedside to bench” approach. Curr. Drug Targets 2011 12 11 1595 1653 10.2174/138945011798109464 21561421
    [Google Scholar]
  87. Kamatou G.P. Vermaak I. Viljoen A.M. Eugenol--from the remote Maluku Islands to the international market place: A review of a remarkable and versatile molecule. Molecules 2012 17 6 6953 6981 10.3390/molecules17066953 22728369
    [Google Scholar]
  88. Yadav M.K. Chae S.W. Im, G.J.; Chung, J.W.; Song, J.J. Eugenol: A phyto-compound effective against methicillin-resistant and methicillin-sensitive Staphylococcus aureus clinical strain biofilms. PLoS One 2015 10 3 e0119564 10.1371/journal.pone.0119564 25781975
    [Google Scholar]
  89. Pattanayak P. Behera P. Das D. Panda S. Ocimum sanctum Linn. A reservoir plant for therapeutic applications: An overview. Pharmacogn. Rev. 2010 4 7 95 105 10.4103/0973‑7847.65323 22228948
    [Google Scholar]
  90. Falagas M.E. Bliziotis I.A. Pandrug-resistant Gram-negative bacteria: The dawn of the post-antibiotic era? Int. J. Antimicrob. Agents 2007 29 6 630 636 10.1016/j.ijantimicag.2006.12.012 17306965
    [Google Scholar]
  91. Wangcharoen W. Wallaya M. Antioxidant capacity and phenolic content of chilies. Agric. Nat. Resour. (Bangk.) 2007 41 561 569
    [Google Scholar]
  92. Rahman S. Islam R. Alam K. Hena M.A. Jamal M. Ocimum sanctum L.: A review of phytochemical and pharmacological profile. In: Am J Drug Discov Dev 2011
    [Google Scholar]
  93. Ugbogu O.C. Emmanuel O. Agi G.O. Ibe C. Ekweogu C.N. Ude V.C. Uche M.E. Nnanna R.O. Ugbogu E.A. A review on the traditional uses, phytochemistry, and pharmacological activities of clove basil (Ocimum gratissimum L.). Heliyon 2021 7 11 e08404 10.1016/j.heliyon.2021.e08404 34901489
    [Google Scholar]
  94. Hasan M.R. Alotaibi B.S. Althafar Z.M. Mujamammi A.H. Jameela J. An update on the therapeutic anticancer potential of Ocimum sanctum L.: “Elixir of Life”. Molecules 2023 28 3 1193 10.3390/molecules28031193 36770859
    [Google Scholar]
  95. Kelm M.A. Nair M.G. Strasburg G.M. DeWitt D.L. Antioxidant and cyclooxygenase inhibitory phenolic compounds from Ocimum sanctum Linn. Phytomedicine 2000 7 1 7 13 10.1016/S0944‑7113(00)80015‑X 10782484
    [Google Scholar]
  96. Geetha R.K. Kedlaya R. Vasudevan D.M. Inhibition of lipid peroxidation by botanical extracts of Ocimum sanctum: In vivo and in vitro studies. Life Sci. 2004 76 1 21 28 10.1016/j.lfs.2004.05.036 15532130
    [Google Scholar]
  97. Siva M. Shanmugam K.R. Shanmugam B. Venkata Subbaiah G. Ravi S. Sathyavelu Reddy K. Ocimum sanctum: A review on the pharmacological properties. Int. J. Basic Clin. Pharmacol. 2016 5 2 558 565 10.18203/2319‑2003.ijbcp20161454
    [Google Scholar]
  98. Gholap S. Kar A. Hypoglycaemic effects of some plant extracts are possibly mediated through inhibition in corticosteroid concentration. Pharmazie 2004 59 11 876 878 15587591
    [Google Scholar]
  99. Aruna K. Sivaramakrishnan V.M. Anticarcinogenic effects of some Indian plant products. Food Chem. Toxicol. 1992 30 11 953 956 10.1016/0278‑6915(92)90180‑S 1473788
    [Google Scholar]
  100. Ganasoundari A. Uma Devi P. Rao B.S.S. Enhancement of bone marrow radioprotection and reduction of WR-2721 toxicity by Ocimum sanctum. Mutat. Res. 1998 397 2 303 312 10.1016/S0027‑5107(97)00230‑3 9541656
    [Google Scholar]
  101. Zahran E.M. Abdelmohsen U.R. Ayoub A.T. Salem M.A. Khalil H.E. Desoukey S.Y. Fouad M.A. Kamel M.S. Metabolic profiling, histopathological anti-ulcer study, molecular docking and molecular dynamics of ursolic acid isolated from Ocimum forskolei Benth. (family Lamiaceae). S. Afr. J. Bot. 2020 131 311 319 10.1016/j.sajb.2020.03.004
    [Google Scholar]
  102. Mediratta P.K. Sharma K.K. Singh S. Evaluation of immunomodulatory potential of Ocimum sanctum seed oil and its possible mechanism of action. J. Ethnopharmacol. 2002 80 1 15 20 10.1016/S0378‑8741(01)00373‑7 11891082
    [Google Scholar]
  103. Behbahani M. Evaluation of in vitro anticancer activity of Ocimum basilicum, Alhagi maurorum, Calendula officinalis and their parasite Cuscuta campestris. PLoS One 2014 9 12 e116049 10.1371/journal.pone.0116049 25548920
    [Google Scholar]
  104. Sridevi M. Kalaiarasi P. Pugalendi K.V. Antihyperlipidemic activity of alcoholic leaf extract of Solanum surattense in streptozotocin-diabetic rats. Asian Pac. J. Trop. Biomed. 2011 1 2 S276 S280 10.1016/S2221‑1691(11)60171‑8
    [Google Scholar]
  105. Abdullah M.L. Hafez M.M. Al-Hoshani A. Al-Shabanah O. Anti-metastatic and anti-proliferative activity of eugenol against triple negative and HER2 positive breast cancer cells. BMC Complement. Altern. Med. 2018 18 1 321 10.1186/s12906‑018‑2392‑5 30518369
    [Google Scholar]
  106. Ravindran R. Devi R.S. Samson J. Senthilvelan M. Noise-stress-induced brain neurotransmitter changes and the effect of Ocimum sanctum (Linn) treatment in albino rats. J. Pharmacol. Sci. 2005 98 4 354 360 10.1254/jphs.FP0050127 16113498
    [Google Scholar]
  107. Manikandan P. Vinothini G. Vidya Priyadarsini R. Prathiba D. Nagini S. Eugenol inhibits cell proliferation via NF-κB suppression in a rat model of gastric carcinogenesis induced by MNNG. Invest. New Drugs 2011 29 1 110 117 10.1007/s10637‑009‑9345‑2 19851710
    [Google Scholar]
  108. Sood S. Narang D. Thomas M.K. Gupta Y.K. Maulik S.K. Effect of Ocimum sanctum Linn. on cardiac changes in rats subjected to chronic restraint stress. J. Ethnopharmacol. 2006 108 3 423 427 10.1016/j.jep.2006.06.010 16965878
    [Google Scholar]
  109. Chniguir A. Saguem M.H. El-Benna J. Bachoual R. Eugenol inhibits neutrophil myeloperoxidase in vitro and attenuates LPS-induced lung inflammation in mice. Pharmaceuticals 2022 17 4 504
    [Google Scholar]
  110. Petrocelli G. Farabegoli F. Valerii M.C. Giovannini C. Sardo A. Spisni E. Molecules present in plant essential oils for prevention and treatment of colorectal cancer (CRC). Molecules 2021 26 4 885 10.3390/molecules26040885 33567547
    [Google Scholar]
  111. Thirugnanasampandan R. Manaharan T. Jayakumar R. Kanthimathi M.S. Ramya G. Ramnath M. Purified essential oil from Ocimum sanctum Linn. triggers the apoptotic mechanism in human breast cancer cells. Pharmacogn. Mag. 2016 12 46 Suppl. 3 327 10.4103/0973‑1296.185738 27563220
    [Google Scholar]
  112. Gurav T.P. Dholakia B.B. Giri A.P. A glance at the chemodiversity of Ocimum species: Trends, implications, and strategies for the quality and yield improvement of essential oil. Phytochem. Rev. 2022 21 3 879 913 10.1007/s11101‑021‑09767‑z 34366748
    [Google Scholar]
  113. Legault J. Pichette A. Potentiating effect of β-caryophyllene on anticancer activity of α-humulene, isocaryophyllene and paclitaxel. J. Pharm. Pharmacol. 2007 59 12 1643 1647 10.1211/jpp.59.12.0005 18053325
    [Google Scholar]
  114. Alma M.H. Mavi A. Yildirim A. Digrak M. Hirata T. Screening chemical composition and in vitro antioxidant and antimicrobial activities of the essential oils from Origanum syriacum L. growing in Turkey. Biol. Pharm. Bull. 2003 26 12 1725 1729 10.1248/bpb.26.1725 14646179
    [Google Scholar]
  115. Al-Fatlawi A.A. Ahmad A. Cytotoxicity and pro-apoptotic activity of carvacrol on human breast cancer cell line MCF-7. World J Pharm Sci. 2014 2 1134 1141
    [Google Scholar]
  116. Yehya A.H.S. Asif M. Abdul Majid A.M.S. Oon C.E. Complementary effects of Orthosiphon stamineus standardized ethanolic extract and rosmarinic acid in combination with gemcitabine on pancreatic cancer. Biomed. J. 2021 44 6 694 708 10.1016/j.bj.2020.05.015 35166208
    [Google Scholar]
  117. Kim S.S. Oh O.J. Min H.Y. Park E.J. Kim Y. Park H.J. Nam Han Y. Lee S.K. Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells. Life Sci. 2003 73 3 337 348 10.1016/S0024‑3205(03)00288‑1 12757841
    [Google Scholar]
  118. Mari A. Mani G. Nagabhishek S.N. Balaraman G. Subramanian N. Mirza F.B. Sundaram J. Thiruvengadam D. Carvacrol promotes cell cycle arrest and apoptosis through PI3K/AKT signaling pathway in MCF-7 breast cancer cells. Chin. J. Integr. Med. 2021 27 9 680 687 10.1007/s11655‑020‑3193‑5 32572774
    [Google Scholar]
  119. Xu Z. Han X. Ou D. Liu T. Li Z. Jiang G. Liu J. Zhang J. Targeting PI3K/AKT/mTOR-mediated autophagy for tumor therapy. Appl. Microbiol. Biotechnol. 2020 104 2 575 587 10.1007/s00253‑019‑10257‑8 31832711
    [Google Scholar]
  120. Iqbal J. Abbasi B.A. Ahmad R. Mahmood T. Kanwal S. Ali B. Khalil A.T. Shah S.A. Alam M.M. Badshah H. Ursolic acid a promising candidate in the therapeutics of breast cancer: Current status and future implications. Biomed. Pharmacother. 2018 108 752 756 10.1016/j.biopha.2018.09.096 30248543
    [Google Scholar]
  121. Nunes S. Madureira A.R. Campos D. Sarmento B. Gomes A.M. Pintado M. Reis F. Therapeutic and nutraceutical potential of rosmarinic acid-Cytoprotective properties and pharmacokinetic profile. Crit. Rev. Food Sci. Nutr. 2017 57 9 1799 1806 26114303
    [Google Scholar]
  122. Magalhães D.B. Castro I. Lopes-Rodrigues V. Pereira J.M. Barros L. Ferreira I.C.F.R. Xavier C.P.R. Vasconcelos M.H. Melissa officinalis L. ethanolic extract inhibits the growth of a lung cancer cell line by interfering with the cell cycle and inducing apoptosis. Food Funct. 2018 9 6 3134 3142 10.1039/C8FO00446C 29790547
    [Google Scholar]
  123. Petersen M. Simmonds M.S. Rosmarinic acid. Phytochemistry 2003 62 2 121 125 10.1016/S0031‑9422(02)00513‑7 12482446
    [Google Scholar]
  124. Alagawany M. Abd El-Hack M.E. Farag M.R. Gopi M. Karthik K. Malik Y.S. Dhama K. Rosmarinic acid: Modes of action, medicinal values and health benefits. Anim. Health Res. Rev. 2017 18 2 167 176 10.1017/S1466252317000081 29110743
    [Google Scholar]
  125. Zhao J. Xu L. Jin D. Xin Y. Tian L. Wang T. Zhao D. Wang Z. Wang J. Rosmarinic acid and related dietary supplements: Potential applications in the prevention and treatment of cancer. Biomolecules 2022 12 10 1410 10.3390/biom12101410 36291619
    [Google Scholar]
  126. More-Adate P. Lokhande K.B. Shrivastava A. Doiphode S. Nagar S. Singh A. Baheti A. Pharmacoinformatics approach for the screening of Kovidra (Bauhinia variegata) phytoconstituents against tumor suppressor protein in triple negative breast cancer. J. Biomol. Struct. Dyn. 2024 42 8 4263 4282 10.1080/07391102.2023.2219744 37288734
    [Google Scholar]
  127. Sharma N. Sharma A. Bhatia G. Landi M. Brestic M. Singh B. Singh J. Kaur S. Bhardwaj R. Isolation of phytochemicals from Bauhinia variegata L. bark and their in vitro antioxidant and cytotoxic potential. Antioxidants 2019 8 10 492 10.3390/antiox8100492 31627372
    [Google Scholar]
  128. Abdel-Halim A.H. Fyiad A.A. Aboulthana W.M. Youssef A.M. Sabry N.M. Khalil W.K.B. Ali M.M. Evaluation of the therapeutic effect of nano-gold Bauhinia variegata leaves extract against breast cancer-induced rats. Int J Pharm Res 2021 13 2 2467 10.31838/ijpr/2021.13.02.336
    [Google Scholar]
  129. Kamal Y. Khan T. Fatima N. Shahzadi I. ul-Haq, I.; Anaya-Eugenio, G.D.; Arellano, E.D.S.; Bashir, K.; de Blanco, E.J.C. Assessment of cytotoxic potential of newly isolated Betulinic triterpenes from the Bark of Bauhinia variegata Linn. (Caesalpiniaceae). S. Afr. J. Bot. 2023 159 419 424 10.1016/j.sajb.2023.05.026
    [Google Scholar]
  130. Mohamadou H. Lienou L.L. Tagne R.S. Kada H.P. Embolo E.L.E. Nganwa G.K. Essame J.L.O. Jazet P.M.D. Phytochemical analysis and antioxidant activity of aqueous and hydroethanolic extracts from three anticancerous Fabaceae of Northern Cameroon pharmacopoeia. J. Biosci. Med. 2024 12 6 19 32 10.4236/jbm.2024.126004
    [Google Scholar]
  131. Mahmoud K. Ahmed A.F.S. Marwa M.M. Zeinab A.E. Salwa M.E.H. Walid F. May A.E.M. Youssef E.M. Cell based and in vivo systematic evaluation of some Egyptian plant extracts targeting breast cancer. Toxicon 2024 244 107752 10.1016/j.toxicon.2024.107752 38761923
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206375507250603074251
Loading
/content/journals/acamc/10.2174/0118715206375507250603074251
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test