Skip to content
2000
Volume 25, Issue 18
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Objective

This study presents the design and synthesis of a new series of human carbonic anhydrase (hCA) inhibitors based on a 5-methyl/phenyl-7-(7’-oxycoumarin)-[1,2,4]triazolo[1,5-]pyrimidine scaffold.

Methods

The chemical structures of novel coumarin-based triazolopyrimidines - were confirmed after using NMR and MS analyses. Their inhibitory profiles were evaluated against a panel of five hCA isoforms. Molecular docking simulations were conducted to elucidate the binding modes of compounds and with hCA IX and XII isoforms. Selected derivatives and were tested for their antiproliferative effects on the medulloblastoma HD-MB03 and the glioblastoma U87MG cell lines. Additionally, compounds and were evaluated alone or in combination with cisplatin (cis-Pt) for their ability to induce apoptosis in HD-MB03 cells.

Results

kinetic studies demonstrated that all 5-methyl triazolopyrimidine derivatives (-) selectively inhibited the tumor-associated hCA isoforms (hCA IX and XII), with K values ranging from 0.75 to 10.5 μM, while hCA I, II, IV isoforms were not significantly inhibited (Ks > 100 μM). Compound emerged as the most potent and selective inhibitor, with K of 0.92 and 0.75 μM for hCA IX and XII, respectively. This derivative significantly suppressed cell proliferation in human brain tumor cell lines, particularly HD-MB03, when it was studied for its adjuvant effects in combination with cisplatin.

Conclusion

In this study, we have identified compound as a selective inhibitor of the isoforms hCA IX and XII, showing minimal inhibition over hCA I, II, and IV isoenzymes (selectivity indices > 100). Its moderate inhibitory effects on hCA IX and XII at submicromolar levels were paralleled by significant antiproliferative activity against HD-MB03 cells. These findings underscore the potential of compound as a promising candidate for further therapeutic development, especially in combination with clinically used chemotherapeutic agents.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206373602250318062414
2025-03-27
2025-09-14
Loading full text...

Full text loading...

References

  1. SupuranC.T. Structure and function of carbonic anhydrases.Biochem. J.2016473142023203210.1042/BCJ20160115 27407171
    [Google Scholar]
  2. OcchipintiR. BoronW.F. Role of carbonic anhydrases and inhibitors in acid-base physiology: Insights from mathematical modeling.Int. J. Mol. Sci.201920153841387110.3390/ijms20153841 31390837
    [Google Scholar]
  3. JensenE.L. ClementR. KostaA. MaberlyS.C. GonteroB. A new widespread subclass of carbonic anhydrase in marine phytoplankton.ISME J.20191382094210610.1038/s41396‑019‑0426‑8 31024153
    [Google Scholar]
  4. AspatwarA. HaapanenS. ParkkilaS. An update on the metabolic roles of carbonic anhydrases in the model alga Chlamydomonas reinhardtii.Metabolites2018812210.3390/metabo8010022 29534024
    [Google Scholar]
  5. MbogeM. MahonB. McKennaR. FrostS. Carbonic anhydrases: Role in pH control and cancer.Metabolites2018811910.3390/metabo8010019 29495652
    [Google Scholar]
  6. SupuranC. Carbonic anhydrases and metabolism.Metabolites2018822510.3390/metabo8020025 29561812
    [Google Scholar]
  7. SupuranC.T. Carbonic anhydrase versatility: From pH regulation to CO2 sensing and metabolism.Front. Mol. Biosci.202310132663310.3389/fmolb.2023.1326633 38028557
    [Google Scholar]
  8. AspatwarA. TolvanenM.E.E. BarkerH. SyrjänenL. ValanneS. PurmonenS. WaheedA. SlyW.S. ParkkilaS. Carbonic anhydrases in metazoan model organisms: Molecules, mechanisms, and physiology.Physiol. Rev.202210231327138310.1152/physrev.00018.2021 35166161
    [Google Scholar]
  9. AkocakS. SupuranC.T. Activation of α-, β-, γ- δ-, ζ- and η- class of carbonic anhydrases with amines and amino acids: A review.J. Enzyme Inhib. Med. Chem.20193411652165910.1080/14756366.2019.1664501 31530034
    [Google Scholar]
  10. NocentiniA. DonaldW.A. SupuranC.T. Human carbonic anhydrases: Tissue distribution, physiological role, and druggability.in: Carbonic Anhydrases.Amsterdam, NetherlandsElsevier201915118610.1016/B978‑0‑12‑816476‑1.00008‑3
    [Google Scholar]
  11. HassanI.M. ShajeeB. WaheedA. AhmadF. SlyW.S. Structure, function and applications of carbonic anhydrase isozymes.Bioorg. Med. Chem.20132161570158210.1016/j.bmc.2012.04.044 22607884
    [Google Scholar]
  12. AggarwalM. BooneC.D. KondetiB. McKennaR. Structural annotation of human carbonic anhydrases.J. Enzyme Inhib. Med. Chem.201328226727710.3109/14756366.2012.737323 23137351
    [Google Scholar]
  13. D’AmbrosioK. De SimoneG. SupuranC.T. Human carbonic anhydrases: Catalytic properties, structural features, and tissue distribution.Carbonic Anhydrases as Biocatalysts: From theory to Medical and Industrial Applications.Amsterdam, NetherlandsElsevier2015173010.1016/B978‑0‑444‑63258‑6.00002‑0
    [Google Scholar]
  14. SupuranC.T. Emerging role of carbonic anhydrase inhibitors.Clin. Sci.2021135101233124910.1042/CS20210040 34013961
    [Google Scholar]
  15. ZamanovaS. ShabanaA.M. MondalU.K. IliesM.A. Carbonic anhydrases as disease markers.Expert Opin. Ther. Pat.201929750953310.1080/13543776.2019.1629419 31172829
    [Google Scholar]
  16. SupuranC.T. Carbonic anhydrase inhibitors and their potential in a range of therapeutic areas.Expert Opin. Ther. Pat.2018281070971210.1080/13543776.2018.1523897 30217119
    [Google Scholar]
  17. JiM.J. HongJ.H. An overview of carbonic anhydrases and membrane channels of synoviocytes in inflamed joints.J. Enzyme Inhib. Med. Chem.20193411615162210.1080/14756366.2019.1659791 31480869
    [Google Scholar]
  18. MargheriF. CerusoM. CartaF. LaurenzanaA. MaggiL. LazzeriS. SimoniniG. AnnunziatoF. Del RossoM. SupuranC.T. CimazR. Overexpression of the transmembrane carbonic anhydrase isoforms IX and XII in the inflamed synoviumJ. Enzyme Inhib. Med. Chem.201631sup4606310.1080/14756366.2016.121785727539792
    [Google Scholar]
  19. BuabengE.R. HenaryM. Developments of small molecules as inhibitors for carbonic anhydrase isoforms.Bioorg. Med. Chem.20213911614010.1016/j.bmc.2021.116140 33905966
    [Google Scholar]
  20. NocentiniA. SupuranC.T. CapassoC. An overview on the recently discovered iota-carbonic anhydrases.J. Enzyme Inhib. Med. Chem.20213611988199510.1080/14756366.2021.1972995 34482770
    [Google Scholar]
  21. AlterioV. Di FioreA. D’AmbrosioK. SupuranC.T. De SimoneG. Multiple binding modes of inhibitors to carbonic anhydrases: How to design specific drugs targeting 15 different isoforms?Chem. Rev.201211284421446810.1021/cr200176r 22607219
    [Google Scholar]
  22. T.Supuran C. Novel carbonic anhydrase inhibitors.Future Med. Chem.202113221935193710.4155/fmc‑2021‑0222 34498952
    [Google Scholar]
  23. ThiryA. DognéJ.M. SupuranC. MasereelB. Carbonic anhydrase inhibitors as anticonvulsant agents.Curr. Top. Med. Chem.20077985586410.2174/156802607780636726 17504130
    [Google Scholar]
  24. MishraC.B. TiwariM. SupuranC.T. Progress in the development of human carbonic anhydrase inhibitors and their pharmacological applications: Where are we today?Med. Res. Rev.20204062485256510.1002/med.21713 32691504
    [Google Scholar]
  25. LionettoM.G. Carbonic anhydrase and biomarker research: New insights.Int. J. Mol. Sci.20232411968710.3390/ijms24119687 37298637
    [Google Scholar]
  26. BenejM. PastorekovaS. PastorekJ. Carbonic anhydrase IX: Regulation and role in cancer.Subcell. Biochem.20147519921910.1007/978‑94‑007‑7359‑2_11 24146381
    [Google Scholar]
  27. PotterC. HarrisA.L. Hypoxia inducible carbonic anhydrase IX, marker of tumour hypoxia, survival pathway and therapy target.Cell Cycle20043215916210.4161/cc.3.2.618 14712082
    [Google Scholar]
  28. BeckerH.M. Carbonic anhydrase IX and acid transport in cancer.Br. J. Cancer2020122215716710.1038/s41416‑019‑0642‑z 31819195
    [Google Scholar]
  29. VenkateswaranG. DedharS. Interplay of carbonic anhydrase IX with amino acid and acid/base transporters in the hypoxic tumor microenvironment.Front. Cell Dev. Biol.2020860266810.3389/fcell.2020.602668 33240897
    [Google Scholar]
  30. RobertsonN. PotterC. HarrisA.L. Role of carbonic anhydrase IX in human tumor cell growth, survival, and invasion.Cancer Res.200464176160616510.1158/0008‑5472.CAN‑03‑2224 15342400
    [Google Scholar]
  31. KaluzS. KaluzováM. LiaoS.Y. LermanM. StanbridgeE.J. Transcriptional control of the tumor- and hypoxia-marker carbonic anhydrase 9: A one transcription factor (HIF-1) show?Biochim. Biophys. Acta200917952162172 19344680
    [Google Scholar]
  32. IvanovS. LiaoS.Y. IvanovaA. Danilkovitch-MiagkovaA. TarasovaN. WeirichG. MerrillM.J. ProescholdtM.A. OldfieldE.H. LeeJ. ZavadaJ. WaheedA. SlyW. LermanM.I. StanbridgeE.J. Expression of hypoxia-inducible cell-surface transmembrane carbonic anhydrases in human cancer.Am. J. Pathol.2001158390591910.1016/S0002‑9440(10)64038‑2 11238039
    [Google Scholar]
  33. MucajV. ShayJ.E.S. SimonM.C. Effects of hypoxia and HIFs on cancer metabolism.Int. J. Hematol.201295546447010.1007/s12185‑012‑1070‑5 22539362
    [Google Scholar]
  34. TemizE. KoyuncuI. DurgunM. CaglayanM. GonelA. GülerE.M. KocyigitA. SupuranC.T. Inhibition of carbonic anhydrase IX promotes apoptosis through intracellular pH level alterations in cervical cancer cells.Int. J. Mol. Sci.20212211609810.3390/ijms22116098 34198834
    [Google Scholar]
  35. LeeS.H. McIntyreD. HonessD. HulikovaA. Pacheco-TorresJ. CerdánS. SwietachP. HarrisA.L. GriffithsJ.R. Carbonic anhydrase IX is a pH-stat that sets an acidic tumour extracellular pH in vivo.Br. J. Cancer2018119562263010.1038/s41416‑018‑0216‑5 30206370
    [Google Scholar]
  36. PastorekovaS. GilliesR.J. The role of carbonic anhydrase IX in cancer development: Links to hypoxia, acidosis, and beyond.Cancer Metastasis Rev.2019381-2657710.1007/s10555‑019‑09799‑0 31076951
    [Google Scholar]
  37. ParkkilaS. ParkkilaA.K. SaarnioJ. KiveläJ. KarttunenT.J. KaunistoK. WaheedA. SlyW.S. TüreciÖ. VirtanenI. RajaniemiH. Expression of the membrane-associated carbonic anhydrase isozyme XII in the human kidney and renal tumors.J. Histochem. Cytochem.200048121601160810.1177/002215540004801203 11101628
    [Google Scholar]
  38. IlieM.I. HofmanV. OrtholanC. AmmadiR.E. BonnetaudC. HavetK. VenissacN. MourouxJ. MazureN.M. PouysségurJ. HofmanP. Overexpression of carbonic anhydrase XII in tissues from resectable non‐small cell lung cancers is a biomarker of good prognosis.Int. J. Cancer201112871614162310.1002/ijc.25491 20521252
    [Google Scholar]
  39. von NeubeckB. GondiG. RigantiC. PanC. Parra DamasA. ScherbH. ErtürkA. ZeidlerR. An inhibitory antibody targeting carbonic anhydrase XII abrogates chemoresistance and significantly reduces lung metastases in an orthotopic breast cancer model in vivo.Int. J. Cancer201814382065207510.1002/ijc.31607 29786141
    [Google Scholar]
  40. LiY. LeiB. ZouJ. WangW. ChenA. ZhangJ. FuY. LiZ. High expression of carbonic anhydrase 12 (CA12) is associated with good prognosis in breast cancer.Neoplasma201966342042610.4149/neo_2018_180819N624 30784287
    [Google Scholar]
  41. HynninenP. VaskivuoL. SaarnioJ. HaapasaloH. KiveläJ. PastorekováS. PastorekJ. WaheedA. SlyW.S. PuistolaU. ParkkilaS. Expression of transmembrane carbonic anhydrases IX and XII in ovarian tumours.Histopathology200649659460210.1111/j.1365‑2559.2006.02523.x 17163844
    [Google Scholar]
  42. SupuranC.T. Carbonic anhydrase inhibitors: An update on experimental agents for the treatment and imaging of hypoxic tumors.Expert Opin. Investig. Drugs202130121197120810.1080/13543784.2021.2014813 34865569
    [Google Scholar]
  43. NerellaS.G. ThackerP.S. ArifuddinM. SupuranC.T. Tumor associated carbonic anhydrase inhibitors: Rational approaches, design strategies, structure activity relationship and mechanistic insights.Eur. J. Med. Chem. Rep.20241010013110.1016/j.ejmcr.2024.100131
    [Google Scholar]
  44. SupuranC.T. Targeting carbonic anhydrases for the management of hypoxic metastatic tumors.Expert Opin. Ther. Pat.2023331170172010.1080/13543776.2023.2245971 37545058
    [Google Scholar]
  45. ChenF. LicareteE. WuX. PetruscaD. MaguireC. JacobsenM. ColterA. SanduskyG.E. CzaderM. CapitanoM.L. RopaJ.P. BoswellH.S. CartaF. SupuranC.T. ParkinB. FishelM.L. KonigH. Pharmacological inhibition of Carbonic Anhydrase IX and XII to enhance targeting of acute myeloid leukaemia cells under hypoxic conditions.J. Cell. Mol. Med.20212524110391105210.1111/jcmm.17027 34791807
    [Google Scholar]
  46. KrasavinM. KalininS. SharonovaT. SupuranC.T. Inhibitory activity against carbonic anhydrase IX and XII as a candidate selection criterion in the development of new anticancer agents.J. Enzyme Inhib. Med. Chem.20203511555156110.1080/14756366.2020.1801674 32746643
    [Google Scholar]
  47. McDonaldP.C. ChafeS.C. SupuranC.T. DedharS. Cancer therapeutic targeting of hypoxia induced carbonic anhydrase IX: From bench to bedside.Cancers20221414329710.3390/cancers14143297 35884358
    [Google Scholar]
  48. SupuranC.T. Experimental carbonic anhydrase inhibitors for the treatment of hypoxic tumors.J. Exp. Pharmacol.20201260361710.2147/JEP.S265620 33364855
    [Google Scholar]
  49. PastorekJ. PastorekovaS. ZatovicovaM. Cancer-associated carbonic anhydrases and their inhibition.Curr. Pharm. Des.200814768569810.2174/138161208783877893 18336315
    [Google Scholar]
  50. SinghS. LomelinoC. MbogeM. FrostS. McKennaR. Cancer drug development of carbonic anhydrase inhibitors beyond the active site.Molecules2018235104510.3390/molecules23051045 29710858
    [Google Scholar]
  51. SupuranC.T. Carbonic anhydrase inhibitors as emerging agents for the treatment and imaging of hypoxic tumors.Expert Opin. Investig. Drugs2018271296397010.1080/13543784.2018.1548608 30426805
    [Google Scholar]
  52. KciukM. GielecińskaA. MujwarS. MojzychM. MarciniakB. DrozdaR. KontekR. Targeting carbonic anhydrase IX and XII isoforms with small molecule inhibitors and monoclonal antibodies.J. Enzyme Inhib. Med. Chem.20223711278129810.1080/14756366.2022.2052868 35506234
    [Google Scholar]
  53. IalongoD. MessoreA. MadiaV.N. TudinoV. NocentiniA. GratteriP. GiovannuzziS. SupuranC.T. NicolaiA. ScarpaS. TauroneS. CamardaM. ArticoM. PapaV. SaccolitiF. ScipioneL. Di SantoR. CostiR. Pyrrolyl and indolyl α-γ-diketo acid XII.Pharmaceuticals20231618810.3390/ph16020188 37259337
    [Google Scholar]
  54. LiuL.C. XuW.T. WuX. ZhaoP. LvY.L. ChenL. Overexpression of carbonic anhydrase II and Ki-67 proteins in prognosis of gastrointestinal stromal tumors.World J. Gastroenterol.201319162473248010.3748/wjg.v19.i16.2473 23674848
    [Google Scholar]
  55. ViikiläP. KiveläA.J. MustonenH. KoskensaloS. WaheedA. SlyW.S. DoisyE.A. PastorekJ. PastorekovaS. ParkkilaS. HaglundC. Carbonic anhydrase enzymes II, VII, IX and XII in colorectal carcinomas.World J. Gastroenterol.201622368168817710.3748/wjg.v22.i36.8168 27688658
    [Google Scholar]
  56. TachibanaH. GiM. KatoM. YamanoS. FujiokaM. KakehashiA. HirayamaY. KoyamaY. TamadaS. NakataniT. WanibuchiH. Carbonic anhydrase 2 is a novel invasion‐associated factor in urinary bladder cancers.Cancer Sci.2017108333133710.1111/cas.13143 28004470
    [Google Scholar]
  57. SupuranC.T. A simple yet multifaceted 90 years old, evergreen enzyme: Carbonic anhydrase, its inhibition and activation.Bioorg. Med. Chem. Lett.20239312941110.1016/j.bmcl.2023.129411 37507055
    [Google Scholar]
  58. VulloD. CartaF. Mechanisms of action of carbonic anhydrase inhibitors: Zinc binders.In: Carbonic Anhydrases: Biochemistry and Pharmacology of an Evergreen Pharmaceutical Target.Elsevier201918722210.1016/B978‑0‑12‑816476‑1.00009‑5
    [Google Scholar]
  59. CartaF. SupuranC.T. ScozzafavaA. Sulfonamides and their isosters as carbonic anhydrase inhibitors.Future Med. Chem.20146101149116510.4155/fmc.14.68 25078135
    [Google Scholar]
  60. GuedesG.B. KaranA. MayerH.R. ShieldsM.B. Evaluation of adverse events in self-reported sulfa-allergic patients using topical carbonic anhydrase inhibitors.J. Ocul. Pharmacol. Ther.201329545646110.1089/jop.2012.0123 23445203
    [Google Scholar]
  61. KumarA. SiwachK. SupuranC.T. SharmaP.K. A decade of tail-approach based design of selective as well as potent tumor associated carbonic anhydrase inhibitors.Bioorg. Chem.202212610592010.1016/j.bioorg.2022.105920 35671645
    [Google Scholar]
  62. TanpureR.P. RenB. PeatT.S. BornaghiL.F. VulloD. SupuranC.T. PoulsenS.A. Carbonic anhydrase inhibitors with dual-tail moieties to match the hydrophobic and hydrophilic halves of the carbonic anhydrase active site.J. Med. Chem.20155831494150110.1021/jm501798g 25581127
    [Google Scholar]
  63. StamsT. ChristiansonD.W. X-ray crystallographic studies of mammalian carbonic anhydrase isozymes.EXS2000909015917410.1007/978‑3‑0348‑8446‑4_9 11268515
    [Google Scholar]
  64. CartaF. VulloD. OsmanS.M. AlOthmanZ. SupuranC.T. Synthesis and carbonic anhydrase inhibition of a series of SLC-0111 analogs.Bioorg. Med. Chem.20172592569257610.1016/j.bmc.2017.03.027 28347633
    [Google Scholar]
  65. PacchianoF. CartaF. McDonaldP.C. LouY. VulloD. ScozzafavaA. DedharS. SupuranC.T. Ureido-substituted benzenesulfonamides potently inhibit carbonic anhydrase IX and show antimetastatic activity in a model of breast cancer metastasis.J. Med. Chem.20115461896190210.1021/jm101541x 21361354
    [Google Scholar]
  66. ElorantaK. PihlajokiM. LiljeströmE. NousiainenR. SoiniT. LohiJ. CairoS. WilsonD.B. ParkkilaS. HeikinheimoM. SLC-0111, an inhibitor of carbonic anhydrase IX, attenuates hepatoblastoma cell viability and migration.Front. Oncol.202313111826810.3389/fonc.2023.1118268 36776327
    [Google Scholar]
  67. HuoZ. BilangR. SupuranC.T. von der WeidN. BruderE. Holland-CunzS. MartinI. MuraroM.G. GrosS.J. Perfusion- based bioreactor culture and isothermal microcalorimetry for preclinical drug testing with the carbonic anhydrase inhibitor SLC-0111 in patient-derived neuroblastoma.Int. J. Mol. Sci.2022236312810.3390/ijms23063128 35328549
    [Google Scholar]
  68. AndreucciE. RuzzoliniJ. PeppicelliS. BianchiniF. LaurenzanaA. CartaF. SupuranC.T. CaloriniL. The carbonic anhydrase IX inhibitor SLC-0111 sensitises cancer cells to conventional chemotherapy.J. Enzyme Inhib. Med. Chem.201934111712310.1080/14756366.2018.1532419 30362384
    [Google Scholar]
  69. LomelinoC. SupuranC. McKennaR. Non-classical inhibition of carbonic anhydrase.Int. J. Mol. Sci.2016177115010.3390/ijms17071150 27438828
    [Google Scholar]
  70. Fuentes-AguilarA. Merino-MontielP. Montiel-SmithS. Meza-ReyesS. Vega-BáezJ.L. PuertaA. FernandesM.X. PadrónJ.M. PetreniA. NocentiniA. SupuranC.T. LópezÓ. Fernández-BolañosJ.G. 2-Aminobenzoxazole-appended coumarins as potent and selective inhibitors of tumour-associated carbonic anhydrases.J. Enzyme Inhib. Med. Chem.202237116817710.1080/14756366.2021.1998026 34894971
    [Google Scholar]
  71. ArrighiG. PuertaA. PetriniA. HickeF.J. NocentiniA. FernandesM.X. PadrónJ.M. SupuranC.T. Fernández-BolañosJ.G. LópezÓ. Squaramide-tethered sulfonamides and coumarins: Synthesis, inhibition of tumor-associated CAs IX and XII and docking simulations.Int. J. Mol. Sci.20222314768510.3390/ijms23147685 35887037
    [Google Scholar]
  72. SupuranC.T. Coumarin carbonic anhydrase inhibitors from natural sources.J. Enzyme Inhib. Med. Chem.20203511462147010.1080/14756366.2020.1788009 32779543
    [Google Scholar]
  73. MarescaA. TemperiniC. PochetL. MasereelB. ScozzafavaA. SupuranC.T. Deciphering the mechanism of carbonic anhydrase inhibition with coumarins and thiocoumarins.J. Med. Chem.201053133534410.1021/jm901287j 19911821
    [Google Scholar]
  74. MarescaA. TemperiniC. VuH. PhamN.B. PoulsenS.A. ScozzafavaA. QuinnR.J. SupuranC.T. Non-zinc mediated inhibition of carbonic anhydrases: Coumarins are a new class of suicide inhibitors.J. Am. Chem. Soc.200913183057306210.1021/ja809683v 19206230
    [Google Scholar]
  75. EldehnaW.M. TaghourM.S. Al-WarhiT. NocentiniA. ElbadawiM.M. MahdyH.A. AbdelrahmanM.A. AlotaibiO.J. AljaeedN. ElimamD.M. AfarinkiaK. Abdel-AzizH.A. SupuranC.T. Discovery of 2,4-thiazolidinedione-tethered coumarins as novel selective inhibitors for carbonic anhydrase IX and XII isoforms.J. Enzyme Inhib. Med. Chem.202237153154110.1080/14756366.2021.2024528 34991416
    [Google Scholar]
  76. M Ghouse,S. BahatamK. AngeliA. PawarG ChinchilliK.K. YaddanapudiV.M. MohammedA. SupuranC.T NanduriS. Synthesis and biological evaluation of new 3-substituted coumarin derivatives as selective inhibitors of human carbonic anhydrase IX and XII.J. Enzyme Inhib. Med. Chem.2023381218576010.1080/14756366.2023.2185760 36876597
    [Google Scholar]
  77. ThackerP.S. AngeliA. ArgulwarO.S. TiwariP.L. ArifuddinM. SupuranC.T. Design, synthesis and biological evaluation of coumarin linked 1,2,4-oxadiazoles as selective carbonic anhydrase IX and XII inhibitors.Bioorg. Chem.20209810373910.1016/j.bioorg.2020.103739 32193032
    [Google Scholar]
  78. De LucaL. MancusoF. FerroS. BuemiM.R. AngeliA. Del PreteS. CapassoC. SupuranC.T. GittoR. Inhibitory effects and structural insights for a novel series of coumarin-based compounds that selectively target human CA IX and CA XII carbonic anhydrases.Eur. J. Med. Chem.201814327628210.1016/j.ejmech.2017.11.061 29197732
    [Google Scholar]
  79. Al-WarhiT. SabtA. ElkaeedE.B. EldehnaW.M. Recent advancements of coumarin-based anticancer agents: An up-to-date review.Bioorg. Chem.202010310416310.1016/j.bioorg.2020.104163 32890989
    [Google Scholar]
  80. StefanachiA. LeonettiF. PisaniL. CattoM. CarottiA. Coumarin: A natural, privileged and versatile scaffold for bioactive compounds.Molecules201823225010.3390/molecules23020250 29382051
    [Google Scholar]
  81. OukoloffK. LuceroB. FranciscoK.R. BrundenK.R. BallatoreC. 1,2,4-Triazolo[1,5-a]pyrimidines in drug design.Eur. J. Med. Chem.201916533234610.1016/j.ejmech.2019.01.027 30703745
    [Google Scholar]
  82. DaiX.J. XueL.P. JiS.K. ZhouY. GaoY. ZhengY.C. LiuH.M. LiuH.M. Triazole-fused pyrimidines in target-based anticancer drug discovery.Eur. J. Med. Chem.202324911510110.1016/j.ejmech.2023.115101 36724635
    [Google Scholar]
  83. MarestaA. BalducelliM. CantiniL. CasariA. ChioinR. FabbriM. FontanelliA. Monici PretiP.A. RepettoS. De ServiS. Trapidil (triazolopyrimidine), a platelet-derived growth factor antagonist, reduces restenosis after percutaneous transluminal coronary angioplasty. Results of the randomized, double-blind STARC study. Studio Trapidil versus Aspirin nella Restenosi Coronarica.Circulation19949062710271510.1161/01.CIR.90.6.2710 7994812
    [Google Scholar]
  84. SaidM.A. EldehnaW.M. NocentiniA. BonardiA. FahimS.H. BuaS. SolimanD.H. Abdel-AzizH.A. GratteriP. Abou-SeriS.M. SupuranC.T. Synthesis, biological and molecular dynamics investigations with a series of triazolopyrimidine/triazole-based benzenesulfonamides as novel carbonic anhydrase inhibitors.Eur. J. Med. Chem.202018511184310.1016/j.ejmech.2019.111843 31718943
    [Google Scholar]
  85. RomagnoliR. De VenturaT. ManfrediniS. BaldiniE. SupuranC.T. NocentiniA. BrancaleA. VarricchioC. BortolozziR. ManfredaL. ViolaG. Design, synthesis, and biological investigation of selective human carbonic anhydrase II, IX, and XII inhibitors using 7-aryl/heteroaryl triazolopyrimidines bearing a sulfanilamide scaffold.J. Enzyme Inhib. Med. Chem.2023381227018010.1080/14756366.2023.2270180 37850364
    [Google Scholar]
  86. OlivaP. RomagnoliR. CacciariB. ManfrediniS. PadroniC. BrancaleA. FerlaS. HamelE. CoralloD. AveicS. MilanN. MariottoE. ViolaG. BortolozziR. Synthesis and biological evaluation of highly active 7-anilino triazolopyrimidines as potent antimicrotubule agents.Pharmaceutics2022146119110.3390/pharmaceutics14061191 35745764
    [Google Scholar]
  87. RomagnoliR. OlivaP. PrencipeF. ManfrediniS. BudassiF. BrancaleA. FerlaS. HamelE. CoralloD. AveicS. ManfredaL. MariottoE. BortolozziR. ViolaG. Design, synthesis and biological investigation of 2-anilino triazolopyrimidines as tubulin polymerization inhibitors with anticancer activities.Pharmaceuticals2022158103110.3390/ph15081031 36015179
    [Google Scholar]
  88. TarsK. VulloD. KazaksA. LeitansJ. LendsA. GrandaneA. ZalubovskisR. ScozzafavaA. SupuranC.T. Sulfocoumarins (1,2-benzoxathiine-2,2-dioxides): A class of potent and isoform-selective inhibitors of tumor-associated carbonic anhydrases.J. Med. Chem.201356129330010.1021/jm301625s 23241068
    [Google Scholar]
  89. KhalifahR.G. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C.J. Biol. Chem.197124682561257310.1016/S0021‑9258(18)62326‑9 4994926
    [Google Scholar]
  90. PistollatoF. AbbadiS. RampazzoE. PersanoL. DellaP.A. FrassonC. SartoE. ScienzaR. D’avellaD. BassoG. Intratumoral hypoxic gradient drives stem cells distribution and MGMT expression in glioblastoma.Stem Cells201028585186210.1002/stem.415 20309962
    [Google Scholar]
  91. OnnisV. Special issue “Novel anti-proliferative agents”.Pharmaceuticals20231610143710.3390/ph16101437 37895908
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206373602250318062414
Loading
/content/journals/acamc/10.2174/0118715206373602250318062414
Loading

Data & Media loading...

Supplements

The following supporting information can be downloaded: 1H-NMR and 13C-NMR spectra of compounds -. Preparation and purification CA isoforms. Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test