Skip to content
2000
image of A Review of Cryptotanshinone and its Nanoformulation in Cancer Therapy

Abstract

Cancer, with a high incidence and mortality rate, has emerged as a major public health problem worldwide. Currently, new approaches, such as targeted therapy and immunotherapy, are giving hope to patients. However, drug resistance and adverse side effects are major barriers to cancer treatment. As a result, there is a greater focus on the development of cancer therapy strategies and medications with low toxicity and high efficacy. Cryptotanshinone (CTS), a diterpenoid quinone extracted from , exhibits a wide range of biological activities, including immunomodulatory, anti-inflammatory, and antitumor effects. In recent years, numerous studies have highlighted its significant antitumor properties, indicating potential clinical applications and development value. However, the clinical use of cryptotanshinone has been limited due to its poor water solubility and low bioavailability. To overcome these limitations, researchers are exploring new drug delivery systems, and novel formulation systems based on nanotechnology are being developed to improve the delivery and effectiveness of cryptotanshinone. In this review, we aim to consolidate the existing knowledge regarding the antitumor effects of cryptotanshinone and emphasize the latest advancements in its nanoformulation development. We hope to provide insights that will further improve the antitumor efficacy and clinical applicability of cryptotanshinone.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206372305250319064431
2025-03-28
2025-09-27
Loading full text...

Full text loading...

References

  1. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  2. Dumbrava E.I. Meric-Bernstam F. Personalized cancer therapy—leveraging a knowledge base for clinical decision-making. Mol. Case Stud. 2018 4 2 a001578 10.1101/mcs.a001578 29212833
    [Google Scholar]
  3. Khan S.U. Fatima K. Aisha S. Malik F. Unveiling the mechanisms and challenges of cancer drug resistance. Cell Commun. Signal. 2024 22 1 109 10.1186/s12964‑023‑01302‑1 38347575
    [Google Scholar]
  4. Wang W. Wang X. Zhang X. Liang C. Cryptotanshinone attenuates oxidative stress and inflammation through the regulation of Nrf‐2 and NF ‐κB in mice with unilateral ureteral obstruction. Basic Clin. Pharmacol. Toxicol. 2018 123 6 714 720 10.1111/bcpt.13091 29972887
    [Google Scholar]
  5. Chen W. Lu Y. Chen G. Huang S. Molecular evidence of cryptotanshinone for treatment and prevention of human cancer. Anticancer. Agents Med. Chem. 2013 13 7 979 987 10.2174/18715206113139990115 23272908
    [Google Scholar]
  6. Vundavilli H. Datta A. Sima C. Hua J. Lopes R. Bittner M. Targeting oncogenic mutations in colorectal cancer using cryptotanshinone. PLoS One 2021 16 2 e0247190 10.1371/journal.pone.0247190 33596259
    [Google Scholar]
  7. Qi P. Li Y. Liu X. Jafari F.A. Zhang X. Sun Q. Ma Z. Cryptotanshinone Suppresses Non-Small Cell Lung Cancer via microRNA-146a-5p/EGFR Axis. Int. J. Biol. Sci. 2019 15 5 1072 1079 10.7150/ijbs.31277 31182926
    [Google Scholar]
  8. Dalil D. Iranzadeh S. Kohansal S. Anticancer potential of cryptotanshinone on breast cancer treatment; A narrative review. Front. Pharmacol. 2022 13 979634 10.3389/fphar.2022.979634 36188552
    [Google Scholar]
  9. Estolano-Cobián A. Alonso M.M. Díaz-Rubio L. Ponce C.N. Córdova-Guerrero I. Marrero J.G. Tanshinones and their derivatives: Heterocyclic ring-fused diterpenes of biological interest. Mini Rev. Med. Chem. 2021 21 2 171 185 10.2174/1389557520666200429103225 32348220
    [Google Scholar]
  10. Zhou M. Yi Y. Liu L. Lin Y. Li J. Ruan J. Zhong Z. Polymeric micelles loading with ursolic acid enhancing anti-tumor effect on hepatocellular carcinoma. J. Cancer 2019 10 23 5820 5831 10.7150/jca.30865 31737119
    [Google Scholar]
  11. Wu Y.H. Wu Y.R. Li B. Yan Z.Y. Cryptotanshinone: A review of its pharmacology activities and molecular mechanisms. Fitoterapia 2020 145 104633 10.1016/j.fitote.2020.104633 32445662
    [Google Scholar]
  12. Chen Y. Liu J. Zhang J. Yang L. Jin L. Research progress in the quality evaluation of Salvia miltiorrhiza based on the association of ‘morphological features — functional substances — pharmacological action — clinical efficacy’. Heliyon 2023 9 10 e20325 10.1016/j.heliyon.2023.e20325 37780757
    [Google Scholar]
  13. Jiang Z. Gao W. Huang L. Tanshinones, critical pharmacological components in Salvia miltiorrhiza. Front. Pharmacol. 2019 10 202 10.3389/fphar.2019.00202 30923500
    [Google Scholar]
  14. Ang K.P. Tan H.K. Selvaraja M. Kadir A. Somchit M. Akim A. Zakaria Z. Ahmad Z. Cryptotanshinone attenuates in vitro oxLDL-induced pre-lesional atherosclerotic events. Planta Med. 2011 77 16 1782 1787 10.1055/s‑0030‑1271119 21614753
    [Google Scholar]
  15. Mahesh R. Jung H.W. Kim G.W. Kim Y.S. Park Y.K. Cryptotanshinone from Salviae miltiorrhizae radix inhibits sodium-nitroprusside-induced apoptosis in neuro-2a cells. Phytother. Res. 2012 26 8 1211 1219 10.1002/ptr.3705 22228596
    [Google Scholar]
  16. Peng B. Zhang S.Y. Chan K.I. Zhong Z.F. Wang Y.T. Novel anti-cancer products targeting AMPK: Natural herbal medicine against breast cancer. Molecules 2023 28 2 740 10.3390/molecules28020740 36677797
    [Google Scholar]
  17. Ma Y. Sheng J. Yan F. Wei W. Li L. Liu L. Sun J. Potential binding of cryptotanshinone with hemoglobin and antimetastatic effects against breast cancer cells through alleviating the expression of MMP-2/-9. Arab. J. Chem. 2023 16 10 105071 10.1016/j.arabjc.2023.105071
    [Google Scholar]
  18. zhang X. Liu M. Yang F. Ma L. Antiproliferative effect of cryptotanshinone against human non-small cell lung cancer cells through inactivation of lncRNA HOTAIR /p-Akt signaling pathway. Arab. J. Chem. 2021 14 6 103150 10.1016/j.arabjc.2021.103150
    [Google Scholar]
  19. Shin D.S. Kim H.N. Shin K.D. Yoon Y.J. Kim S.J. Han D.C. Kwon B.M. Cryptotanshinone inhibits constitutive signal transducer and activator of transcription 3 function through blocking the dimerization in DU145 prostate cancer cells. Cancer Res. 2009 69 1 193 202 10.1158/0008‑5472.CAN‑08‑2575 19118003
    [Google Scholar]
  20. Yao Y. Li H.Z. Qian B.J. Liu C.M. Zhang J.B. Lin M.C. [Crypotanshione reduces the expression of metadherin in DU145 prostate cancer cells]. Zhonghua Nan Ke Xue 2015 21 9 782 787 26552209
    [Google Scholar]
  21. Li H. Gao C. Liang Q. Liu C. Liu L. Zhuang J. Yang J. Zhou C. Feng F. Sun C. Cryptotanshinone is a intervention for er-positive breast cancer: An integrated approach to the study of natural product intervention mechanisms. Front. Pharmacol. 2021 11 592109 10.3389/fphar.2020.592109 33505309
    [Google Scholar]
  22. Zhou J. Su C.M. Chen H.A. Du S. Li C.W. Wu H. Tsai S.H. Yeh Y.T. Cryptanshinone inhibits the glycolysis and inhibits cell migration through PKM2/β-catenin axis in breast cancer. OncoTargets Ther. 2020 13 8629 8639 10.2147/OTT.S239134 32922039
    [Google Scholar]
  23. Wang Y. Lu H. Liu Y. Yang L. Jiang Q. Zhu X. Fan H. Qian Y. Cryptotanshinone sensitizes antitumor effect of paclitaxel on tongue squamous cell carcinoma growth by inhibiting the JAK/STAT3 signaling pathway. Biomed. Pharmacother. 2017 95 1388 1396 10.1016/j.biopha.2017.09.062 28946186
    [Google Scholar]
  24. Jiang G. Liu J. Ren B. Zhang L. Owusu L. Liu L. Zhang J. Tang Y. Li W. Anti-tumor and chemosensitization effects of Cryptotanshinone extracted from Salvia miltiorrhiza Bge. on ovarian cancer cells in vitro. J. Ethnopharmacol. 2017 205 33 40 10.1016/j.jep.2017.04.026 28456578
    [Google Scholar]
  25. Xu Z. Jiang H. Zhu Y. Wang H. Jiang J. Chen L. Xu W. Hu T. Cho C.H. Cryptotanshinone induces ROS-dependent autophagy in multidrug-resistant colon cancer cells. Chem. Biol. Interact. 2017 273 48 55 10.1016/j.cbi.2017.06.003 28600121
    [Google Scholar]
  26. Xia C. Bai X. Hou X. Gou X. Wang Y. Zeng H. Huang M. Jin J. Cryptotanshinone reverses cisplatin resistance of human lung carcinoma a549 cells through down-regulating NrF2 pathway. Cell. Physiol. Biochem. 2015 37 2 816 824 10.1159/000430398 26356271
    [Google Scholar]
  27. Zhu G. Li D. Wang X. Guo Q. Zhao Y. Hou W. Li J. Zheng Q. Drug monomers from Salvia miltiorrhiza Bge. promoting tight junction protein expression for therapeutic effects on lung cancer. Sci. Rep. 2023 13 1 22928 10.1038/s41598‑023‑50163‑8 38129556
    [Google Scholar]
  28. Blasius R. Reuter S. Henry E. Dicato M. Diederich M. Curcumin regulates signal transducer and activator of transcription (STAT) expression in K562 cells. Biochem. Pharmacol. 2006 72 11 1547 1554 10.1016/j.bcp.2006.07.029 16959222
    [Google Scholar]
  29. Liu W. Yu B. Xu G. Xu W.R. Loh M.L. Tang L.D. Qu C.K. Identification of cryptotanshinone as an inhibitor of oncogenic protein tyrosine phosphatase SHP2 (PTPN11). J. Med. Chem. 2013 56 18 7212 7221 10.1021/jm400474r 23957426
    [Google Scholar]
  30. Kim E.J. Kim S.Y. Kim S.M. Lee M. A novel topoisomerase 2a inhibitor, cryptotanshinone, suppresses the growth of PC3 cells without apparent cytotoxicity. Toxicol. Appl. Pharmacol. 2017 330 84 92 10.1016/j.taap.2017.07.007 28716507
    [Google Scholar]
  31. Mao D. Wang H. Guo H. Che X. Chen M. Li X. Liu Y. Huo J. Chen Y. Tanshinone IIA normalized hepatocellular carcinoma vessels and enhanced PD-1 inhibitor efficacy by inhibiting ELTD1. Phytomedicine 2024 123 155191 10.1016/j.phymed.2023.155191 38000104
    [Google Scholar]
  32. Zhang J. Huang M. Guan S. Bi H.C. Pan Y. Duan W. Chan S.Y. Chen X. Hong Y.H. Bian J.S. Yang H.Y. Zhou S. A mechanistic study of the intestinal absorption of cryptotanshinone, the major active constituent of Salvia miltiorrhiza. J. Pharmacol. Exp. Ther. 2006 317 3 1285 1294 10.1124/jpet.105.100701 16497784
    [Google Scholar]
  33. Bi H.C. Guan S. Chen X. Qi H.M. Su Q.B. Huang M. Implicit tanshinone in the small intestine absorption mechanism of experimental study. Chin. J. Clin. Pharmacol. 2005 21 107 110
    [Google Scholar]
  34. Xie M.Z. Shen Z.F. [Absorption, distribution, excretion and metabolism of cryptotanshinone]. Yao. Xue. Xue. Bao. 1983 18 2 90 96 6613598
    [Google Scholar]
  35. Xue M. Cui Y. Wang H. Luo Y. Zhang B. Zhou Z.T. Pharmacokinetics of CTS and its metabolite in pigs. Yao. Xue. Xue. Bao. 1999 34 81 84
    [Google Scholar]
  36. Xue M. Cui Y. Wang H.Q. Hu Z. Zhang B. Reversed-phase liquid chromatographic determination of cryptotanshinone and its active metabolite in pig plasma and urine. J. Pharm. Biomed. Anal. 1999 21 1 207 213 10.1016/S0731‑7085(99)00098‑9 10701929
    [Google Scholar]
  37. Qiu F. Jiang J. Ma Y. Wang G. Gao C. Zhang X. Zhang L. Liu S. He M. Zhu L. Ye Y. Li Q. Miao P. Opposite effects of single-dose and multidose administration of the ethanol extract of Danshen on CYP3A in healthy volunteers. Evid. Based Complement. Alternat. Med. 2013 2013 1 8 10.1155/2013/730734 24223062
    [Google Scholar]
  38. Sankhwar M. Sankhwar S.N. Variations in CYP isoforms and bladder cancer: A superfamily paradigm. Urol. Oncol. 2014 32 1 28.e33 28.e40 10.1016/j.urolonc.2012.10.005 23428537
    [Google Scholar]
  39. Zeng J. Fan Y. Tan B. Su H. Li Y. Zhang L. Jiang J. Qiu F. Charactering the metabolism of cryptotanshinone by human P450 enzymes and uridine diphosphate glucuronosyltransferases in vitro. Acta Pharmacol. Sin. 2018 39 8 1393 1404 10.1038/aps.2017.144 29417949
    [Google Scholar]
  40. Meng Z. Meng L. Wang K. Li J. Cao X. Wu J. Hu Y. Enhanced hepatic targeting, biodistribution and antifibrotic efficacy of tanshinone IIA loaded globin nanoparticles. Eur. J. Pharm. Sci. 2015 73 35 43 10.1016/j.ejps.2015.03.002 25769523
    [Google Scholar]
  41. Limcharoen B. Toprangkobsin P. Banlunara W. Wanichwecharungruang S. Richter H. Lademann J. Patzelt A. Increasing the percutaneous absorption and follicular penetration of retinal by topical application of proretinal nanoparticles. Eur. J. Pharm. Biopharm. 2019 139 93 100 10.1016/j.ejpb.2019.03.014 30878519
    [Google Scholar]
  42. Salvioni L. Morelli L. Ochoa E. Labra M. Fiandra L. Palugan L. Prosperi D. Colombo M. The emerging role of nanotechnology in skincare. Adv. Coll. Interf. Sci. 2021 293 102437 10.1016/j.cis.2021.102437 34023566
    [Google Scholar]
  43. Cabral H. Miyata K. Osada K. Kataoka K. Block copolymer micelles in nanomedicine applications. Chem. Rev. 2018 118 14 6844 6892 10.1021/acs.chemrev.8b00199 29957926
    [Google Scholar]
  44. Hwang D. Ramsey J.D. Kabanov A.V. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Adv. Drug Deliv. Rev. 2020 156 80 118 10.1016/j.addr.2020.09.009 32980449
    [Google Scholar]
  45. Wen Y. Jia H. Mo Z. Zheng K. Chen S. Ding Y. Zhang Y. Wen Y. Xie Q. Qiu J. Wu H. Ni Q. Ban J. Lu Z. Chen Y. Cross-linked thermosensitive nanohydrogels for ocular drug delivery with a prolonged residence time and enhanced bioavailability. Mater. Sci. Eng. C 2021 119 111445 10.1016/j.msec.2020.111445 33321585
    [Google Scholar]
  46. Liu Y. Xie X. Hou X. Shen J. Shi J. Chen H. He Y. Wang Z. Feng N. Functional oral nanoparticles for delivering silibinin and cryptotanshinone against breast cancer lung metastasis. J. Nanobiotech. 2020 18 1 83 10.1186/s12951‑020‑00638‑x 32473632
    [Google Scholar]
  47. Wu D. Chen M. Zheng N. Lu Y. Wang X. Jiang C. Xu H. The efficacy and safety of pH‐responsive and photothermal‐sensitive multifunctional nanoparticles loaded with cryptotanshinone for the treatment of gastric cancer. Mol. Carcinog. 2024 63 12 2346 2362 10.1002/mc.23814 39185663
    [Google Scholar]
  48. Li Z. Wei W. Zhang M. Guo X. Zhang B. Wang D. Jiang X. Liu F. Tang J. Cryptotanshinone‐doped photothermal synergistic mxene@pda nanosheets with antibacterial and anti‐inflammatory properties for wound healing. Adv. Healthc. Mater. 2023 12 28 2301060 10.1002/adhm.202301060 37387333
    [Google Scholar]
  49. Cai Y. Zhang W. Chen Z. Shi Z. He C. Chen M. Recent insights into the biological activities and drug delivery systems of tanshinones. Int. J. Nanomedicine 2016 11 121 130 26792989
    [Google Scholar]
  50. Malam Y. Loizidou M. Seifalian A.M. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci. 2009 30 11 592 599 10.1016/j.tips.2009.08.004 19837467
    [Google Scholar]
  51. Liu K. Zhao B.L. Sun Z.H. Luo N.N. Li X.F. Cryptotanshinone-loaded biomimetic pH-sensitive liposomes for the treatment of liver fibrosis. J. Drug Deli. Sci. Tech. 2025 104 106496 10.1016/j.jddst.2024.106496
    [Google Scholar]
  52. ElBayoumi T.A. Torchilin V.P. Current trends in liposome research. Methods Mol. Biol. 2010 605 1 27 10.1007/978‑1‑60327‑360‑2_1 20072870
    [Google Scholar]
  53. Zhao H.C. Wang Y.M. Cui J.W. Feng K.H. Wang R.N. Di L.Q. Construction of targeted cryptotanshinone liposomes and research on its in vitro anti-glioma effect. Yao Xue Xue Bao 2021 56 3268 3276
    [Google Scholar]
  54. Wang X. Wan W. Zhang J. Lu J. Liu P. Efficient pulmonary fibrosis therapy via regulating macrophage polarization using respirable cryptotanshinone-loaded liposomal microparticles. J. Control. Release 2024 366 1 17 10.1016/j.jconrel.2023.12.042 38154539
    [Google Scholar]
  55. Paliwal R. Paliwal S.R. Kenwat R. Kurmi B.D. Sahu M.K. Solid lipid nanoparticles: A review on recent perspectives and patents. Expert Opin. Ther. Pat. 2020 30 3 179 194 10.1080/13543776.2020.1720649 32003260
    [Google Scholar]
  56. Weyhers H. Ehlers S. Hahn H. Souto E.B. Müller R.H. Solid lipid nanoparticles (SLN)--effects of lipid composition on in vitro degradation and in vivo toxicity. Pharmazie 2006 61 6 539 544 16826974
    [Google Scholar]
  57. Hu L. Xing Q. Meng J. Shang C. Preparation and enhanced oral bioavailability of cryptotanshinone-loaded solid lipid nanoparticles. AAPS Pharm. Sci. Tech. 2010 11 2 582 587 10.1208/s12249‑010‑9410‑3 20352534
    [Google Scholar]
  58. Szente L. Szejtli J. Kis G.L. Spontaneous opalescence of aqueous gamma-cyclodextrin solutions: Complex formation or self-aggregation? J. Pharm. Sci. 1998 87 6 778 781 10.1021/js9704341 9607959
    [Google Scholar]
  59. Loftsson T. Brewster M.E. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J. Pharm. Sci. 1996 85 10 1017 1025 10.1021/js950534b 8897265
    [Google Scholar]
  60. Challa R. Ahuja A. Ali J. Khar R.K. Cyclodextrins in drug delivery: An updated review. AAPS PharmSciTech 2005 6 2 E329 E357 10.1208/pt060243 16353992
    [Google Scholar]
  61. Pan Y. Bi H.C. Zhong G.P. Chen X. Zuo Z. Zhao L.Z. Gu L.Q. Liu P.Q. Huang Z.Y. Zhou S.F. Huang M. Pharmacokinetic characterization of hydroxylpropyl- β -cyclodextrin-included complex of cryptotanshinone, an investigational cardiovascular drug purified from Danshen (Salvia miltiorrhiza ). Xenobiotica 2008 38 4 382 398 10.1080/00498250701827685 18340563
    [Google Scholar]
  62. Jørgensen S.S.D. Sawaf A.M. Graeser K. Mu H. Müllertz A. Rades T. The ability of two in vitro lipolysis models reflecting the human and rat gastro-intestinal conditions to predict the in vivo performance of SNEDDS dosing regimens. Eur. J. Pharm. Biopharm. 2018 124 116 124 10.1016/j.ejpb.2017.12.014 29288805
    [Google Scholar]
  63. Pouton C.W. Lipid formulations for oral administration of drugs: Non-emulsifying, self-emulsifying and ‘self-microemulsifying’ drug delivery systems. Eur. J. Pharm. Sci. 2000 11 Suppl. 2 S93 S98 10.1016/S0928‑0987(00)00167‑6 11033431
    [Google Scholar]
  64. Venkata Ramana Rao S. Shao J. Self-nanoemulsifying drug delivery systems (SNEDDS) for oral delivery of protein drugs. Int. J. Pharm. 2008 362 1-2 2 9 10.1016/j.ijpharm.2008.05.018 18650038
    [Google Scholar]
  65. Bi X. Liu X. Di L. Zu Q. Improved oral bioavailability using a solid self-microemulsifying drug delivery system containing a multicomponent mixture extracted from salvia miltiorrhiza. Molecules 2016 21 4 456 10.3390/molecules21040456 27070565
    [Google Scholar]
  66. Junghanns J.U. Müller R.H. Nanocrystal technology, drug delivery and clinical applications. Int. J. Nanomed. 2008 3 3 295 309 18990939
    [Google Scholar]
  67. Li J. Wang Z. Zhang H. Gao J. Zheng A. Progress in the development of stabilization strategies for nanocrystal preparations. Drug Deliv. 2021 28 1 19 36 10.1080/10717544.2020.1856224 33336609
    [Google Scholar]
  68. Gigliobianco M.R. Casadidio C. Censi R. Martino D.P. Nanocrystals of poorly soluble drugs: Drug bioavailability and physicochemical stability. Pharmaceutics 2018 10 3 134 10.3390/pharmaceutics10030134 30134537
    [Google Scholar]
  69. Zhang J. Xu W. Meng F. Yi T. A spray-dried self-stabilizing nanocrystal emulsion of traditional chinese medicine: Preparation, characterization and ex vivo intestinal absorption. Pharmaceutical Fronts 2024 6 4 e449 e458 10.1055/s‑0044‑1791831
    [Google Scholar]
  70. McKee J. Rabinow B. Cook C. Gass J. Nanosuspension formulation of itraconazole eliminates the negative inotropic effect of SPORANOX in dogs. J. Med. Toxicol. 2010 6 3 331 336 10.1007/s13181‑010‑0025‑6 20238196
    [Google Scholar]
  71. Barle E.L. Černe M. Peternel L. Homar M. Reduced intravenous toxicity of amiodarone nanosuspension in mice and rats. Drug Chem. Toxicol. 2013 36 3 263 269 10.3109/01480545.2012.710628 22950665
    [Google Scholar]
  72. Zhao W. Ruan B. Sun X. Yu Z. Preparation and optimization of surface stabilized cryptotanshinone nanocrystals with enhanced bioavailability. Front. Pharmacol. 2023 14 1122071 10.3389/fphar.2023.1122071 36817118
    [Google Scholar]
  73. Bozzuto G. Molinari A. Liposomes as nanomedical devices. Int. J. Nanomed. 2015 10 975 999 10.2147/IJN.S68861 25678787
    [Google Scholar]
  74. Sánchez-López E. Guerra M. Dias-Ferreira J. Lopez-Machado A. Ettcheto M. Cano A. Espina M. Camins A. Garcia M.L. Souto E.B. Current Applications of Nanoemulsions in Cancer Therapeutics. Nanomaterials 2019 9 6 821 10.3390/nano9060821 31159219
    [Google Scholar]
  75. Pan Y. Shi J. Ni W. Liu Y. Wang S. Wang X. Wei Z. Wang A. Chen W. Lu Y. Cryptotanshinone inhibition of mammalian target of rapamycin pathway is dependent on oestrogen receptor alpha in breast cancer. J. Cell. Mol. Med. 2017 21 9 2129 2139 10.1111/jcmm.13135 28272775
    [Google Scholar]
  76. Shi D. Li H. Zhang Z. He Y. Chen M. Sun L. Zhao P. Cryptotanshinone inhibits proliferation and induces apoptosis of breast cancer MCF-7 cells via GPER mediated PI3K/AKT signaling pathway. PLoS One 2022 17 1 e0262389 10.1371/journal.pone.0262389 35061800
    [Google Scholar]
  77. Zhang W. Yu W. Cai G. Zhu J. Zhang C. Li S. Guo J. Yin G. Chen C. Kong L. RETRACTED ARTICLE: A new synthetic derivative of cryptotanshinone KYZ3 as STAT3 inhibitor for triple-negative breast cancer therapy. Cell Death Dis. 2018 9 11 1098 10.1038/s41419‑018‑1139‑z 30368518
    [Google Scholar]
  78. Shi D. Zhao P. Cui L. Li H. Sun L. Niu J. Chen M. Inhibition of PI3K/AKT molecular pathway mediated by membrane estrogen receptor GPER accounts for cryptotanshinone induced antiproliferative effect on breast cancer SKBR-3 cells. BMC Pharmacol. Toxicol. 2020 21 1 32 10.1186/s40360‑020‑00410‑9 32357920
    [Google Scholar]
  79. Noori S. Nourbakhsh M. Imani H. Deravi N. Salehi N. Abdolvahabi Z. Naringenin and cryptotanshinone shift the immune response towards Th1 and modulate T regulatory cells via JAK2/STAT3 pathway in breast cancer. BMC Complement. Med. Ther. 2022 22 1 145 10.1186/s12906‑022‑03625‑x 35606804
    [Google Scholar]
  80. Yang Y. Cao Y. Chen L. Liu F. Qi Z. Cheng X. Wang Z. Cryptotanshinone suppresses cell proliferation and glucose metabolism via STAT3/SIRT3 signaling pathway in ovarian cancer cells. Cancer Med. 2018 7 9 4610 4618 10.1002/cam4.1691 30094960
    [Google Scholar]
  81. Wang J. Zhang G. Dai C. Gao X. Wu J. Shen L. Chen Z. Liu P. Cryptotanshinone potentiates the antitumor effects of doxorubicin on gastric cancer cells via inhibition of STAT3 activity. J. Int. Med. Res. 2017 45 1 220 230 10.1177/0300060516685513 28222632
    [Google Scholar]
  82. Zanrè V. Campagnari R. Cerulli A. Masullo M. Cardile A. Piacente S. Menegazzi M. Salviolone from Salvia miltiorrhiza roots impairs cell cycle progression, colony formation, and metalloproteinase-2 activity in a375 melanoma cells: Involvement of P21(Cip1/Waf1) expression and stat3 phosphorylation. Int. J. Mol. Sci. 2022 23 3 1121 10.3390/ijms23031121 35163058
    [Google Scholar]
  83. Chen L. Zheng S. Sun Z. Wang A. Huang C. Punchard N.A. Huang S. Gao X. Lu Y. Cryptotanshinone has diverse effects on cell cycle events in melanoma cell lines with different metastatic capacity. Cancer Chemother. Pharmacol. 2011 68 1 17 27 10.1007/s00280‑010‑1440‑8 20820782
    [Google Scholar]
  84. Yen J.H. Huang H.S. Chuang C.J. Huang S.T. Activation of dynamin-related protein 1 - dependent mitochondria fragmentation and suppression of osteosarcoma by cryptotanshinone. J. Exp. Clin. Cancer Res. 2019 38 1 42 10.1186/s13046‑018‑1008‑8 30691497
    [Google Scholar]
  85. Ke F. Wang Z. Song X. Ma Q. Hu Y. Jiang L. Zhang Y. Liu Y. Zhang Y. Gong W. Cryptotanshinone induces cell cycle arrest and apoptosis through the JAK2/STAT3 and PI3K/Akt/NFkB pathways in cholangiocarcinoma cells. Drug Des. Devel. Ther. 2017 11 1753 1766 10.2147/DDDT.S132488 28670110
    [Google Scholar]
  86. Zhang L. Yu L. Wei Y. Oral administration of cryptotanshinone-encapsulated nanoparticles for the amelioration of ulcerative colitis. Cell. Mol. Bioeng. 2022 15 1 129 136 10.1007/s12195‑021‑00711‑x 35096188
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206372305250319064431
Loading
/content/journals/acamc/10.2174/0118715206372305250319064431
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test