Skip to content
2000
image of Enhanced Apoptosis in Pancreatic Cancer Cells through Thymoquinone-rich Nigella sativa L. Methanol Extract: Targeting NRF2/HO-1 and TNF-α Pathways

Abstract

Aims

This study explores the therapeutic potential of L. and its key bioactive compound, thymoquinone (TQ).

Background

Pancreatic cancer presents a significant health challenge due to its aggressiveness and limited treatment options. and its component TQ have demonstrated anticancer properties in other cancers, warranting exploration in pancreatic cancer models.

Objective

To assess the antiproliferative, apoptotic, and anti-invasive effects of N. sativa extracts and TQ on pancreatic cancer cells, with a focus on modulating the NRF2/HO-1 and TNF-α signaling pathways.

Methods

MIA PaCa-2 and PANC-1 pancreatic cancer cell lines were treated with essential and fixed oils, methanol extracts (from Türkiye and Syria), and TQ. Cell viability, apoptosis, and invasiveness were assessed XTT, Annexin V, and Matrigel assays, respectively. Gene expression and cytokine levels were evaluated using RT-qPCR and ELISA. HPLC was conducted to confirm TQ concentrations in extracts.

Results

The methanol extract of Türkiye-originated N. sativa seeds (TM) exhibited the highest cytotoxic effect, reducing cell viability in MIA PaCa-2 and PANC-1 at 0.05 mg/mL, while TQ significantly decreased viability at 20 µM. TM reduced MIA PaCa-2 and PANC-1 invasiveness (42 ± 1.23 and 35 ± 0.73, respectively) and contained a higher concentration of TQ (7.9168 ± 0.0561%) compared to the Syria-originated extract (SM).

Conclusion

The findings suggest that TM and TQ exhibit strong anticancer potential by modulating key signaling pathways in pancreatic cancer cells, supporting their potential for further development as therapeutic agents in pancreatic cancer treatment.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206370057250421061226
2025-04-29
2025-09-26
Loading full text...

Full text loading...

References

  1. Banerjee S. Padhye S. Azmi A. Wang Z. Philip P.A. Kucuk O. Sarkar F.H. Mohammad R.M. Review on molecular and therapeutic potential of thymoquinone in cancer. Nutr. Cancer 2010 62 7 938 946 10.1080/01635581.2010.509832 20924969
    [Google Scholar]
  2. Hannan M.A. Rahman M.A. Sohag A.A.M. Uddin M.J. Dash R. Sikder M.H. Rahman M.S. Timalsina B. Munni Y.A. Sarker P.P. Alam M. Mohibbullah M. Haque M.N. Jahan I. Hossain M.T. Afrin T. Rahman M.M. Tahjib-Ul-Arif M. Mitra S. Oktaviani D.F. Khan M.K. Choi H.J. Moon I.S. Kim B. Black cumin Nigella sativa: A comprehensive review on phytochemistry, health benefits, molecular pharmacology, and safety. Nutrients 2021 13 6 1784 10.3390/nu13061784 34073784
    [Google Scholar]
  3. Yagoub S.O. Black cumin: morphology, physiology, growth, and agricultural yield. Biochemistry, Nutrition, and Therapeutics of Black Cumin Seed. Mariod A.A. Academic Press 2023 19 25 10.1016/B978‑0‑323‑90788‑0.00016‑0
    [Google Scholar]
  4. Relles D. Chipitsyna G.I. Gong Q. Yeo C.J. Arafat H.A. Thymoquinone promotes pancreatic cancer cell death and reduction of tumor size through combined inhibition of histone deacetylation and induction of histone acetylation. Adv. Prev. Med. 2016 2016 1 9 10.1155/2016/1407840 28105374
    [Google Scholar]
  5. Safaei Z. Azizi M. Davarynejad G. Aroiee H. The effect of foliar application of humic acid and nano-fertilizer (Pharmks®) on yield and yield components of black cumin (Nigella sativa.). J. Med. Plants By-Prod. 2014 3 2 133 140
    [Google Scholar]
  6. Kara N. Gürbüzer G. Biyikli M. Baydar H. Effect on yield and some quality characteristics of seed harvest at different stages of maturity in Nigella sativa. Tarim Bilim. Derg. 2021 27 3 341 346 10.15832/ankutbd.657045
    [Google Scholar]
  7. Ahmad A. Husain A. Mujeeb M. Khan S.A. Najmi A.K. Siddique N.A. Damanhouri Z.A. Anwar F. A review on therapeutic potential of Nigella sativa: A miracle herb. Asian Pac. J. Trop. Biomed. 2013 3 5 337 352 10.1016/S2221‑1691(13)60075‑1 23646296
    [Google Scholar]
  8. Majeed A. Muhammad Z. Ahmad H. Rehmanullah Hayat S.S.S. Inayat N. Siyyar S. Nigella sativa: Uses in traditional and contemporary medicines: An overview. Acta Ecol. Sin. 2021 41 4 253 258 10.1016/j.chnaes.2020.02.001
    [Google Scholar]
  9. Hossain M.S. Sharfaraz A. Dutta A. Ahsan A. Masud M.A. Ahmed I.A. Goh B.H. Urbi Z. Sarker M.M.R. Ming L.C. A review of ethnobotany, phytochemistry, antimicrobial pharmacology and toxicology of Nigella sativa. Biomed. Pharmacother. 2021 143 112182 10.1016/j.biopha.2021.112182 34649338
    [Google Scholar]
  10. Mahmoud Y.K. Abdelrazek H.M.A. Cancer: Thymoquinone antioxidant/pro-oxidant effect as potential anticancer remedy. Biomed. Pharmacother. 2019 115 108783 10.1016/j.biopha.2019.108783 31060003
    [Google Scholar]
  11. AlGhamdi A.A. Mohammed M.R.S. Zamzami M.A. Al-Malki A.L. Qari M.H. Khan M.I. Choudhry H. Untargeted metabolomics identifies key metabolic pathways altered by thymoquinone in leukemic cancer cells. Nutrients 2020 12 6 1792 10.3390/nu12061792 32560283
    [Google Scholar]
  12. Zhao Z. Liu L. Li S. Hou X. Yang J. Advances in research on the relationship between thymoquinone and pancreatic cancer. Front. Oncol. 2023 12 1092020 10.3389/fonc.2022.1092020 36686732
    [Google Scholar]
  13. Marsik P. Kokoska L. Landa P. Nepovim A. Soudek P. Vanek T. In vitro inhibitory effects of thymol and quinones of Nigella sativa seeds on cyclooxygenase-1- and -2-catalyzed prostaglandin E2 biosyntheses. Planta Med. 2005 71 8 739 742 10.1055/s‑2005‑871288 16142638
    [Google Scholar]
  14. Kabir Y. Akasaka-Hashimoto Y. Kubota K. Komai M. Volatile compounds of black cumin Nigella sativa seeds cultivated in Bangladesh and India. Heliyon 2020 6 10 e05343 10.1016/j.heliyon.2020.e05343 33163654
    [Google Scholar]
  15. Oskouei Z. Akaberi M. Hosseinzadeh H. A glance at black cumin Nigella sativa and its active constituent, thymoquinone, in ischemia: A review. Iran. J. Basic Med. Sci. 2018 21 12 1200 1209 10.22038/ijbms.2018.31703.7630 30627362
    [Google Scholar]
  16. Roth M.T. Cardin D.B. Berlin J.D. 2020 Recent advances in the treatment of pancreatic cancer. F1000Res. 9 F1000 Faculty Rev-131 10.12688/f1000research.21981.1
    [Google Scholar]
  17. Sung H. Ferlay J. Siegel R.L. Laversanne M. Soerjomataram I. Jemal A. Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021 71 3 209 249 10.3322/caac.21660 33538338
    [Google Scholar]
  18. Siegel R.L. Miller K.D. Wagle N.S. Jemal A. Cancer statistics, 2023. CA Cancer J. Clin. 2023 73 1 17 48 10.3322/caac.21763 36633525
    [Google Scholar]
  19. Espona-Fiedler M. Patthey C. Lindblad S. Sarró I. Öhlund D. Overcoming therapy resistance in pancreatic cancer: New insights and future directions. Biochem. Pharmacol. 2024 229 116492 10.1016/j.bcp.2024.116492 39153553
    [Google Scholar]
  20. Strobel O. Lorenz P. Hinz U. Gaida M. König A.K. Hank T. Niesen W. Kaiser J. Al-Saeedi M. Bergmann F. Springfeld C. Berchtold C. Diener M.K. Schneider M. Mehrabi A. Müller-Stich B.P. Hackert T. Jager D. Büchler M.W. Actual five-year survival after upfront resection for pancreatic ductal adenocarcinoma. Ann. Surg. 2022 275 5 962 971 10.1097/SLA.0000000000004147 32649469
    [Google Scholar]
  21. Shibue T. Weinberg R.A. EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat. Rev. Clin. Oncol. 2017 14 10 611 629 10.1038/nrclinonc.2017.44 28397828
    [Google Scholar]
  22. Pekarek L. Fraile-Μartinez O. Garcia-Montero C. Alvarez-Mon M. Acero J. Ruiz-Llorente L. García-Honduvilla N. Albillos A. Buján J. Alvarez-Mon M. Guijarro L. Ortega M. Towards an updated view on the clinical management of pancreatic adenocarcinoma: Current and future perspectives (Review). Oncol. Lett. 2021 22 5 809 10.3892/ol.2021.13070 34630716
    [Google Scholar]
  23. Zhang CY Liu S Yang M Clinical diagnosis and management of pancreatic cancer: Markers, molecular mechanisms, and treatment options. World J. Gastroenterol. 2022 28 6827 6845 10.3748/wjg.v28.i48.6827
    [Google Scholar]
  24. Macedo F.I. Ryon E. Maithel S.K. Lee R.M. Kooby D.A. Fields R.C. Hawkins W.G. Williams G. Maduekwe U. Kim H.J. Ahmad S.A. Patel S.H. Abbott D.E. Schwartz P. Weber S.M. Scoggins C.R. Martin R.C.G. Dudeja V. Franceschi D. Livingstone A.S. Merchant N.B. Survival outcomes associated with clinical and pathological response following neoadjuvant FOLFIRINOX or Gemcitabine/Nab-Paclitaxel chemotherapy in resected pancreatic cancer. Ann. Surg. 2019 270 3 400 413 10.1097/SLA.0000000000003468 31283563
    [Google Scholar]
  25. Gunturu K.S. Yao X. Cong X. Thumar J.R. Hochster H.S. Stein S.M. Lacy J. FOLFIRINOX for locally advanced and metastatic pancreatic cancer: Single institution retrospective review of efficacy and toxicity. Med. Oncol. 2013 30 1 361 10.1007/s12032‑012‑0361‑2 23271209
    [Google Scholar]
  26. Von Hoff D.D. Ervin T. Arena F.P. Chiorean E.G. Infante J. Moore M. Seay T. Tjulandin S.A. Ma W.W. Saleh M.N. Harris M. Reni M. Dowden S. Laheru D. Bahary N. Ramanathan R.K. Tabernero J. Hidalgo M. Goldstein D. Van Cutsem E. Wei X. Iglesias J. Renschler M.F. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 2013 369 18 1691 1703 10.1056/NEJMoa1304369 24131140
    [Google Scholar]
  27. Chiorean E.G. Coveler A. Pancreatic cancer: Optimizing treatment options, new, and emerging targeted therapies. Drug Des. Devel. Ther. 2015 9 3529 3545 10.2147/DDDT.S60328 26185420
    [Google Scholar]
  28. Wang S. Zheng Y. Yang F. Zhu L. Zhu X.Q. Wang Z.F. Wu X.L. Zhou C.H. Yan J.Y. Hu B.Y. Kong B. Fu D.L. Bruns C. Zhao Y. Qin L.X. Dong Q.Z. The molecular biology of pancreatic adenocarcinoma: Translational challenges and clinical perspectives. Signal Transduct. Target. Ther. 2021 6 1 249 10.1038/s41392‑021‑00659‑4 34219130
    [Google Scholar]
  29. Çınar Ayan İ. Güçlü E. Vural H. Dursun H.G. Piceatannol induces apoptotic cell death through activation of caspase-dependent pathway and upregulation of ROS-mediated mitochondrial dysfunction in pancreatic cancer cells. Mol. Biol. Rep. 2022 49 12 11947 11957 10.1007/s11033‑022‑08006‑8 36260179
    [Google Scholar]
  30. Çetinkaya S. Çınar Ayan İ. Süntar İ. Dursun H.G. The phytochemical profile and biological activity of Liquidambar orientalis Mill. var. orientalis via NF-κB and apoptotic pathways in human colorectal cancer. Nutr. Cancer 2022 74 4 1457 1473 10.1080/01635581.2021.1952455 34291706
    [Google Scholar]
  31. Ansary J. Giampieri F. Forbes-Hernandez T.Y. Regolo L. Quinzi D. Gracia Villar S. Garcia Villena E. Tutusaus Pifarre K. Alvarez-Suarez J.M. Battino M. Cianciosi D. Nutritional value and preventive role of Nigella sativa. and its main component thymoquinone in cancer: An evidenced-based review of preclinical and clinical studies. Molecules 2021 26 8 2108 10.3390/molecules26082108 33916916
    [Google Scholar]
  32. AlDreini S. Fatfat Z. Abou Ibrahim N. Fatfat M. Gali-Muhtasib H. Khalife H. Thymoquinone enhances the antioxidant and anticancer activity of Lebanese propolis. World J. Clin. Oncol. 2023 14 5 203 214 10.5306/wjco.v14.i5.203 37275937
    [Google Scholar]
  33. Darakhshan S. Bidmeshki Pour A. Hosseinzadeh Colagar A. Sisakhtnezhad S. Thymoquinone and its therapeutic potentials. Pharmacol. Res. 2015 95-96 138 158 10.1016/j.phrs.2015.03.011 25829334
    [Google Scholar]
  34. Mostofa A.G.M. Hossain M.K. Basak D. Bin Sayeed M.S. Thymoquinone as a potential adjuvant therapy for cancer treatment: Evidence from preclinical studies. Front. Pharmacol. 2017 8 295 10.3389/fphar.2017.00295 28659794
    [Google Scholar]
  35. Padhye S Banerjee S Ahmad A Mohammad R Sarkar FH FH (2008) From here to eternity - the secret of Pharaohs: Therapeutic potential of black cumin seeds and beyond. Cancer Ther 2008 6 495 510
    [Google Scholar]
  36. Abo-Atya D.M. El-Mallah M.F. El-Seedi H.R. Farag M.A. Novel prospective of Nigella sativa essential oil analysis, culinary and medicinal uses. Black cumin (Nigella sativa) seeds: Chemistry, technology, functionality, and applications. food bioactive ingredients. Fawzy Ramadan M. Cham Springer 2021 10.1007/978‑3‑030‑48798‑0_9
    [Google Scholar]
  37. Govindaraj M. Vetriventhan M. Srinivasan M. Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genet. Res. Int. 2015 2015 1 14 10.1155/2015/431487 25874132
    [Google Scholar]
  38. Farinon B. Molinari R. Costantini L. Merendino N. The seed of industrial Hemp (Cannabis sativa L.): nutritional quality and potential functionality for human health and nutrition. Nutrients 2020 12 7 1935 10.3390/nu12071935 32610691
    [Google Scholar]
  39. Rathore C. Upadhyay N. Kaundal R. Dwivedi R.P. Rahatekar S. John A. Dua K. Tambuwala M.M. Jain S. Chaudari D. Negi P. Enhanced oral bioavailability and hepatoprotective activity of thymoquinone in the form of phospholipidic nano-constructs. Expert Opin. Drug Deliv. 2020 17 2 237 253 10.1080/17425247.2020.1716728 32003249
    [Google Scholar]
  40. Wu Z.H. Chen Z. Shen Y. Huang L.L. Jiang P. Anti-metastasis effect of thymoquinone on human pancreatic cancer. Yao Xue Xue Bao 2011 46 8 910 914 22007514
    [Google Scholar]
  41. Mu G.G. Yu H.G. Li H.Y. Li W. Thymoquinone inhibits migration and invasion of human pancreatic cancer BxPC-3 cells in vitro. Clin. J. Gastroenterol. 2014 19 11 650 654
    [Google Scholar]
  42. Hasan T.N. Shafi G. Syed N.A. Alfawaz M.A. Alsaif M.A. Munshi A. Lei K.Y. Alshatwi A.A. Methanolic extract of Nigella sativa seed inhibits SiHa human cervical cancer cell proliferation through apoptosis. Nat. Prod. Commun. 2013 8 2 1934578X1300800221 10.1177/1934578X1300800221 23513732
    [Google Scholar]
  43. Dilshad A. Abulkhair O. Nemenqani D. Tamimi W. Antiproliferative properties of methanolic extract of Nigella sativa against the MDA-MB-231 cancer cell line. Asian Pac. J. Cancer Prev. 2012 13 11 5839 5842 10.7314/APJCP.2012.13.11.5839 23317266
    [Google Scholar]
  44. Sadiq M.J. Reddy Y.P. Chandrasekhar K.B. A study of Nigella sativa induced growth inhibition of MCF and HepG2 cell lines: An anti-neoplastic study along with its mechanism of action. Pharmacognosy Res. 2015 7 2 193 197 10.4103/0974‑8490.150541 25829794
    [Google Scholar]
  45. Alandağ C. Kancaği D.D. Karakuş Sir G. Çakirsoy D. Ovali E. Karaman E. Yüce E. Özdemir F. The effects of thymoquinone on pancreatic cancer and immune cells. Rev. Assoc. Med. Bras 2022 68 8 1023 1026 10.1590/1806‑9282.20220066.
    [Google Scholar]
  46. Farooq J. Sultana R. Taj T. Asdaq S.M.B. Alsalman A.J. Mohaini M.A. Al Hawaj M.A. Kamal M. Alghamdi S. Imran M. Shahin H. Tabassum R. Insights into the protective effects of thymoquinone against toxicities induced by chemotherapeutic agents. Molecules 2021 27 1 226 10.3390/molecules27010226 35011457
    [Google Scholar]
  47. Nagi M.N. Almakki H.A. Thymoquinone supplementation induces quinone reductase and glutathione transferase in mice liver: possible role in protection against chemical carcinogenesis and toxicity. Phytother. Res. 2009 23 9 1295 1298 10.1002/ptr.2766 19277968
    [Google Scholar]
  48. Zubair H. Khan H.Y. Sohail A. Azim S. Ullah M.F. Ahmad A. Sarkar F.H. Hadi S.M. Redox cycling of endogenous copper by thymoquinone leads to ROS-mediated DNA breakage and consequent cell death: Putative anticancer mechanism of antioxidants. Cell Death Dis. 2013 4 6 e660 10.1038/cddis.2013.172 23744360
    [Google Scholar]
  49. Lang M. Borgmann M. Oberhuber G. Evstatiev R. Jimenez K. Dammann K.W. Jambrich M. Khare V. Campregher C. Ristl R. Gasche C. Thymoquinone attenuates tumor growth in ApcMin mice by interference with Wnt-signaling. Mol. Cancer 2013 12 1 41 10.1186/1476‑4598‑12‑41 23668310
    [Google Scholar]
  50. Abukhader M.M. The effect of route of administration in thymoquinone toxicity in male and female rats. Indian J. Pharm. Sci. 2012 74 3 195 200 10.4103/0250‑474X.106060 23440704
    [Google Scholar]
  51. Mollinedo F Gajate C Fas/CD95 death receptor and lipid rafts: New targets for apoptosis-directed cancer therapy. Drug Resist Updat. 2006 9 1-2 51 73 10.1016/j.drup.2006.04.002
    [Google Scholar]
  52. Singh R. Letai A. Sarosiek K. Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol. 2019 20 3 175 193 10.1038/s41580‑018‑0089‑8 30655609
    [Google Scholar]
  53. Elmore S. Apoptosis: A review of programmed cell death. Toxicol. Pathol. 2007 35 4 495 516 10.1080/01926230701320337 17562483
    [Google Scholar]
  54. Jang D. Lee A.H. Shin H.Y. Song H.R. Park J.H. Kang T.B. Lee S.R. Yang S.H. The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int. J. Mol. Sci. 2021 22 5 2719 10.3390/ijms22052719 33800290
    [Google Scholar]
  55. Torres M.P. Ponnusamy M.P. Chakraborty S. Smith L.M. Das S. Arafat H.A. Batra S.K. Effects of thymoquinone in the expression of mucin 4 in pancreatic cancer cells: implications for the development of novel cancer therapies. Mol. Cancer Ther. 2010 9 5 1419 1431 10.1158/1535‑7163.MCT‑10‑0075 20423995
    [Google Scholar]
  56. Rooney S. Ryan M.F. Effects of alpha-hederin and thymoquinone, constituents of Nigella sativa, on human cancer cell lines. Anticancer Res. 2005 25 3B 2199 2204 16158964
    [Google Scholar]
  57. Chehl N. Chipitsyna G. Gong Q. Yeo C.J. Arafat H.A. Anti-inflammatory effects of the Nigella sativa seed extract, thymoquinone, in pancreatic cancer cells. HPB (Oxford) 2009 11 5 373 381 10.1111/j.1477‑2574.2009.00059.x 19768141
    [Google Scholar]
  58. Sutton K.M. Greenshields A.L. Hoskin D.W. Thymoquinone, a bioactive component of black caraway seeds, causes G1 phase cell cycle arrest and apoptosis in triple-negative breast cancer cells with mutant p53. Nutr. Cancer 2014 66 3 408 418 10.1080/01635581.2013.878739 24579801
    [Google Scholar]
  59. Talib W. Regressions of breast carcinoma syngraft following treatment with piperine in combination with thymoquinone. Sci. Pharm. 2017 85 3 27 10.3390/scipharm85030027 28671634
    [Google Scholar]
  60. Rajput S. Kumar B.N.P. Dey K.K. Pal I. Parekh A. Mandal M. Molecular targeting of Akt by thymoquinone promotes G1 arrest through translation inhibition of cyclin D1 and induces apoptosis in breast cancer cells. Life Sci. 2013 93 21 783 790 10.1016/j.lfs.2013.09.009 24044882
    [Google Scholar]
  61. Woo C.C. Hsu A. Kumar A.P. Sethi G. Tan K.H.B. Thymoquinone inhibits tumor growth and induces apoptosis in a breast cancer xenograft mouse model: The role of p38 MAPK and ROS. PLoS One 2013 8 10 e75356 10.1371/journal.pone.0075356 24098377
    [Google Scholar]
  62. Kundu J. Kim D.H. Kundu J.K. Chun K.S. Thymoquinone induces heme oxygenase-1 expression in HaCaT cells via Nrf2/ARE activation: Akt and AMPKα as upstream targets. Food Chem. Toxicol. 2014 65 18 26 10.1016/j.fct.2013.12.015 24355171
    [Google Scholar]
  63. Seoane J. Gomis R.R. TGF-β family signaling in tumor suppression and cancer progression. Cold Spring Harb. Perspect. Biol. 2017 9 12 a022277 10.1101/cshperspect.a022277 28246180
    [Google Scholar]
  64. Shi X. Yang J. Deng S. Xu H. Wu D. Zeng Q. Wang S. Hu T. Wu F. Zhou H. TGF-β signaling in the tumor metabolic microenvironment and targeted therapies. J. Hematol. Oncol. 2022 15 1 135 10.1186/s13045‑022‑01349‑6 36115986
    [Google Scholar]
  65. Deng Z. Fan T. Xiao C. Tian H. Zheng Y. Li C. He J. TGF-β signaling in health, disease and therapeutics. Signal Transduct. Target. Ther. 2024 9 1 61 10.1038/s41392‑024‑01764‑w 38514615
    [Google Scholar]
  66. He F. Ru X. Wen T. NRF2, a transcription factor for stress response and beyond. Int. J. Mol. Sci. 2020 21 13 4777 10.3390/ijms21134777 32640524
    [Google Scholar]
  67. Carlson J Price L Deng H 2020 Nrf2 and the Nrf2-interacting network in respiratory inflammation and diseases. Progress in Inflammation Research. Springer 10.1007/978‑3‑030‑44599‑7_3
    [Google Scholar]
  68. Sporn M.B. Liby K.T. NRF2 and cancer: The good, the bad and the importance of context. Nat. Rev. Cancer 2012 12 8 564 571 10.1038/nrc3278 22810811
    [Google Scholar]
  69. Adinew G.M. Messeha S.S. Taka E. Badisa R.B. Soliman K.F.A. Anticancer effects of thymoquinone through the antioxidant activity, upregulation of Nrf2, and downregulation of PD-L1 in triple-negative breast cancer cells. Nutrients 2022 14 22 4787 10.3390/nu14224787 36432484
    [Google Scholar]
  70. Kumar H. Kumar R.M. Bhattacharjee D. Somanna P. Jain V. Role of Nrf2 signaling cascade in breast cancer: Strategies and treatment. Front. Pharmacol. 2022 13 720076 10.3389/fphar.2022.720076 35571115
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206370057250421061226
Loading
/content/journals/acamc/10.2174/0118715206370057250421061226
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: thymoquinone ; pancreatic cancer ; NRF2/HO-1 ; apoptosis ; N. sativa ; TNF-α
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test