Skip to content
2000
Volume 25, Issue 18
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Immunotherapy is becoming an alternative method for gastrointestinal cancers, such as colorectal, gastric, and liver cancers. This field of research focuses on utilizing the immune system to recognize and eliminate cancer cells. One important method is immune checkpoint inhibitors, which enable T cells to recognize and attack tumor cells by releasing the immune system's brakes. Chimeric antigen receptor (CAR) T-cell therapy is another approach that modifies a patient's T cells to express receptors specific to tumor-associated antigens. Some cancer vaccines have demonstrated positive results in clinical trials, particularly colorectal and gastric cancers. Despite progress, challenges exist in immunotherapy for gastrointestinal cancers, such as treatment resistance, limited biomarkers for patient selection, and identifying new targets. In this review, different immunotherapy methods for all types of gastrointestinal cancers will be studied, and the limitations and benefits of each will be discussed in detail. By delving into the various immunotherapy methods, their limitations, and benefits, this review offers valuable insights that could potentially shape the future of gastrointestinal cancer treatment. It not only sheds light on the promising advancements in immune checkpoint inhibitors, CAR T-cell therapy, and cancer vaccines but also highlights the existing challenges that demand further research and innovation.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206369319250402150638
2025-04-10
2025-09-14
Loading full text...

Full text loading...

References

  1. FarinH.F. MosaM.H. NdreshkjanaB. GrebbinB.M. RitterB. MencheC. KennelK.B. ZieglerP.K. SzabóL. BollrathJ. RiederD. MichelsB.E. KressA. BozlarM. DarvishiT. StierS. KurI.M. BankovK. KesselringR. Fichtner-FeiglS. BrüneB. GoetzeT.O. Al-BatranS.E. BrandtsC.H. BechsteinW.O. WildP.J. WeigertA. MüllerS. KnappS. TrajanoskiZ. GretenF.R. Colorectal cancer organoid–stroma biobank allows subtype-specific assessment of individualized therapy responses.Cancer Discov.202313102192221110.1158/2159‑8290.CD‑23‑0050 37489084
    [Google Scholar]
  2. GolshaniG. ZhangY. Advances in immunotherapy for colorectal cancer: A review.Therap. Adv. Gastroenterol.202013175628482091752710.1177/1756284820917527 32536977
    [Google Scholar]
  3. GriersonP. LimK.H. AminM. Immunotherapy in gastrointestinal cancers.J. Gastrointest. Oncol.20178347448410.21037/jgo.2017.05.01 28736635
    [Google Scholar]
  4. ChapelleL.D.A. HampelH. Clinical relevance of microsatellite instability in colorectal cancer.J. Clin. Oncol.201028203380338710.1200/JCO.2009.27.0652 20516444
    [Google Scholar]
  5. ZhuL. LiZ. WangY. ZhangC. LiuY. QuX. Microsatellite instability and survival in gastric cancer: A systematic review and meta-analysis.Mol. Clin. Oncol.20153369970510.3892/mco.2015.506 26137290
    [Google Scholar]
  6. QiC. GongJ. LiJ. LiuD. QinY. GeS. ZhangM. PengZ. ZhouJ. CaoY. ZhangX. LuZ. LuM. YuanJ. WangZ. WangY. PengX. GaoH. LiuZ. WangH. YuanD. XiaoJ. MaH. WangW. LiZ. ShenL. Claudin18.2-specific CAR T cells in gastrointestinal cancers: Phase 1 trial interim results.Nat. Med.20222861189119810.1038/s41591‑022‑01800‑8 35534566
    [Google Scholar]
  7. GhaziB. GhanmiE.A. KandoussiS. GhouzlaniA. BadouA. CAR T-cells for colorectal cancer immunotherapy: Ready to go?Front. Immunol.20221397819510.3389/fimmu.2022.978195 36458008
    [Google Scholar]
  8. QianS. ChenJ. ZhaoY. ZhuX. DaiD. QinL. HongJ. XuY. YangZ. LiY. GuijoI. Jiménez-GalanesS. GuadalajaraH. García-ArranzM. García-OlmoD. ShenJ. Villarejo-CamposP. QianC. Intraperitoneal administration of carcinoembryonic antigen-directed chimeric antigen receptor T cells is a robust delivery route for effective treatment of peritoneal carcinomatosis from colorectal cancer in pre-clinical study.Cytotherapy202426211312510.1016/j.jcyt.2023.10.007 37999667
    [Google Scholar]
  9. XuN. WuZ. PanJ. XuX. WeiQ. CAR-T cell therapy: Advances in digestive system malignant tumors.Mol. Ther. Oncol.202432420087210.1016/j.omton.2024.200872
    [Google Scholar]
  10. MottaR. Cabezas-CamareroS. Torres-MattosC. RiquelmeA. CalleA. FigueroaA. SoteloM.J. Immunotherapy in microsatellite instability metastatic colorectal cancer: Current status and future perspectives.J. Clin. Transl. Res.202174511522 34541365
    [Google Scholar]
  11. GaneshK. StadlerZ.K. CercekA. MendelsohnR.B. ShiaJ. SegalN.H. DiazL.A.Jr Immunotherapy in colorectal cancer: Rationale, challenges and potential.Nat. Rev. Gastroenterol. Hepatol.201916636137510.1038/s41575‑019‑0126‑x 30886395
    [Google Scholar]
  12. WaldmanA.D. FritzJ.M. LenardoM.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice.Nat. Rev. Immunol.2020201165166810.1038/s41577‑020‑0306‑5 32433532
    [Google Scholar]
  13. KaczmarekM. PoznańskaJ. FechnerF. MichalskaN. PaszkowskaS. NapierałaA. MackiewiczA. Cancer vaccine therapeutics: Limitations and effectiveness—A literature review.Cells20231217215910.3390/cells12172159 37681891
    [Google Scholar]
  14. RenD. XiongS. RenY. YangX. ZhaoX. JinJ. XuM. LiangT. GuoL. WengL. Advances in therapeutic cancer vaccines: Harnessing immune adjuvants for enhanced efficacy and future perspectives.Comput. Struct. Biotechnol. J.2024231833184310.1016/j.csbj.2024.04.054 38707540
    [Google Scholar]
  15. ElmusratiA. WangJ. WangC.Y. Tumor microenvironment and immune evasion in head and neck squamous cell carcinoma.Int. J. Oral Sci.20211312410.1038/s41368‑021‑00131‑7 34341329
    [Google Scholar]
  16. MansooriB. MohammadiA. DavudianS. ShirjangS. BaradaranB. The different mechanisms of cancer drug resistance: A brief review.Adv. Pharm. Bull.20177333934810.15171/apb.2017.041 29071215
    [Google Scholar]
  17. ZhaoB. WangL. QiuH. ZhangM. SunL. PengP. YuQ. YuanX. Mechanisms of resistance to anti-EGFR therapy in colorectal cancer.Oncotarget2017833980400010.18632/oncotarget.14012 28002810
    [Google Scholar]
  18. JácomeA.A. MorrisV.K. EngC. The role of immunotherapy in the treatment of anal cancer and future strategies.Curr. Treat. Options Oncol.20222381073108510.1007/s11864‑022‑00939‑3 35666353
    [Google Scholar]
  19. Saúde-CondeR. ParisiA. GiuntaE.F. MeyersM. SclafaniF. The emerging role of immunotherapy in the treatment of anal cancer.Curr. Opin. Pharmacol.20226710230910.1016/j.coph.2022.102309 36334330
    [Google Scholar]
  20. LesmanaC.R.A. MandasariB.K.D. The new era of immunotherapy in bile duct cancer management. In: Immunosuppression; IntechOpen: UK202010.5772/intechopen.94754
    [Google Scholar]
  21. LesmanaC.R.A. MandasariB.K.D. Update of systemic chemotherapy & immunotherapy for bile duct cancers.UKIntechOpen2022
    [Google Scholar]
  22. RizzoA. RicciA.D. BrandiG. Recent advances of immunotherapy for biliary tract cancer.Expert Rev. Gastroenterol. Hepatol.202115552753610.1080/17474124.2021.1853527 33215952
    [Google Scholar]
  23. CanaleM. MontiM. RapposelliI.G. UliviP. SulloF.G. BartoliniG. TiberiE. FrassinetiG.L. Molecular targets and emerging therapies for advanced gallbladder cancer.Cancers20211322567110.3390/cancers13225671 34830826
    [Google Scholar]
  24. FarinhaT.H. DigkliaA. SchizasD. DemartinesN. SchäferM. MantziariS. Immunotherapy for esophageal cancer: State-of-the art in 2021.Cancers202214355410.3390/cancers14030554 35158822
    [Google Scholar]
  25. Al-ShareB. AlloghbiA. HallakA.M.N. UddinH. AzmiA. MohammadR.M. KimS.H. ShieldsA.F. PhilipP.A. Gastrointestinal stromal tumor: A review of current and emerging therapies.Cancer Metastasis Rev.202140262564110.1007/s10555‑021‑09961‑7 33876372
    [Google Scholar]
  26. CasaliP.G. AbecassisN. BauerS. BiaginiR. BielackS. BonvalotS. BoukovinasI. BoveeJ.V.M.G. BrodowiczT. BrotoJ.M. BuonadonnaA. ÁlavaD.E. TosD.A.P. MuroD.X.G. DileoP. ErikssonM. FedenkoA. FerraresiV. FerrariA. FerrariS. FrezzaA.M. GasperoniS. GelderblomH. GilT. GrignaniG. GronchiA. HaasR.L. HannuA. HassanB. HohenbergerP. IsselsR. JoensuuH. JonesR.L. JudsonI. JutteP. KaalS. KasperB. KopeckovaK. KrákorováD.A. CesneL.A. LugowskaI. MerimskyO. MontemurroM. PantaleoM.A. PianaR. PicciP. Piperno-NeumannS. PousaA.L. ReichardtP. RobinsonM.H. RutkowskiP. SafwatA.A. SchöffskiP. SleijferS. StacchiottiS. HallS.K. UnkM. CoevordenV.F. GraafD.V.W. WhelanJ. WardelmannE. ZaikovaO. BlayJ.Y. Gastrointestinal stromal tumours: ESMO–EURACAN clinical practice guidelines for diagnosis, treatment and follow-up.Ann. Oncol.201829Suppl. 4iv68iv7810.1093/annonc/mdy095 29846513
    [Google Scholar]
  27. D’AngeloS.P. MahoneyM.R. TineV.B.A. AtkinsJ. MilhemM.M. JahagirdarB.N. AntonescuC.R. HorvathE. TapW.D. SchwartzG.K. StreicherH. Nivolumab with or without ipilimumab treatment for metastatic sarcoma (Alliance A091401): Two open-label, non-comparative, randomised, phase 2 trials.Lancet Oncol.201819341642610.1016/S1470‑2045(18)30006‑8 29370992
    [Google Scholar]
  28. EphraimR. FraserS. NurgaliK. ApostolopoulosV. Checkpoint markers and tumor microenvironment: What do we know?Cancers20221415378810.3390/cancers14153788 35954452
    [Google Scholar]
  29. JenkinsR.W. BarbieD.A. FlahertyK.T. Mechanisms of resistance to immune checkpoint inhibitors.Br. J. Cancer2018118191610.1038/bjc.2017.434 29319049
    [Google Scholar]
  30. HilmiM. VienotA. RousseauB. NeuzilletC. Immune therapy for liver cancers.Cancers20191217710.3390/cancers12010077 31892230
    [Google Scholar]
  31. KabacaogluD. CiecielskiK.J. RuessD.A. AlgülH. Immune checkpoint inhibition for pancreatic ductal adenocarcinoma: Current limitations and future options.Front. Immunol.20189187810.3389/fimmu.2018.01878 30158932
    [Google Scholar]
  32. LeeH.H. KimI. KimU.K. ChoiS.S. KimT.Y. LeeD. LeeY. LeeJ. JoJ. LeeY.T. LeeH.J. KimS.J. AhnJ.S. Therapeutic effiacy of T cells expressing chimeric antigen receptor derived from a mesothelin-specific scFv in orthotopic human pancreatic cancer animal models.Neoplasia20222429810810.1016/j.neo.2021.12.005 34954452
    [Google Scholar]
  33. JoensuuH. VehtariA. RiihimäkiJ. NishidaT. SteigenS.E. BrabecP. PlankL. NilssonB. CirilliC. BraconiC. BordoniA. MagnussonM.K. LinkeZ. SufliarskyJ. FedericoM. JonassonJ.G. TosD.A.P. RutkowskiP. Risk of recurrence of gastrointestinal stromal tumour after surgery: An analysis of pooled population-based cohorts.Lancet Oncol.201213326527410.1016/S1470‑2045(11)70299‑6 22153892
    [Google Scholar]
  34. ChenG. HanY. ZhangH. TuW. ZhangS. Radiotherapy-induced digestive injury: Diagnosis, treatment and mechanisms.Front. Oncol.20211175797310.3389/fonc.2021.757973 34804953
    [Google Scholar]
  35. IslamM.R. AkashS. RahmanM.M. NowrinF.T. AkterT. ShohagS. RaufA. AljohaniA.S.M. Simal-GandaraJ. Colon cancer and colorectal cancer: Prevention and treatment by potential natural products.Chem. Biol. Interact.202236811017010.1016/j.cbi.2022.110170 36202214
    [Google Scholar]
  36. WengJ. LiS. ZhuZ. LiuQ. ZhangR. YangY. LiX. Exploring immunotherapy in colorectal cancer.J. Hematol. Oncol.20221519510.1186/s13045‑022‑01294‑4 35842707
    [Google Scholar]
  37. QinX. WuF. ChenC. LiQ. Recent advances in CAR-T cells therapy for colorectal cancer.Front. Immunol.20221390413710.3389/fimmu.2022.904137 36238297
    [Google Scholar]
  38. FerrucciP.F. PalaL. ConfortiF. CocorocchioE. Talimogene laherparepvec (T-VEC): An intralesional cancer immunotherapy for advanced melanoma.Cancers2021136138310.3390/cancers13061383 33803762
    [Google Scholar]
  39. PucciniA. BattaglinF. LenzH.J. Management of advanced small bowel cancer.Curr. Treat. Options Oncol.201819126910.1007/s11864‑018‑0592‑3 30397729
    [Google Scholar]
  40. HögnerA. MoehlerM. Immunotherapy in gastric cancer.Curr. Oncol.20222931559157410.3390/curroncol29030131 35323331
    [Google Scholar]
  41. TakeiS. KawazoeA. ShitaraK. The new era of immunotherapy in gastric cancer.Cancers2022144105410.3390/cancers14041054 35205802
    [Google Scholar]
  42. GhadermarziS. LiX. LiM. KurganL. Sequence-derived markers of drug targets and potentially druggable human proteins.Front. Genet.201910107510.3389/fgene.2019.01075 31803227
    [Google Scholar]
  43. KiriiriG.K. NjoguP.M. MwangiA.N. Exploring different approaches to improve the success of drug discovery and development projects: A review.Future J. Pharm. Sci.2020612710.1186/s43094‑020‑00047‑9
    [Google Scholar]
  44. AgoniC. OlotuF.A. RamharackP. SolimanM.E. Druggability and drug-likeness concepts in drug design: Are biomodelling and predictive tools having their say?J. Mol. Model.202026612010.1007/s00894‑020‑04385‑6 32382800
    [Google Scholar]
  45. ReiterJ.G. BarettiM. GeroldJ.M. Makohon-MooreA.P. DaudA. Iacobuzio-DonahueC.A. AzadN.S. KinzlerK.W. NowakM.A. VogelsteinB. An analysis of genetic heterogeneity in untreated cancers.Nat. Rev. Cancer2019191163965010.1038/s41568‑019‑0185‑x 31455892
    [Google Scholar]
  46. NeumeierJ. MeisterG. siRNA specificity: RNAi mechanisms and strategies to reduce off-target effects.Front. Plant Sci.20211152645510.3389/fpls.2020.526455 33584737
    [Google Scholar]
  47. RotteA. Combination of CTLA-4 and PD-1 blockers for treatment of cancer. Journal of experimental & clinical cancer research. CR,2019381255
    [Google Scholar]
  48. SeebacherN.A. StacyA.E. PorterG.M. MerlotA.M. Clinical development of targeted and immune based anti-cancer therapies.J. Exp. Clin. Cancer Res.2019381156
    [Google Scholar]
  49. DuarteH.O. ReisC.A. GomesJ. Insights on ErbB glycosylation – Contributions to precision oncology.Trends Cancer20228644845510.1016/j.trecan.2022.02.003 35260378
    [Google Scholar]
  50. NegriF. BottarelliL. de’AngelisG.L. GnettiL. KRAS: A druggable target in colon cancer patients.Int. J. Mol. Sci.2022238412010.3390/ijms23084120 35456940
    [Google Scholar]
  51. JiaoD. YangS. Overcoming resistance to drugs targeting kras mutation.Innovation20201210003510.1016/j.xinn.2020.100035 32939510
    [Google Scholar]
  52. ZhongS. WayneJ. Targeting STK33: From inhibition to degradation.Future Med. Chem.202214312712910.4155/fmc‑2021‑0224 34605274
    [Google Scholar]
  53. WangG. BaiY. CuiJ. ZongZ. GaoY. ZhengZ. Computer-aided drug design boosts RAS inhibitor discovery.Molecules20222717571010.3390/molecules27175710 36080477
    [Google Scholar]
  54. BlayV. TolaniB. HoS.P. ArkinM.R. High-throughput screening: Today’s biochemical and cell-based approaches.Drug Discov. Today202025101807182110.1016/j.drudis.2020.07.024 32801051
    [Google Scholar]
  55. StockJ.K. JonesN.P. HammondsT. RoffeyJ. DillonC. Addressing the right targets in oncology: Challenges and alternative approaches.SLAS Discov.201520330531710.1177/1087057114564349 25614505
    [Google Scholar]
  56. BrownD.G. WobstH.J. A decade of FDA-approved drugs (2010–2019): Trends and future directions.J. Med. Chem.20216452312233810.1021/acs.jmedchem.0c01516 33617254
    [Google Scholar]
  57. HackmanG.L. CollinsM. LuX. LodiA. DiGiovanniJ. TizianiS. Predicting and quantifying antagonistic effects of natural compounds given with chemotherapeutic agents: Applications for high-throughput screening.Cancers20201212371410.3390/cancers12123714 33322034
    [Google Scholar]
  58. WangH. KaurG. SankinA.I. ChenF. GuanF. ZangX. Immune checkpoint blockade and CAR-T cell therapy in hematologic malignancies.J. Hematol. Oncol.20191215910.1186/s13045‑019‑0746‑1 31186046
    [Google Scholar]
  59. XuZ. WangX. ZengS. RenX. YanY. GongZ. Applying artificial intelligence for cancer immunotherapy.Acta Pharm. Sin. B202111113393340510.1016/j.apsb.2021.02.007 34900525
    [Google Scholar]
  60. SantraD. Oncology informatics, AI, and drug discovery.Cancer Diagnostics and Therapeutics: Current Trends, Challenges, and Future Perspectives. BasuS.K. PandaC.K. GoswamiS. SingaporeSpringer Singapore202245146010.1007/978‑981‑16‑4752‑9_20
    [Google Scholar]
  61. MoghramB.A. NabilE. BadrA. Ab-initio conformational epitope structure prediction using genetic algorithm and SVM for vaccine design.Comput. Methods Programs Biomed.201815316117010.1016/j.cmpb.2017.10.011 29157448
    [Google Scholar]
  62. RajkomarA. DeanJ. KohaneI. Machine learning in medicine.N. Engl. J. Med.2019380141347135810.1056/NEJMra1814259 30943338
    [Google Scholar]
  63. TangX.G. LinK. GuoS.W. RongY. ChenD. ChenZ.S. PingF.F. WangJ.Q. The synergistic effect of ruthenium complex δ-ru1 and doxorubicin in a mouse breast cancer model.Rec. Pat. Antican. Drug Discov.202318217418610.2174/1574892817666220629105543 35770412
    [Google Scholar]
  64. VergatiM. IntriviciC. HuenN-Y. SchlomJ. TsangK.Y. Strategies for cancer vaccine development.J. Biomed. Biotechnol.2010201059643210.1155/2010/596432
    [Google Scholar]
  65. DeMariaP.J. BilusicM. Cancer vaccines.Hematol. Oncol. Clin. North Am.201933219921410.1016/j.hoc.2018.12.001
    [Google Scholar]
  66. LinM.J. Svensson-ArvelundJ. LubitzG.S. MarabelleA. MeleroI. BrownB.D. Cancer vaccines: The next immunotherapy frontier.Nat. Cancer20223891192610.1038/s43018‑022‑00418‑6
    [Google Scholar]
  67. CafriG. GartnerJ.J. ZaksT. HopsonK. LevinN. PariaB.C. ParkhurstM.R. YossefR. LoweryF.J. JafferjiM.S. PrickettT.D. GoffS.L. McGowanC.T. SeitterS. ShindorfM.L. ParikhA. ChataniP.D. RobbinsP.F. RosenbergS.A. mRNA vaccine–induced neoantigen-specific T cell immunity in patients with gastrointestinal cancer.J. Clin. Invest.2020130115976598810.1172/JCI134915 33016924
    [Google Scholar]
  68. SpeetjensF.M. KuppenP.J.K. WeltersM.J.P. EssahsahF. Voet van den BrinkA.M.E.G. LantruaM.G.K. ValentijnA.R.P.M. OostendorpJ. FathersL.M. NijmanH.W. DrijfhoutJ.W. VeldeD.V.C.J.H. MeliefC.J.M. BurgD.V.S.H. Induction of p53-specific immunity by a p53 synthetic long peptide vaccine in patients treated for metastatic colorectal cancer.Clin. Cancer Res.20091531086109510.1158/1078‑0432.CCR‑08‑2227 19188184
    [Google Scholar]
  69. VermorkenJ.B. ClaessenA.M.E. TinterenV.H. GallH.E. EzingaR. MeijerS. ScheperR.J. MeijerC.J.L.M. BloemenaE. RansomJ.H. HannaM.G.Jr PinedoH.M. Active specific immunotherapy for stage II and stage III human colon cancer: A randomised trial.Lancet1999353915034535010.1016/S0140‑6736(98)07186‑4 9950438
    [Google Scholar]
  70. EndoH. SaitoT. KenjoA. HoshinoM. TerashimaM. SatoT. AnazawaT. KimuraT. TsuchiyaT. IrisawaA. OhiraH. HikichiT. TakagiT. GotohM. Phase I trial of preoperative intratumoral injection of immature dendritic cells and OK‐432 for resectable pancreatic cancer patients.J. Hepatobiliary Pancreat. Sci.201219446547510.1007/s00534‑011‑0457‑7 21983893
    [Google Scholar]
  71. ShenT. ZhangY. ZhouS. LinS. ZhangX.B. ZhuG. Nucleic acid immunotherapeutics for cancer.ACS Appl. Bio Mater.2020352838284910.1021/acsabm.0c00101 33681722
    [Google Scholar]
  72. KuwaharaM. SugimotoN. Molecular evolution of functional nucleic acids with chemical modifications.Molecules20101585423544410.3390/molecules15085423 20714306
    [Google Scholar]
  73. LiuJ. MiaoL. SuiJ. HaoY. HuangG. Nanoparticle cancer vaccines: Design considerations and recent advances.Asian J. Pharm. Sci.202015557659010.1016/j.ajps.2019.10.006 33193861
    [Google Scholar]
  74. ChenY. WuK. GuoC. LiuC. HanS. LinT. NingX. ShiR. ShiY. FanD. A novel DNA vaccine containing 4 mimicry epitopes for gastric cancer.Cancer Biol. Ther.20054330831210.4161/cbt.4.3.1502 15876863
    [Google Scholar]
  75. GnjaticS. NishikawaH. JungbluthA.A. GüreA.O. RitterG. JägerE. KnuthA. ChenY.T. OldL.J. NY-ESO-1: Review of an immunogenic tumor antigen.Adv. Cancer Res.20069513010.1016/S0065‑230X(06)95001‑5 16860654
    [Google Scholar]
  76. GnjaticS. AltorkiN.K. TangD.N. TuS.M. KundraV. RitterG. OldL.J. LogothetisC.J. SharmaP. NY-ESO-1 DNA vaccine induces T-cell responses that are suppressed by regulatory T cells.Clin. Cancer Res.20091562130213910.1158/1078‑0432.CCR‑08‑2632 19276258
    [Google Scholar]
  77. StaffC. MozaffariF. HallerB.K. WahrenB. LiljeforsM. A Phase I safety study of plasmid DNA immunization targeting carcinoembryonic antigen in colorectal cancer patients.Vaccine201129396817682210.1016/j.vaccine.2010.12.063 21195077
    [Google Scholar]
  78. MalekshahiV.Z. GoradelH.N. KhomartashS.M. MaleksabetA. KadkhodazadehM. KardarG.A. NegahdariB. CEA plasmid as therapeutic DNA vaccination against colorectal Cancer.Iran. J. Immunol.2019163235245 31552832
    [Google Scholar]
  79. DenapoliP.M.A. ZanettiB.F. SantosD.A.A. MoraesD.J.Z. HanS.W. Preventive DNA vaccination against CEA-expressing tumors with anti-idiotypic scFv6.C4 DNA in CEA-expressing transgenic mice.Cancer Immunol. Immunother.201766333334210.1007/s00262‑016‑1940‑4 27913835
    [Google Scholar]
  80. ZanettiB.F. FerreiraC.P. VasconcelosJ.R.C. HanS.W. Adjuvant properties of IFN-γ and GM-CSF in the scFv6. C4 DNA vaccine against CEA-expressing tumors.Gene Ther.2021301-24150 34108629
    [Google Scholar]
  81. MurwantiR. Denda-NagaiK. SugiuraD. MogushiK. GendlerS.J. IrimuraT. Prevention of inflammation-driven colon carcinogenesis in human MUC1 transgenic mice by vaccination with MUC1 DNA and dendritic cells.Cancers2023156192010.3390/cancers15061920 36980805
    [Google Scholar]
  82. GuoC. ManjiliM.H. SubjeckJ.R. SarkarD. FisherP.B. WangX.Y. Therapeutic cancer vaccines: Past, present, and future.Adv. Cancer Res.201311942147510.1016/B978‑0‑12‑407190‑2.00007‑1 23870514
    [Google Scholar]
  83. MelnickK. DastmalchiF. MitchellD. RahmanM. SayourE.J. Contemporary RNA therapeutics for glioblastoma.Neuromolecular Med.202224181210.1007/s12017‑021‑08669‑9 34101090
    [Google Scholar]
  84. UlmerJ.B. MasonP.W. GeallA. MandlC.W. RNA-based vaccines.Vaccine201230304414441810.1016/j.vaccine.2012.04.060 22546329
    [Google Scholar]
  85. EisenächerK. SteinbergC. ReindlW. KrugA. The role of viral nucleic acid recognition in dendritic cells for innate and adaptive antiviral immunity.Immunobiology20082129-1070171410.1016/j.imbio.2007.09.007 18086372
    [Google Scholar]
  86. ZhaoQ. CaoL. GuanL. BieL. WangS. XieB. ChenX. ShenX. CaoF. Immunotherapy for gastric cancer: Dilemmas and prospect.Brief. Funct. Genomics201918210711210.1093/bfgp/ely019 30388190
    [Google Scholar]
  87. CafriG. GartnerJ.J. HopsonK. MeehanR.S. ZaksT.Z. RobbinsP. Immunogenicity and tolerability of personalized mRNA vaccine mRNA-4650 encoding defined neoantigens expressed by the autologous cancer.Amer. Soc. Clin. Oncol.20193715264310.1200/JCO.2019.37.15_suppl.2643
    [Google Scholar]
  88. BurrisH.A. PatelM.R. ChoD.C. ClarkeJ.M. GutierrezM. ZaksT.Z. A phase I multicenter study to assess the safety, tolerability, and immunogenicity of mRNA-4157 alone in patients with resected solid tumors and in combination with pembrolizumab in patients with unresectable solid tumors.Amer. Soc. Clin. Oncol.201937151910.1200/JCO.2019.37.15_suppl.2523
    [Google Scholar]
  89. HoseinAN. DouganSK. AguirreAJ. MaitraA Translational advances in pancreatic ductal adenocarcinoma therapy.Nat. Cancer20223327228610.1038/s43018‑022‑00349‑2
    [Google Scholar]
  90. ElsheikhR. MakramA.M. HuyN.T. Therapeutic cancer vaccines and their future implications.Vaccines202311366010.3390/vaccines11030660
    [Google Scholar]
  91. ShahnazariM. SamadiP. PourjafarM. JalaliA. Therapeutic vaccines for colorectal cancer: The progress and future prospect.Int. Immunopharmacol.20208810694410.1016/j.intimp.2020.106944 33182032
    [Google Scholar]
  92. LakshmananV.K. JindalS. PackirisamyG. OjhaS. LianS. KaushikA. AlzarooniA.I.M.A. MetwallyY.A.F. ThyagarajanS.P. JungD.Y. ChouaibS. Nanomedicine-based cancer immunotherapy: Recent trends and future perspectives.Cancer Gene Ther.202128991192310.1038/s41417‑021‑00299‑4 33558704
    [Google Scholar]
  93. SmithD.M. SimonJ.K. BakerJ.R.Jr Applications of nanotechnology for immunology.Nat. Rev. Immunol.201313859260510.1038/nri3488 23883969
    [Google Scholar]
  94. GoldbergM.S. Improving cancer immunotherapy through nanotechnology.Nat. Rev. Cancer2019191058760210.1038/s41568‑019‑0186‑9 31492927
    [Google Scholar]
  95. ShaoK. SinghaS. Clemente-CasaresX. TsaiS. YangY. SantamariaP. Nanoparticle-based immunotherapy for cancer.ACS Nano201591163010.1021/nn5062029 25469470
    [Google Scholar]
  96. MarianiC.L. RajonD. BovaF.J. StreitW.J. Nonspecific immunotherapy with intratumoral lipopolysaccharide and zymosan A but not GM-CSF leads to an effective anti-tumor response in subcutaneous RG-2 gliomas.J. Neurooncol.200785323124010.1007/s11060‑007‑9415‑2 17568998
    [Google Scholar]
  97. WaldmannováE. CaisováV. FáberováJ. SváčkováP. KovářováM. SváčkováD. KumžákováZ. JačkováA. VácováN. NedbalováP. HorkáM. KopeckýJ. ŽenkaJ. The use of Zymosan A and bacteria anchored to tumor cells for effective cancer immunotherapy: B16-F10 murine melanoma model.Int. Immunopharmacol.20163929530610.1016/j.intimp.2016.08.004 27505858
    [Google Scholar]
  98. ZhuX. LiS. Nanomaterials in tumor immunotherapy: New strategies and challenges.Mol. Cancer20232219410.1186/s12943‑023‑01797‑9 37312116
    [Google Scholar]
  99. XieY.Q. WeiL. TangL. Immunoengineering with biomaterials for enhanced cancer immunotherapy.Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.2018104e150610.1002/wnan.1506 29333729
    [Google Scholar]
  100. HeC. DuanX. GuoN. ChanC. PoonC. WeichselbaumR.R. LinW. Core-shell nanoscale coordination polymers combine chemotherapy and photodynamic therapy to potentiate checkpoint blockade cancer immunotherapy.Nat. Commun.2016711249910.1038/ncomms12499 27530650
    [Google Scholar]
  101. TianH. ZhangT. QinS. HuangZ. ZhouL. ShiJ. NiceE.C. XieN. HuangC. ShenZ. Enhancing the therapeutic efficacy of nanoparticles for cancer treatment using versatile targeted strategies.J. Hematol. Oncol.202215113210.1186/s13045‑022‑01320‑5 36096856
    [Google Scholar]
  102. DeCarliK. StrosbergJ. AlmhannaK. Immune checkpoint inhibitors for gastrointestinal malignancies: An update.Cancers20221417420110.3390/cancers14174201 36077740
    [Google Scholar]
  103. NooriM. Jafari-RaddaniF. Davoodi-MoghaddamZ. DelshadM. SafiriS. BashashD. Immune checkpoint inhibitors in gastrointestinal malignancies: An umbrella review.Cancer Cell Int.20242411010.1186/s12935‑023‑03183‑3 38183112
    [Google Scholar]
  104. NaimiA. MohammedR.N. RajiA. ChupraditS. YumashevA.V. SuksatanW. ShalabyM.N. ThangaveluL. KamravaS. ShomaliN. SohrabiA.D. AdiliA. Noroozi-AghidehA. RazeghianE. Tumor immunotherapies by immune checkpoint inhibitors (ICIs); the pros and cons.Cell Commun. Signal.20222014410.1186/s12964‑022‑00854‑y 35392976
    [Google Scholar]
  105. AlsaabH.O. SauS. AlzhraniR. TatipartiK. BhiseK. KashawS.K. IyerA.K. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: Mechanism, combinations, and clinical outcome.Front. Pharmacol.2017856110.3389/fphar.2017.00561 28878676
    [Google Scholar]
  106. AmeliMojarad M.; AmeliMojarad, M.; Cui, X. Prospective role of PD-1/PD-L1 immune checkpoint inhibitors in GI cancer.Pathol. Res. Pract.202324415433810.1016/j.prp.2023.154338 36905697
    [Google Scholar]
  107. PardollD.M. The blockade of immune checkpoints in cancer immunotherapy.Nat. Rev. Cancer201212425226410.1038/nrc3239 22437870
    [Google Scholar]
  108. SunJ. ZhengY. MamunM.A.A. LiX. ChenX. GaoY. Research progress of PD-1/PD-L1 immunotherapy in gastrointestinal tumors.Biomed. Pharmacother.202012911050410.1016/j.biopha.2020.110504 32768978
    [Google Scholar]
  109. VoutsadakisI.A. PD-1 inhibitors monotherapy in hepatocellular carcinoma: Meta-analysis and systematic review.Hepatobiliary Pancreat. Dis. Int.201918650551010.1016/j.hbpd.2019.09.007 31551142
    [Google Scholar]
  110. LethS. Jensen-FangelS. Programmed cell death protein 1 (PD‐1) in infection.Acta Pathol. Microbiol. Scand. Suppl.2020128217718710.1111/apm.13045 32304591
    [Google Scholar]
  111. GuoX. ShengX. Drug discovery of PD-L1 inhibitor Atezolizumab. Highlights in Science.Eng. Technology.20228660667
    [Google Scholar]
  112. GaoY. ShiS. MaW. ChenJ. CaiY. GeL. LiL. WuJ. TianJ. Bibliometric analysis of global research on PD-1 and PD-L1 in the field of cancer.Int. Immunopharmacol.20197237438410.1016/j.intimp.2019.03.045 31030093
    [Google Scholar]
  113. GremeseE. AliverniniS. FerraccioliE.S. FerraccioliG. Checkpoint inhibitors (CPI) and autoimmune chronic inflammatory diseases (ACIDs): Tolerance and loss of tolerance in the occurrence of immuno-rheumatologic manifestations.Clin. Immunol.202021410839510.1016/j.clim.2020.108395 32240819
    [Google Scholar]
  114. KoA.H. KimK.P. SivekeJ.T. LopezC.D. LacyJ. O’ReillyE.M. MacarullaT. ManjiG.A. LeeJ. AjaniJ. MaquedaA.M. RhaS.Y. LauJ. Al-SakaffN. AllenS. LuD. ShemeshC.S. GanX. ChaE. OhD.Y. Atezolizumab plus PEGPH20 versus chemotherapy in advanced pancreatic ductal adenocarcinoma and gastric cancer: MORPHEUS phase Ib/II umbrella randomized study platform.Oncologist2023286553e47210.1093/oncolo/oyad022 36940261
    [Google Scholar]
  115. NagataY. YamamotoS. KatoK. Immune checkpoint inhibitors in esophageal cancer: Clinical development and perspectives.Hum. Vaccin. Immunother.2022186214317710.1080/21645515.2022.2143177 36375821
    [Google Scholar]
  116. HackS.P. ZhuA.X. Atezolizumab: An investigational agent for the treatment of biliary tract cancer.Expert Opin. Investig. Drugs202130101007101510.1080/13543784.2021.1974838 34459336
    [Google Scholar]
  117. OnumaA.E. ZhangH. HuangH. WilliamsT.M. NoonanA. TsungA. Immune checkpoint inhibitors in hepatocellular cancer: Current understanding on mechanisms of resistance and biomarkers of response to treatment.Gene Expr.2020201536510.3727/105221620X15880179864121 32340652
    [Google Scholar]
  118. SatohT. KangY.K. ChaoY. RyuM.H. KatoK. ChungC.H. ChenJ.S. MuroK. KangK.W. YehK.H. YoshikawaT. OhS.C. BaiL.Y. TamuraT. LeeK.W. HamamotoY. KimJ.G. ChinK. OhD.Y. MinashiK. ChoJ.Y. TsudaM. TanimotoM. ChenL.T. BokuN. Exploratory subgroup analysis of patients with prior trastuzumab use in the attraction-2 trial: A randomized phase III clinical trial investigating the efficacy and safety of nivolumab in patients with advanced gastric/gastroesophageal junction cancer.Gastric Cancer202023114315310.1007/s10120‑019‑00970‑8 31087200
    [Google Scholar]
  119. SatoY. OkamotoK. KidaY. MitsuiY. KawanoY. SogabeM. MiyamotoH. TakayamaT. Overview of chemotherapy for gastric cancer.J. Clin. Med.2023124133610.3390/jcm12041336 36835872
    [Google Scholar]
  120. JanjigianY.Y. MaronS.B. ChatilaW.K. MillangB. ChavanS.S. AltermanC. ChouJ.F. SegalM.F. SimmonsM.Z. MomtazP. ShcherbaM. KuG.Y. ZervoudakisA. WonE.S. KelsenD.P. IlsonD.H. NagyR.J. LanmanR.B. PtashkinR.N. DonoghueM.T.A. CapanuM. TaylorB.S. SolitD.B. SchultzN. HechtmanJ.F. First-line pembrolizumab and trastuzumab in HER2-positive oesophageal, gastric, or gastro-oesophageal junction cancer: An open-label, single-arm, phase 2 trial.Lancet Oncol.202021682183110.1016/S1470‑2045(20)30169‑8 32437664
    [Google Scholar]
  121. MullerS. LaiV.W. AdusumilliP.S. DesmeulesP. FrosinaD. JungbluthA. NiA. EguchiT. TravisW.D. LadanyiM. ZaudererM.G. SauterJ.L. V-domain Ig-containing suppressor of T-cell activation (VISTA), a potentially targetable immune checkpoint molecule, is highly expressed in epithelioid malignant pleural mesothelioma.Mod. Pathol.202033230331110.1038/s41379‑019‑0364‑z 31537897
    [Google Scholar]
  122. LinY.S. HsiehS.J. TsaiK.C. ChengM.H. YangT.W. LinT.Y. ChangF.L. ChiangC.W. ChenW.C. HuangH.T. LeeY.C. Blockade effect of avian-derived anti-VISTA antibodies on immunosuppressive responses.All Life202215147948910.1080/26895293.2022.2063951
    [Google Scholar]
  123. YumJ.E.I. HongY.K. Terminating cancer by blocking VISTA as a novel immunotherapy: Hasta la vista, baby.Front. Oncol.20211165848810.3389/fonc.2021.658488 33937071
    [Google Scholar]
  124. ScottF. WichmannC. BurvenichI. McDonaldA. GuoN. RigopoulosA. 324 Preclinical evaluation of anti-VISTA antibody CI-8993 in a syngeneic huVISTA-KI model. J. ImmunoTher.Can.20219Suppl. 2A349A34910.1136/jitc‑2021‑SITC2021.324
    [Google Scholar]
  125. ZhaoX. JiangY. LiuC. HouM. WangH. FuJ. Organoid technology and clinical applications in digestive system cancer.Engineering2022912313010.1016/j.eng.2021.04.017
    [Google Scholar]
  126. NguyenR. BaeS.D.W. ZhouG. ReadS.A. AhlenstielG. GeorgeJ. QiaoL. Application of organoids in translational research of human diseases with a particular focus on gastrointestinal cancers.Biochim. Biophys. Acta Rev. Cancer20201873218835010.1016/j.bbcan.2020.188350 32007597
    [Google Scholar]
  127. MiaoX. WangC. ChaiC. TangH. HuJ. ZhaoZ. LuoW. ZhangH. ZhuK. ZhouW. XuH. Establishment of gastric cancer organoid and its application in individualized therapy.Oncol. Lett.202224644710.3892/ol.2022.13567 36420067
    [Google Scholar]
  128. SeidlitzT. StangeD.E. Gastrointestinal cancer organoids—applications in basic and translational cancer research.Exp. Mol. Med.202153101459147010.1038/s12276‑021‑00654‑3 34663939
    [Google Scholar]
  129. TuvesonD. CleversH. Cancer modeling meets human organoid technology.Science2019364644495295510.1126/science.aaw6985 31171691
    [Google Scholar]
  130. SatoT. VriesR.G. SnippertH.J. WeteringD.V.M. BarkerN. StangeD.E. EsV.J.H. AboA. KujalaP. PetersP.J. CleversH. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche.Nature2009459724426226510.1038/nature07935 19329995
    [Google Scholar]
  131. LuoX. FongE.L.S. ZhuC. LinQ.X.X. XiongM. LiA. LiT. BenoukrafT. YuH. LiuS. Hydrogel-based colorectal cancer organoid co-culture models.Acta Biomater.202113246147210.1016/j.actbio.2020.12.037 33388439
    [Google Scholar]
  132. CleversH. Modeling development and disease with organoids.Cell201616571586159710.1016/j.cell.2016.05.082 27315476
    [Google Scholar]
  133. McCrackenK.W. WellsJ.M. Mechanisms of embryonic stomach development.Semin. Cell Dev. Biol.201766364210.1016/j.semcdb.2017.02.004 28238948
    [Google Scholar]
  134. HuchM. GehartH. BoxtelV.R. HamerK. BlokzijlF. VerstegenM.M.A. EllisE. WenumV.M. FuchsS.A. LigtD.J. WeteringD.V.M. SasakiN. BoersS.J. KempermanH. JongeD.J. IjzermansJ.N.M. NieuwenhuisE.E.S. HoekstraR. StromS. VriesR.R.G. LaanD.V.L.J.W. CuppenE. CleversH. Long-term culture of genome-stable bipotent stem cells from adult human liver.Cell20151601-229931210.1016/j.cell.2014.11.050 25533785
    [Google Scholar]
  135. HuchM. BonfantiP. BojS.F. SatoT. LoomansC.J.M. WeteringD.V.M. SojoodiM. LiV.S.W. SchuijersJ. GracaninA. RingnaldaF. BegthelH. HamerK. MulderJ. EsV.J.H. KoningD.E. VriesR.G.J. HeimbergH. CleversH. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis.EMBO J.201332202708272110.1038/emboj.2013.204 24045232
    [Google Scholar]
  136. DuttaD. CleversH. Organoid culture systems to study host–pathogen interactions.Curr. Opin. Immunol.201748152210.1016/j.coi.2017.07.012 28756233
    [Google Scholar]
  137. IdowuS. BertrandP.P. WalduckA.K. Gastric organoids: Advancing the study of H. pylori pathogenesis and inflammation.Helicobacter2022273e1289110.1111/hel.12891 35384141
    [Google Scholar]
  138. YukiK. ChengN. NakanoM. KuoC.J. Organoid models of tumor immunology.Trends Immunol.202041865266410.1016/j.it.2020.06.010 32654925
    [Google Scholar]
  139. SunC.P. LanH.R. FangX.L. YangX.Y. JinK.T. Organoid models for precision cancer immunotherapy.Front. Immunol.20221377046510.3389/fimmu.2022.770465 35450073
    [Google Scholar]
  140. ZhouZ. JeughtD.V.K. LiY. SharmaS. YuT. MoulanaI. LiuS. WanJ. TerritoP.R. OpyrchalM. ZhangX. WanG. LuX.A. T cell‐engaging tumor organoid platform for pancreatic cancer immunotherapy.Adv. Sci.20231023230054810.1002/advs.202300548 37271874
    [Google Scholar]
  141. ChoiD. Gonzalez‐SuarezA.M. DumbravaM.G. MedlynM. Hoyos‐VegaD.J.M. CichockiF. Microfluidic organoid cultures derived from pancreatic cancer biopsies for personalized testing of chemotherapy and immunotherapy.Adv. Sci.20231152303088 38018486
    [Google Scholar]
  142. HaanenJ.B.A.G. CarbonnelF. RobertC. KerrK.M. PetersS. LarkinJ. JordanK. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up.Ann. Oncol.201728iv119iv14210.1093/annonc/mdx225 28881921
    [Google Scholar]
  143. FerreriC.J. BhutaniM. Mechanisms and management of CAR T toxicity.Front. Oncol.202414139649010.3389/fonc.2024.1396490 38835382
    [Google Scholar]
  144. KawishS.M. HillesA.R. SharmaS. AlamM. AlimujiangK. IqbalZ. beg, S.; Mahmood, S.; Mirza, M.A. Recent advancements in the cancer vaccines: A review.J. Drug Deliv. Sci. Technol.202410210642210.1016/j.jddst.2024.106422
    [Google Scholar]
  145. PuzanovI. DiabA. AbdallahK. BinghamC.O.III BrogdonC. DaduR. HamadL. KimS. LacoutureM.E. LeBoeufN.R. LenihanD. OnofreiC. ShannonV. SharmaR. SilkA.W. SkondraD. Suarez-AlmazorM.E. WangY. WileyK. KaufmanH.L. ErnstoffM.S. Managing toxicities associated with immune checkpoint inhibitors: Consensus recommendations from the society for immunotherapy of cancer (SITC) toxicity management working group.J. Immunother. Cancer2017519510.1186/s40425‑017‑0300‑z 29162153
    [Google Scholar]
  146. MitreaD.A. FroicuE.M. PrenenH. GambacortaM.A. SpanP.N. PoortmansP. Combining immunotherapy and radiation therapy in gastrointestinal cancers: A review.Crit. Rev. Oncol. Hematol.202419910438110.1016/j.critrevonc.2024.104381 38735504
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206369319250402150638
Loading
/content/journals/acamc/10.2174/0118715206369319250402150638
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test