Skip to content
2000
Volume 25, Issue 18
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

The Src Homology 2 (SH2) domain, the most conserved region of STAT5a/b (aa 573–712), is crucial for receptor-specific recruitment and STAT5 dimerization, making it a therapeutic target in prostate cancer (PCa).

Objectives

This study explored the SH2 domain of STAT5a and carried out the identification of natural STAT5a inhibitors.

Methods

Using template-based homology modeling, we constructed the structure of human STAT5a (VP1P) and compared it with its 3D crystal of the STAT5a protein obtained from the RCSB database and the model generated by the AlphaFold database. In this study, we carried out molecular docking studies using AutoDock Vina on the top 500 natural compounds identified through a pharmacophore search of the ZINC database using ZINCPharmer. Furthermore, the top ten compounds with the highest binding energies were evaluated for their drug-likeness and ADMET properties using SWISS ADME and ProTox-II, followed by 100 ns molecular dynamics (MD) simulations using the Desmond module of the Schrodinger suite.

Results

Docking studies revealed Pedunculagin (-10.5 kcal/mol), Folic acid (-10.1 kcal/mol), Chebulinic acid (-10.0 kcal/mol), Chebulagic acid (-9.8 kcal/mol), and Oleandrin (-9.8 kcal/mol) as the top candidates, compared to the STAT5 inhibitor (Phase-II Clinical Trial) (-8.5 kcal/mol). ADMET analysis confirmed their safety profiles. MD simulations showed stable protein-ligand complexes, with all compounds interacting with the conserved Arg638 residue at the active site, similar to the STAT5 inhibitor.

Conclusion

Pedunculagin demonstrated the strongest binding energy and stability, making it a promising candidate for further development as a novel lead compound to disrupt STAT5a/b dimerization in PCa therapy.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206367609250329195533
2025-04-09
2025-09-14
Loading full text...

Full text loading...

References

  1. Cancer Facts and Figures.USAAmerican Cancer Society20231012
    [Google Scholar]
  2. SathishkumarK. ChaturvediM. DasP. StephenS. MathurP. Cancer incidence estimates for 2022 & projection for 2025.Indian J. Med. Res.20221564&559860710.4103/ijmr.ijmr_1821_22 36510887
    [Google Scholar]
  3. LiuS. HuY. LiuF. JiangY. WangH. WuX. HuD. Identifying key genes as progression indicators of prostate cancer with castration resistance based on dynamic network biomarker algorithm and weighted gene correlation network analysis.Biomedicines2024129215710.3390/biomedicines12092157 39335669
    [Google Scholar]
  4. LiH. ZhangY. GlassA. ZellwegerT. GehanE. BubendorfL. GelmannE.P. NevalainenM.T. Activation of signal transducer and activator of transcription-5 in prostate cancer predicts early recurrence.Clin. Cancer Res.200511165863586810.1158/1078‑0432.CCR‑05‑0562 16115927
    [Google Scholar]
  5. AhonenT.J. XieJ. LeBaronM.J. ZhuJ. NurmiM. AlanenK. RuiH. NevalainenM.T. Inhibition of transcription factor Stat5 induces cell death of human prostate cancer cells.J. Biol. Chem.200327829272872729210.1074/jbc.M304307200 12719422
    [Google Scholar]
  6. TanS.H. DagvadorjA. ShenF. GuL. LiaoZ. AbdulghaniJ. ZhangY. GelmannE.P. ZellwegerT. CuligZ. VisakorpiT. BubendorfL. KirkenR.A. KarrasJ. NevalainenM.T. Transcription factor Stat5 synergizes with androgen receptor in prostate cancer cells.Cancer Res.200868123624810.1158/0008‑5472.CAN‑07‑2972 18172316
    [Google Scholar]
  7. YangT. ChiY. Wang, X PRL-mediated STAT5B/ARRB2 pathway promotes the progression of prostate cancer through the activation of MAPK signaling.Cell Death Dis.202415114
    [Google Scholar]
  8. HalimC.E. DengS. OngM.S. Involvement of STAT5 in oncogenesis.Biomed.20208931610.3390/biomedicines8090316
    [Google Scholar]
  9. WeaverA.M. SilvaC.M. Signal transducer and activator of transcription 5b: A new target of breast tumor kinase/protein tyrosine kinase 6.Breast Cancer Res.2007961010.1186/bcr1794 17997837
    [Google Scholar]
  10. FurqanM. AkinleyeA. MukhiN. MittalV. ChenY. LiuD. STAT inhibitors for cancer therapy.J. Hematol. Oncol.2013619010.1186/1756‑8722‑6‑90 24308725
    [Google Scholar]
  11. YuH. JoveR. The STATs of cancer — new molecular targets come of age.Nat. Rev. Cancer2004429710510.1038/nrc1275 14964307
    [Google Scholar]
  12. Catlett-FalconeR. LandowskiT.H. OshiroM.M. TurksonJ. LevitzkiA. SavinoR. CilibertoG. MoscinskiL. Fernández-LunaJ.L. NuñezG. DaltonW.S. JoveR. Constitutive activation of Stat3 signaling confers resistance to apoptosis in human U266 myeloma cells.Immunity199910110511510.1016/S1074‑7613(00)80011‑4 10023775
    [Google Scholar]
  13. FerbeyreG. MorigglR. The role of Stat5 transcription factors as tumor suppressors or oncogenes.Biochim. Biophys. Acta201118151104114 20969928
    [Google Scholar]
  14. VogelsteinB. KinzlerK.W. Cancer genes and the pathways they control.Nat. Med.200410878979910.1038/nm1087 15286780
    [Google Scholar]
  15. KohalR. BishtP. GuptaG.D. VermaS.K. Targeting JAK2/STAT3 for the treatment of cancer: A review on recent advancements in molecular development using structural analysis and SAR investigations.Bioorg. Chem.202414310709510.1016/j.bioorg.2023.107095 38211548
    [Google Scholar]
  16. NouriZ. FakhriS. NouriK. Targeting multiple signaling pathways in cancer: The rutin therapeutic approach.Cancers20201282276
    [Google Scholar]
  17. JillN. BhootraS. KannanthodiS. ShanmugamG. RakshitS. RajakR. ThakkarV. SarkarK. Interplay between signal transducers and activators of transcription (STAT) proteins and cancer: Involvement, therapeutic and prognostic perspective.Clin. Exp. Med.20232384323433910.1007/s10238‑023‑01198‑8 37775649
    [Google Scholar]
  18. GüranŞ. ÇobanZ.D. GündeşliH. Uptake of high-dose folic acid decreases cell viability and proliferation via JAK/STAT pathway in human prostate cancer cells.Gülhane Tip Derg.20236511610.4274/gulhane.galenos.2022.48343
    [Google Scholar]
  19. LiJ. TangB. MiaoY. LiG. SunZ. Targeting of STAT5 using the small molecule topotecan hydrochloride suppresses acute myeloid leukemia progression.Oncol. Rep.202350620810.3892/or.2023.8645 37830151
    [Google Scholar]
  20. AldosariS. EgbunaC. AlbadraniH. Multi-fold computational analysis to explore JAK2 and STAT5 potential inhibitors for modulation of cancer.J. Biol. Regul. Homeost. Agents202363616374
    [Google Scholar]
  21. WarschW. GrundschoberE. SexlV. Adding a new facet to STAT5 in CML: Multitasking for leukemic cells.Cell Cycle201312121813181410.4161/cc.25116 23708512
    [Google Scholar]
  22. MüllerJ. SperlB. ReindlW. KiesslingA. BergT. Discovery of chromone-based inhibitors of the transcription factor STAT5.ChemBioChem20089572372710.1002/cbic.200700701 18247434
    [Google Scholar]
  23. SharmaA. DubeyR. AsatiV. BawejaG.S. GuptaS. AsatiV. Assessment of structural and activity-related contributions of various PIM-1 kinase inhibitors in the treatment of leukemia and prostate cancer.Mol. Divers.202413310.1007/s11030‑023‑10795‑4 38642309
    [Google Scholar]
  24. NatarajanK. Müller-KlieserD. RubnerS. BergT. Stafia-1: A STAT5a-selective inhibitor developed via docking-based screening of in silico o-phosphorylated fragments.Chemistry202026114815410.1002/chem.201904147 31503360
    [Google Scholar]
  25. LvY. MiP. BabonJ.J. FanG. QiJ. CaoL. LangJ. ZhangJ. WangF. KobeB. Small molecule drug discovery targeting the JAK-STAT pathway.Pharmacol. Res.202420410721710.1016/j.phrs.2024.107217 38777110
    [Google Scholar]
  26. WangW. McDonaldL.M.C. HariprasadR. Oncogenic STAT transcription factors as targets for cancer therapy: Innovative strategies and clinical translation.Cancers20241671387
    [Google Scholar]
  27. MortlockR.D. GeorgiaS.K. FinleyS.D. Dynamic regulation of JAK-STAT signaling through the prolactin receptor predicted by computational modeling.Cell. Mol. Bioeng.2021141153010.1007/s12195‑020‑00647‑8 33633812
    [Google Scholar]
  28. MiklossyG. HilliardT.S. TurksonJ. Therapeutic modulators of STAT signalling for human diseases.Nat. Rev. Drug Discov.201312861162910.1038/nrd4088 23903221
    [Google Scholar]
  29. NelsonE.A. WalkerS.R. WeisbergE. Bar-NatanM. BarrettR. GashinL.B. TerrellS. KlitgaardJ.L. SantoL. AddorioM.R. EbertB.L. GriffinJ.D. FrankD.A. The STAT5 inhibitor pimozide decreases survival of chronic myelogenous leukemia cells resistant to kinase inhibitors.Blood2011117123421342910.1182/blood‑2009‑11‑255232 21233313
    [Google Scholar]
  30. NelsonE.A. WalkerS.R. XiangM. WeisbergE. Bar-NatanM. BarrettR. LiuS. KharbandaS. ChristieA.L. NicolaisM. GriffinJ.D. StoneR.M. KungA.L. FrankD.A. The STAT5 inhibitor pimozide displays efficacy in models of acute myelogenous leukemia driven by FLT3 mutations.Genes Cancer201237-850351110.1177/1947601912466555 23264850
    [Google Scholar]
  31. NamS. ScutoA. YangF. ChenW. ParkS. YooH.S. KonigH. BhatiaR. ChengX. MerzK.H. EisenbrandG. JoveR. Indirubin derivatives induce apoptosis of chronic myelogenous leukemia cells involving inhibition of Stat5 signaling.Mol. Oncol.20126327628310.1016/j.molonc.2012.02.002 22387217
    [Google Scholar]
  32. MarantoC. UdhaneV. JiaJ. Prospects for clinical development of stat5 inhibitor IST5-002: High transcriptomic specificity in prostate cancer and low toxicity in vivo.Cancers202012113412
    [Google Scholar]
  33. ElumalaiN. BergA. RubnerS. BlechschmidtL. SongC. NatarajanK. MatysikJ. BergT. Rational development of Stafib-2: A selective, nanomolar inhibitor of the transcription factor STAT5b.Sci. Rep.20177181910.1038/s41598‑017‑00920‑3 28400581
    [Google Scholar]
  34. CumaraswamyA.A. LewisA.M. GeletuM. TodicA. DiazD.B. ChengX.R. BrownC.E. LaisterR.C. MuenchD. KermanK. GrimesH.L. MindenM.D. GunningP.T. Nanomolar-potency small molecule inhibitor of STAT5 protein.ACS Med. Chem. Lett.20145111202120610.1021/ml500165r 25419444
    [Google Scholar]
  35. BonoA. MonicaL.G. AlamiaF. LauriaA. MartoranaA. A novel in silico approach for identifying multi-target JAK/STAT inhibitors as anticancer agents.J. Mol. Graph. Model.202513510891310.1016/j.jmgm.2024.108913 39615248
    [Google Scholar]
  36. PageB.D.G. KhouryH. LaisterR.C. FletcherS. VellozoM. ManzoliA. YueP. TurksonJ. MindenM.D. GunningP.T. Small molecule STAT5-SH2 domain inhibitors exhibit potent antileukemia activity.J. Med. Chem.20125531047105510.1021/jm200720n 22148584
    [Google Scholar]
  37. MahataS. BeheraS.K. KumarS. SahooP.K. SarkarS. FazilM.H.U.T. NasareV.D. In-silico and in-vitro investigation of STAT3-PIM1 heterodimeric complex: Its mechanism and inhibition by curcumin for cancer therapeutics.Int. J. Biol. Macromol.202220835636610.1016/j.ijbiomac.2022.03.137 35346675
    [Google Scholar]
  38. LiaoZ. LutzJ. NevalainenM.T. Transcription factor Stat5a/b as a therapeutic target protein for prostate cancer.Int. J. Biochem. Cell Biol.201042186192
    [Google Scholar]
  39. DagvadorjA. KirkenR.A. LeibyB. KarrasJ. NevalainenM.T. Transcription factor signal transducer and activator of transcription 5 promotes growth of human prostate cancer cells in vivo.Clin. Cancer Res.20081451317132410.1158/1078‑0432.CCR‑07‑2024 18316550
    [Google Scholar]
  40. SawyerT.K. Src homology-2 domains: Structure, mechanisms, and drug discovery.Biopolymers1998473243261
    [Google Scholar]
  41. SheinermanF.B. Al-LazikaniB. HonigB. Sequence, structure and energetic determinants of phosphopeptide selectivity of SH2 domains.J. Mol. Biol.2003334482384110.1016/j.jmb.2003.09.075 14636606
    [Google Scholar]
  42. DiopA. SantorelliD. MalagrinòF. SH2 domains: Folding, binding and therapeutical approaches.J. Mol. Sci.2022232415944
    [Google Scholar]
  43. ChenX. VinkemeierU. ZhaoY. JeruzalmiD. DarnellJ.E.Jr KuriyanJ. Crystal structure of a tyrosine phosphorylated STAT-1 dimer bound to DNA.Cell199893582783910.1016/S0092‑8674(00)81443‑9 9630226
    [Google Scholar]
  44. ShuaiK. ZiemieckiA. WilksA.F. Polypeptide signalling to the nucleus through tyrosine phosphorylation of Jak and Stat proteins.Nature19933666455580583
    [Google Scholar]
  45. DongZ. GuoH. SunJ. LiH. YangX. XieW. Identification of novel paralytic shellfish toxin binding protein via homology modeling and molecular docking.Toxicon2022211616910.1016/j.toxicon.2022.03.007 35314198
    [Google Scholar]
  46. BabuS. NagarajanS.K. SathishS. NegiV.S. SohnH. MadhavanT. Identification of potent and selective JAK1 lead compounds through ligand-based drug design approaches.Front. Pharmacol.20221383736910.3389/fphar.2022.837369 35529449
    [Google Scholar]
  47. AgrawalR. JainP. DikshitN.S. Ligand-based pharmacophore detection, screening of potential gliptins and docking studies to get effective antidiabetic agents.Comb. Chem. High Throughput Screen.2012151084987610.2174/138620712803901090 23140189
    [Google Scholar]
  48. KoesD.R. CamachoC.J. ZINCPharmer: Pharmacophore search of the ZINC database.Nucleic Acids Res.201240W1W409W41410.1093/nar/gks378 22553363
    [Google Scholar]
  49. DuttR. GargV. KhatriN. MadanA.K. Phytochemicals in anticancer drug development.Anticancer. Agents Med. Chem.201919217218310.2174/1871520618666181106115802 30398123
    [Google Scholar]
  50. IlyasS. MananA. ChoiY. LeeD. Exploring the therapeutic potential of Emblica officinalis natural compounds against hepatocellular carcinoma (HCC): A computational approach.EXCLI J.20242314401458 39790561
    [Google Scholar]
  51. KraimK. BoudjedirA. SaihiY. ChikhF.Z.O. SlatniaY. FerkousF. In silico structure-based screening of potential anticancer bioactive natural constituents from african natural products.Lett. Drug Des. Discov.202421163479349210.2174/0115701808280302240117055932
    [Google Scholar]
  52. CaiC. WuQ. HongH. In silico identification of natural products from Traditional Chinese Medicine for cancer immunotherapy.Sci. Rep.20211113332
    [Google Scholar]
  53. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.21334 19499576
    [Google Scholar]
  54. AlagarsamyV. SundarS.P. SolomonR.V. NarendharB. SulthanaM.T. RohithaK. DhanwarS. AishwaryaO.A. MurugesanS. Pharmacophore modelling-based drug repurposing approaches for monkeypox therapeutics.J. Biomol. Struct. Dyn.20234120106781068910.1080/07391102.2023.2188428 36905675
    [Google Scholar]
  55. LipinskiC.A. Lead- and drug-like compounds: The rule-of-five revolution.Drug Discov. Today. Technol.20041433734110.1016/j.ddtec.2004.11.007 24981612
    [Google Scholar]
  56. LamieP.F. PhiloppesJ.N. 2-Thiopyrimidine/chalcone hybrids: Design, synthesis, ADMET prediction, and anticancer evaluation as STAT3/STAT5a inhibitors.J. Enzyme Inhib. Med. Chem.202035186487910.1080/14756366.2020.1740922 32208772
    [Google Scholar]
  57. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.20177142717
    [Google Scholar]
  58. JubieS. SundarS. YadavN. NareshP. WadhwaniA. NatarajanJ. A new class of coumate benzimidazole hybrids as brca 1 mimetics through unconventional binding mode; synthesis and preliminary cytotoxicity screening.Curr. Comput. Drug Des.202116678680110.2174/1573409916666191231102046 31889499
    [Google Scholar]
  59. BanerjeeP. EckertA.O. SchreyA.K. PreissnerR. ProTox-II: A webserver for the prediction of toxicity of chemicals.Nucleic Acids Res.201846W1W257W26310.1093/nar/gky318 29718510
    [Google Scholar]
  60. MarkP. NilssonL. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K.J. Phys. Chem. A2001105439954996010.1021/jp003020w
    [Google Scholar]
  61. JorgensenW.L. MaxwellD.S. Tirado-RivesJ. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids.J. Am. Chem. Soc.199611845112251123610.1021/ja9621760
    [Google Scholar]
  62. KalibaevaG. FerrarioM. CiccottiG. Constant pressure-constant temperature molecular dynamics: A correct constrained NPT ensemble using the molecular virial.Mol. Phys.20091016765778
    [Google Scholar]
  63. NareshP. SelvarajA. SundarS.P. MurugesanS. SathianarayananS. NambooriP.K.K. JubieS. Targeting a conserved pocket (n-octyl-β-D-glucoside) on the dengue virus envelope protein by small bioactive molecule inhibitors.J. Biomol. Struct. Dyn.202240114866487810.1080/07391102.2020.1862707 33345726
    [Google Scholar]
  64. ChenX. ZhangL. BaoQ. MengF. LiuC. XuR. JiX. YouQ. JiangZ. A JAK tyrosine kinase and pseudokinase Co-inhibition strategy combines enhanced potency and on-demand activation.Eur. J. Med. Chem.202325011519810.1016/j.ejmech.2023.115198 36805946
    [Google Scholar]
  65. HaftchenaryS. LuchmanH.A. JoukA.O. VelosoA.J. PageB.D.G. ChengX.R. DawsonS.S. GrinshteinN. ShahaniV.M. KermanK. KaplanD.R. GriffinC. AmanA.M. Al-awarR. WeissS. GunningP.T. Potent targeting of the STAT3 protein in brain cancer stem cells: A promising route for treating glioblastoma.ACS Med. Chem. Lett.20134111102110710.1021/ml4003138 24900612
    [Google Scholar]
  66. PeterB. BibiS. EisenwortG. Drug-induced inhibition of phosphorylation of STAT5 overrides drug resistance in neoplastic mast cells.Leukemia201732410161022
    [Google Scholar]
  67. McLaughlinJ. MarkovtsovV. LiH. WongS. GelmanM. ZhuY. FranciC. LangD.W. PaliE. LasagaJ. LowC. ZhaoF. ChangB. GururajaT.L. XuW. BaluomM. SweenyD. CarrollD. SranA. ThotaS. ParmerM. RomaneA. ClemensG. GrossbardE. QuK. JenkinsY. KinoshitaT. TaylorV. HollandS.J. ArgadeA. SinghR. PineP. PayanD.G. HitoshiY. Preclinical characterization of Aurora kinase inhibitor R763/AS703569 identified through an image-based phenotypic screen.J. Cancer Res. Clin. Oncol.201013619911310.1007/s00432‑009‑0641‑1 19609559
    [Google Scholar]
  68. ShariatiM. Meric-BernstamF. Targeting AKT for cancer therapy.Expert Opin. Investig. Drugs2019281197798810.1080/13543784.2019.1676726 31594388
    [Google Scholar]
  69. WingelhoferB. MaurerB. HeyesE.C. Pharmacologic inhibition of STAT5 in acute myeloid leukemia.Leukemia20183211351146
    [Google Scholar]
  70. YbemaC.E. OlivierB. MosJ. TulpM.T.M. SlangenJ.L. Adrenoceptors and dopamine receptors are not involved in the discriminative stimulus effect of the 5-HT1A receptor agonist flesinoxan.Eur. J. Pharmacol.1994256214114710.1016/0014‑2999(94)90238‑0 8050464
    [Google Scholar]
  71. CaiN. ZhouW. YeL.L. ChenJ. LiangQ.N. ChangG. ChenJ.J. The STAT3 inhibitor pimozide impedes cell proliferation and induces ROS generation in human osteosarcoma by suppressing catalase expression.Am. J. Transl. Res.20179838533866 28861175
    [Google Scholar]
  72. HartS. GohK.C. Novotny-DiermayrV. SB1518, a novel macrocyclic pyrimidine-based JAK2 inhibitor for the treatment of myeloid and lymphoid malignancies.Leukemia2011251117511759
    [Google Scholar]
  73. HartS. GohK.C. Novotny-DiermayrV. Pacritinib (SB1518), a JAK2/FLT3 inhibitor for the treatment of acute myeloid leukemia.Blood Cancer J.2011111e44
    [Google Scholar]
  74. WilliamA.D. LeeA.C.H. BlanchardS. PoulsenA. TeoE.L. NagarajH. TanE. ChenD. WilliamsM. SunE.T. GohK.C. OngW.C. GohS.K. HartS. JayaramanR. PashaM.K. EthirajuluK. WoodJ.M. DymockB.W. Discovery of the macrocycle 11-(2-pyrrolidin-1-yl-ethoxy)-14,19-dioxa-5,7,26-triaza-tetracyclo[19.3.1.1(2,6).1(8,12)]heptacosa-1(25),2(26),3,5,8,10,12(27),16,21,23-decaene (SB1518), a potent Janus kinase 2/fms-like tyrosine kinase-3 (JAK2/FLT3) inhibitor for the treatment of myelofibrosis and lymphoma.J. Med. Chem.201154134638465810.1021/jm200326p 21604762
    [Google Scholar]
  75. MacedoA.B. LevingerC. NguyenB.N. RichardJ. GuptaM. CruzC.R.Y. FinziA. ChiappinelliK.B. CrandallK.A. BosqueA. The HIV latency reversal agent hodhbt enhances nk cell effector and memory-like functions by increasing interleukin-15-mediated STAT activation.J. Virol.20229615e00372e22Epub ahead of print10.1128/jvi.00372‑22 35867565
    [Google Scholar]
  76. LiaoZ. GuL. VergalliJ. MarianiS.A. DominiciD.M. LokareddyR.K. DagvadorjA. PurushottamacharP. McCueP.A. TrabulsiE. LallasC.D. GuptaS. EllsworthE. BlackmonS. ErtelA. FortinaP. LeibyB. XiaG. RuiH. HoangD.T. GomellaL.G. CingolaniG. NjarV. PattabiramanN. CalabrettaB. NevalainenM.T. Structure-based screen identifies a potent small molecule inhibitor of Stat5a/b with therapeutic potential for prostate cancer and chronic myeloid leukemia.Mol. Cancer Ther.20151481777179310.1158/1535‑7163.MCT‑14‑0883 26026053
    [Google Scholar]
  77. LiuY. YangT. LiH. LiM.H. LiuJ. WangY.T. YangS.X. ZhengJ. LuoX.Y. LaiY. YangP. LiL.M. ZouQ. BD 750, a benzothiazole derivative, inhibits T cell proliferation by affecting the JAK 3/STAT 5 signalling pathway.Br. J. Pharmacol.2013168363264310.1111/j.1476‑5381.2012.02172.x 22906008
    [Google Scholar]
  78. ZhouY. LengX. LiH. YangS. YangT. LiL. XiongY. ZouQ. LiuY. WangY. Tolerogenic dendritic cells induced by BD750 ameliorate proinflammatory T cell responses and experimental autoimmune encephalitis in mice.Mol. Med.201723120421410.2119/molmed.2016.00110 28960227
    [Google Scholar]
  79. JuenL. Brachet-BotineauM. ParmenonC. BourgeaisJ. HéraultO. GouilleuxF. Viaud-MassuardM.C. PriéG. New inhibitor targeting signal transducer and activator of transcription 5 (STAT5) signaling in myeloid leukemias.J. Med. Chem.201760146119613610.1021/acs.jmedchem.7b00369 28654259
    [Google Scholar]
  80. JiangX. HuC. FerchenK. Targeted inhibition of STAT/TET1 axis as a therapeutic strategy for acute myeloid leukemia.Nat. Commun.2017812099
    [Google Scholar]
  81. SingaramI. SharmaA. PantS. Targeting lipid–protein interaction to treat Syk-mediated acute myeloid leukemia.Nat. Chem. Biol.2022192239250
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206367609250329195533
Loading
/content/journals/acamc/10.2174/0118715206367609250329195533
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): cytokines; homology modeling; molecular dynamics; pharmacophore; Prostate cancer; STAT5A
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test