Skip to content
2000
image of Unraveling the Role of Tumor-infiltrating Immune Cells in Modulating Cancer Drug Resistance

Abstract

Tumor-infiltrating immune cells (TIICs) have been identified as critical components in the development of cancer drug resistance. This review aims to discuss the various types of TIICs, such as macrophages and T cells, that have been linked to cancer drug resistance. Furthermore, we explore the mechanisms by which TIICs contribute to drug resistance and how these mechanisms may differ across various tumor types. Additionally, we examine the potential of immune checkpoint inhibitors in combination with traditional cancer therapies as a strategy to overcome TIIC-mediated cancer drug resistance. In conclusion, this review provides an in-depth analysis of the current knowledge on the role of TIICs in cancer drug resistance and highlights potential avenues for future research to develop more effective treatment strategies. The findings presented in this review emphasize the importance of understanding the complex interactions between cancer cells and the immune system in order to develop novel therapeutic approaches that can overcome TIIC-mediated cancer drug resistance.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206365310250310081445
2025-03-24
2025-09-26
Loading full text...

Full text loading...

References

  1. Hanahan D. Weinberg R. A. Hallmarks of cancer: The next generation. Cell. 2011 144 5 646 674 10.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  2. Kalluri R. Zeisberg M. Fibroblasts in cancer. Nat. Rev. Cancer 2006 6 5 392 401 10.1038/nrc1877 16572188
    [Google Scholar]
  3. Sahranavard T. Mehrabadi S. Pourali G. Maftooh M. Akbarzade H. Hassanian S.M. Mobarhan M.G. Ferns G.A. Khazaei M. Avan A. The potential therapeutic applications of CRISPR/Cas9 in colorectal cancer. Curr. Med. Chem. 2024 31 35 5768 5778 10.2174/0929867331666230915103707 37724673
    [Google Scholar]
  4. Mantovani A. Sica A. Macrophages, innate immunity and cancer: Balance, tolerance, and diversity. Curr. Opin. Immunol. 2010 22 2 231 237 10.1016/j.coi.2010.01.009 20144856
    [Google Scholar]
  5. Mahoney K.M. Rennert P.D. Freeman G.J. Combination cancer immunotherapy and new immunomodulatory targets. Nat. Rev. Drug Discov. 2015 14 8 561 584 10.1038/nrd4591 26228759
    [Google Scholar]
  6. Stokic-Trtica V. Diefenbach A. Klose C.S.N. NK cell development in times of innate lymphoid cell diversity. Front. Immunol. 2020 11 813 10.3389/fimmu.2020.00813 32733432
    [Google Scholar]
  7. Marmonti E. Oliva-Ramirez J. Haymaker C. Dendritic cells: The long and evolving road towards successful targetability in cancer. Cells 2022 11 19 3028 10.3390/cells11193028 36230990
    [Google Scholar]
  8. Bronte V. Brandau S. Chen S.H. Colombo M.P. Frey A.B. Greten T.F. Mandruzzato S. Murray P.J. Ochoa A. Ostrand-Rosenberg S. Rodriguez P.C. Sica A. Umansky V. Vonderheide R.H. Gabrilovich D.I. Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat. Commun. 2016 7 1 12150 10.1038/ncomms12150 27381735
    [Google Scholar]
  9. Tiwari A. Oravecz T. Dillon L.A. Italiano A. Audoly L. Fridman W.H. Clifton G.T. Towards a consensus definition of immune exclusion in cancer. Front. Immunol. 2023 14 1084887 10.3389/fimmu.2023.1084887 37033994
    [Google Scholar]
  10. Hao N.B. Lü M.H. Fan Y.H. Cao Y.L. Zhang Z.R. Yang S.M. Macrophages in tumor microenvironments and the progression of tumors. Clin. Dev. Immunol. 2012 2012 1 11 10.1155/2012/948098 22778768
    [Google Scholar]
  11. Barati S. Saffar H. Mehrabadi S. Avan A. The circadian clock as a potential biomarker and therapeutic target in gastrointestinal cancers. Curr. Pharm. Des. 2024 30 23 1804 1811 10.2174/0113816128302762240515054444 38798218
    [Google Scholar]
  12. Chen Y. Song Y. Du W. Gong L. Chang H. Zou Z. Tumor-associated macrophages: An accomplice in solid tumor progression. J. Biomed. Sci. 2019 26 1 78 10.1186/s12929‑019‑0568‑z 31629410
    [Google Scholar]
  13. Pilotto Heming C. Muriithi W. Macharia W.L. N Filho P. Moura-Neto V. Aran V. P-glycoprotein and cancer: What do we currently know? Heliyon 2022 8 10 e11171 10.1016/j.heliyon.2022.e11171 36325145
    [Google Scholar]
  14. Yousefi H. Momeny M. Ghaffari S. H. Parsanejad N. Poursheikhani A. Javadikooshesh S. IL-6/IL-6R pathway is a therapeutic target in chemoresistant ovarian cancer. Tumori. 2019 105 1 84 91 10.1177/0300891618784790 30021477
    [Google Scholar]
  15. Xiao M. He J. Yin L. Chen X. Zu X. Shen Y. Tumor-associated macrophages: Critical players in drug resistance of breast cancer. Front. Immunol. 2021 12 799428 10.3389/fimmu.2021.799428 34992609
    [Google Scholar]
  16. Yang C. He L. He P. Liu Y. Wang W. He Y. Du Y. Gao F. Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway. Med. Oncol. 2015 32 2 14 10.1007/s12032‑014‑0352‑6 25572805
    [Google Scholar]
  17. Dong X. Sun R. Wang J. Yu S. Cui J. Guo Z. Pan X. Sun J. Yang J. Pan L.L. Glutathione S-transferases P1-mediated interleukin-6 in tumor-associated macrophages augments drug-resistance in MCF-7 breast cancer. Biochem. Pharmacol. 2020 182 114289 10.1016/j.bcp.2020.114289 33080187
    [Google Scholar]
  18. Guo Y. Ashrafizadeh M. Tambuwala M.M. Ren J. Orive G. Yu G. P-glycoprotein (P-gp)-driven cancer drug resistance: Biological profile, non-coding RNAs, drugs and nanomodulators. Drug Discov. Today 2024 29 11 104161 10.1016/j.drudis.2024.104161 39245345
    [Google Scholar]
  19. He H. Buckley M. Britton B. Mu Y. Warner K. Kumar S. Cory T.J. Polarized macrophage subsets differentially express the drug efflux transporters MRP1 and BCRP, resulting in altered HIV production. Antivir. Chem. Chemother. 2018 26 2040206617745168 10.1177/2040206617745168 29343083
    [Google Scholar]
  20. Qin Q. Ji H. Li D. Zhang H. Zhang Z. Zhang Q. Tumor-associated macrophages increase COX-2 expression promoting endocrine resistance in breast cancer via the PI3K/Akt/mTOR pathway. Neoplasma 2021 68 5 938 946 10.4149/neo_2021_201226N1404 34619972
    [Google Scholar]
  21. Fu X.T. Song K. Zhou J. Shi Y.H. Liu W.R. Shi G.M. Gao Q. Wang X.Y. Ding Z.B. Fan J. Tumor-associated macrophages modulate resistance to oxaliplatin via inducing autophagy in hepatocellular carcinoma. Cancer Cell Int. 2019 19 1 71 10.1186/s12935‑019‑0771‑8 30962765
    [Google Scholar]
  22. Li Y. Yin Y. Zhang T. Wang J. Guo Z. Li Y. Zhao Y. Qin R. He Q. A comprehensive landscape analysis of autophagy in cancer development and drug resistance. Front. Immunol. 2024 15 1412781 10.3389/fimmu.2024.1412781 39253092
    [Google Scholar]
  23. Deligne C. Midwood K.S. Macrophages and extracellular matrix in breast cancer: Partners in crime or protective allies? Front. Oncol. 2021 11 620773 10.3389/fonc.2021.620773 33718177
    [Google Scholar]
  24. Yu K.X. Yuan W.J. Wang H.Z. Li Y.X. Extracellular matrix stiffness and tumor-associated macrophage polarization: New fields affecting immune exclusion. Cancer Immunol. Immunother. 2024 73 6 115 10.1007/s00262‑024‑03675‑9 38693304
    [Google Scholar]
  25. Panchabhai S. Kelemen K. Ahmann G. Sebastian S. Mantei J. Fonseca R. Tumor-associated macrophages and extracellular matrix metalloproteinase inducer in prognosis of multiple myeloma. Leukemia 2016 30 4 951 954 10.1038/leu.2015.191 26202926
    [Google Scholar]
  26. Kang S.U. Cho S.Y. Jeong H. Han J. Chae H.Y. Yang H. Sung C.O. Choi Y.L. Shin Y.K. Kwon M.J. Matrix metalloproteinase 11 (MMP11) in macrophages promotes the migration of HER2-positive breast cancer cells and monocyte recruitment through CCL2–CCR2 signaling. Lab. Invest. 2022 102 4 376 390 10.1038/s41374‑021‑00699‑y 34775491
    [Google Scholar]
  27. Li X. Chen L. Peng X. Zhan X. Progress of tumor-associated macrophages in the epithelial-mesenchymal transition of tumor. Front. Oncol. 2022 12 911410 10.3389/fonc.2022.911410 35965509
    [Google Scholar]
  28. Kuwada K. Kagawa S. Yoshida R. Sakamoto S. Ito A. Watanabe M. Ieda T. Kuroda S. Kikuchi S. Tazawa H. Fujiwara T. The epithelial-to-mesenchymal transition induced by tumor-associated macrophages confers chemoresistance in peritoneally disseminated pancreatic cancer. J. Exp. Clin. Cancer Res. 2018 37 1 307 10.1186/s13046‑018‑0981‑2 30537992
    [Google Scholar]
  29. Gazzillo A. Polidoro M.A. Soldani C. Franceschini B. Lleo A. Donadon M. Relationship between epithelial-to-mesenchymal transition and tumor-associated macrophages in colorectal liver metastases. Int. J. Mol. Sci. 2022 23 24 16197 10.3390/ijms232416197 36555840
    [Google Scholar]
  30. Allavena P. Digifico E. Belgiovine C. Macrophages and cancer stem cells: A malevolent alliance. Mol. Med. 2021 27 1 121 10.1186/s10020‑021‑00383‑3 34583655
    [Google Scholar]
  31. Raggi C. Mousa H.S. Correnti M. Sica A. Invernizzi P. Cancer stem cells and tumor-associated macrophages: A roadmap for multitargeting strategies. Oncogene 2016 35 6 671 682 10.1038/onc.2015.132 25961921
    [Google Scholar]
  32. Ghandadi M. Sahebkar A. Interleukin-6: A critical cytokine in cancer multidrug resistance. Curr. Pharm. Des. 2016 22 5 518 526 10.2174/1381612822666151124234417 26601970
    [Google Scholar]
  33. Wang S. Wang J. Chen Z. Luo J. Guo W. Sun L. Lin L. Targeting M2-like tumor-associated macrophages is a potential therapeutic approach to overcome antitumor drug resistance. NPJ Precis. Oncol. 2024 8 1 31 10.1038/s41698‑024‑00522‑z 38341519
    [Google Scholar]
  34. Virrey J.J. Guan S. Li W. Schönthal A.H. Chen T.C. Hofman F.M. Increased survivin expression confers chemoresistance to tumor-associated endothelial cells. Am. J. Pathol. 2008 173 2 575 585 10.2353/ajpath.2008.071079 18599610
    [Google Scholar]
  35. Wang X.L. Jiang J.T. Wu C.P. Prognostic significance of tumor-associated macrophage infiltration in gastric cancer: A meta-analysis. Genet. Mol. Res. 2016 15 4 gmr15049040 10.4238/gmr15049040 27966749
    [Google Scholar]
  36. Wang X. Li Y. Pu X. Liu G. Qin H. Wan W. Wang Y. Zhu Y. Yang J. Macrophage-related therapeutic strategies: Regulation of phenotypic switching and construction of drug delivery systems. Pharmacol. Res. 2024 199 107022 10.1016/j.phrs.2023.107022 38043691
    [Google Scholar]
  37. Kan O. Day D. Iqball S. Burke F. Grimshaw M.J. Naylor S. Binley K. Genetically modified macrophages expressing hypoxia regulated cytochrome P450 and P450 reductase for the treatment of cancer. Int. J. Mol. Med. 2011 27 2 173 180 10.3892/ijmm.2010.583 21165551
    [Google Scholar]
  38. Liu M-Q. Zhang J-W. Zhu J-W. Roles of tumor-associated macrophages in tumor environment and strategies for targeting therapy. Pharma. Fronts 2023 5 4 e254 e273 10.1055/s‑0043‑1777704
    [Google Scholar]
  39. Tumeh P.C. Harview C.L. Yearley J.H. Shintaku I.P. Taylor E.J.M. Robert L. Chmielowski B. Spasic M. Henry G. Ciobanu V. West A.N. Carmona M. Kivork C. Seja E. Cherry G. Gutierrez A.J. Grogan T.R. Mateus C. Tomasic G. Glaspy J.A. Emerson R.O. Robins H. Pierce R.H. Elashoff D.A. Robert C. Ribas A. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014 515 7528 568 571 10.1038/nature13954 25428505
    [Google Scholar]
  40. Sian V. Souto J.A. Alvarez R. Nebbioso A. de Lera A.R. Altucci L. Chapter 17 - Inhibitors of Jumonji-C domain-containing histone demethylases. Epigenetic Cancer Therapy 2nd Ed. Cambridge, US Academic Press 2023 407 457 10.1016/B978‑0‑323‑91367‑6.00025‑8
    [Google Scholar]
  41. Zhu C. Kros J.M. Cheng C. Mustafa D. The contribution of tumor-associated macrophages in glioma neo-angiogenesis and implications for anti-angiogenic strategies. Neuro-oncol. 2017 19 11 1435 1446 10.1093/neuonc/nox081 28575312
    [Google Scholar]
  42. Niu M. Valdes S. Naguib Y.W. Hursting S.D. Cui Z. Tumor-associated macrophage-mediated targeted therapy of triple-negative breast cancer. Mol. Pharm. 2016 13 6 1833 1842 10.1021/acs.molpharmaceut.5b00987 27074028
    [Google Scholar]
  43. Aheget H. Mazini L. Martin F. Belqat B. Marchal J.A. Benabdellah K. Exosomes: Their role in pathogenesis, diagnosis and treatment of diseases. Cancers (Basel) 2020 13 1 84 10.3390/cancers13010084 33396739
    [Google Scholar]
  44. Dallavalasa S. Beeraka N.M. Basavaraju C.G. Tulimilli S.V. Sadhu S.P. Rajesh K. Aliev G. Madhunapantula S.V. The role of tumor associated macrophages (TAMs) in cancer progression, chemoresistance, angiogenesis and metastasis-current status. Curr. Med. Chem. 2021 28 39 8203 8236 10.2174/1875533XMTE20ODIe4 34303328
    [Google Scholar]
  45. Ishikawa E. Miyazaki T. Takano S. Akutsu H. Anti-angiogenic and macrophage-based therapeutic strategies for glioma immunotherapy. Brain Tumor Pathol. 2021 38 3 149 155 10.1007/s10014‑021‑00402‑5 33977360
    [Google Scholar]
  46. Qian S. Wei Z. Yang W. Huang J. Yang Y. Wang J. The role of BCL-2 family proteins in regulating apoptosis and cancer therapy. Front. Oncol. 2022 12 985363 10.3389/fonc.2022.985363 36313628
    [Google Scholar]
  47. Dai E. Zhu Z. Wahed S. Qu Z. Storkus W.J. Guo Z.S. Epigenetic modulation of antitumor immunity for improved cancer immunotherapy. Mol. Cancer 2021 20 1 171 10.1186/s12943‑021‑01464‑x 34930302
    [Google Scholar]
  48. Christofi T. Baritaki S. Falzone L. Libra M. Zaravinos A. Current perspectives in cancer immunotherapy. Cancers (Basel) 2019 11 10 1472 10.3390/cancers11101472 31575023
    [Google Scholar]
  49. Liu J. Geng X. Hou J. Wu G. New insights into M1/M2 macrophages: Key modulators in cancer progression. Cancer Cell Int. 2021 21 1 389 10.1186/s12935‑021‑02089‑2 34289846
    [Google Scholar]
  50. Bai H. Feng L. Schmid F. Macrophage-based cancer immunotherapy: Challenges and opportunities. Exp. Cell Res. 2024 442 1 114198 10.1016/j.yexcr.2024.114198 39103071
    [Google Scholar]
  51. Ahluwalia P. Ahluwalia M. Mondal A.K. Sahajpal N.S. Kota V. Rojiani M.V. Kolhe R. Natural killer cells and dendritic cells: Expanding clinical relevance in the non-small cell lung cancer (NSCLC) tumor microenvironment. Cancers (Basel) 2021 13 16 4037 10.3390/cancers13164037 34439191
    [Google Scholar]
  52. Peterson E.E. Barry K.C. The natural killer–dendritic cell immune axis in anti-cancer immunity and immunotherapy. Front. Immunol. 2021 11 621254 10.3389/fimmu.2020.621254 33613552
    [Google Scholar]
  53. Fiedler E.C. Hemann M.T. Aiding and abetting: How the tumor microenvironment protects cancer from chemotherapy. Annu. Rev. Cancer Biol. 2019 3 1 409 428 10.1146/annurev‑cancerbio‑030518‑055524
    [Google Scholar]
  54. Khalaf K. Hana D. Chou J.T.T. Singh C. Mackiewicz A. Kaczmarek M. Aspects of the tumor microenvironment involved in immune resistance and drug resistance. Front. Immunol. 2021 12 656364 10.3389/fimmu.2021.656364 34122412
    [Google Scholar]
  55. Jing X. Yang F. Shao C. Wei K. Xie M. Shen H. Shu Y. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol. Cancer 2019 18 1 157 10.1186/s12943‑019‑1089‑9 31711497
    [Google Scholar]
  56. Emami Nejad A. Najafgholian S. Rostami A. Sistani A. Shojaeifar S. Esparvarinha M. Nedaeinia R. Haghjooy Javanmard S. Taherian M. Ahmadlou M. Salehi R. Sadeghi B. Manian M. The role of hypoxia in the tumor microenvironment and development of cancer stem cell: A novel approach to developing treatment. Cancer Cell Int. 2021 21 1 62 10.1186/s12935‑020‑01719‑5 33472628
    [Google Scholar]
  57. Huang K. Zhang X. Hao Y. Feng R. Wang H. Shu Z. Li A. Du M. Hypoxia tumor microenvironment activates GLI2 through HIF-1α and TGF-β2 to promote chemotherapy resistance of colorectal cancer. Comput. Math. Methods Med. 2022 2022 1 7 10.1155/2022/2032895 35186110
    [Google Scholar]
  58. Chen G. Wu K. Li H. Xia D. He T. Role of hypoxia in the tumor microenvironment and targeted therapy. Front. Oncol. 2022 12 961637 10.3389/fonc.2022.961637 36212414
    [Google Scholar]
  59. Yuan Z. Li Y. Zhang S. Wang X. Dou H. Yu X. Zhang Z. Yang S. Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: From mechanisms to treatments. Mol. Cancer 2023 22 1 48 10.1186/s12943‑023‑01744‑8 36906534
    [Google Scholar]
  60. Sherman M. H. Beatty G. L. Tumor microenvironment in pancreatic cancer pathogenesis and therapeutic resistance. Annu. Rev. Pathol. 2023 18 123 148 10.1146/annurev‑pathmechdis‑031621‑024600 36130070
    [Google Scholar]
  61. Estephan L.E. Kumar G. Stewart M. Banoub R. Linnenbach A. Harshyne L.A. Martinez-Outschoorn U.E. Mahoney M.G. Curry J.M. Johnson J. South A.P. Luginbuhl A.J. Altered extracellular matrix correlates with an immunosuppressive tumor microenvironment and disease progression in younger adults with oral cavity squamous cell carcinoma. Front. Oncol. 2024 14 1412212 10.3389/fonc.2024.1412212 38957320
    [Google Scholar]
  62. Gao Y. Zhou H. Liu G. Wu J. Yuan Y. Shang A. Tumor microenvironment: Lactic acid promotes tumor development. J. Immunol. Res. 2022 2022 1 8 10.1155/2022/3119375 35733921
    [Google Scholar]
  63. Kim I. Choi S. Yoo S. Lee M. Kim I.S. Cancer-associated fibroblasts in the hypoxic tumor microenvironment. Cancers (Basel) 2022 14 14 3321 10.3390/cancers14143321 35884382
    [Google Scholar]
  64. Sarkar M. Nguyen T. Gundre E. Ogunlusi O. El-Sobky M. Giri B. Sarkar T.R. Cancer-associated fibroblasts: The chief architect in the tumor microenvironment. Front. Cell Dev. Biol. 2023 11 1089068 10.3389/fcell.2023.1089068 36793444
    [Google Scholar]
  65. Sobierajska K. Ciszewski W. M. Sacewicz-Hofman I. Niewiarowska J. Endothelial cells in the tumor microenvironment. Adv. Exp. Med. Biol. Springer Cham 2020 1234 71 86 10.1007/978‑3‑030‑37184‑5_6
    [Google Scholar]
  66. López de Andrés J. Griñán-Lisón C. Jiménez G. Marchal J.A. Cancer stem cell secretome in the tumor microenvironment: A key point for an effective personalized cancer treatment. J. Hematol. Oncol. 2020 13 1 136 10.1186/s13045‑020‑00966‑3 33059744
    [Google Scholar]
  67. Guo Q. Zhou Y. Xie T. Yuan Y. Li H. Shi W. Zheng L. Li X. Zhang W. Tumor microenvironment of cancer stem cells: Perspectives on cancer stem cell targeting. Genes Dis. 2024 11 3 101043 10.1016/j.gendis.2023.05.024 38292177
    [Google Scholar]
  68. Wu B. Shi X. Jiang M. Liu H. Cross-talk between cancer stem cells and immune cells: Potential therapeutic targets in the tumor immune microenvironment. Mol. Cancer 2023 22 1 38 10.1186/s12943‑023‑01748‑4 36810098
    [Google Scholar]
  69. Zhu S. Li S. Yi M. Li N. Wu K. Roles of microvesicles in tumor progression and clinical applications. Int. J. Nanomedicine 2021 16 7071 7090 10.2147/IJN.S325448 34703228
    [Google Scholar]
  70. Ratajczak M.Z. Ratajczak J. Extracellular microvesicles/exosomes: Discovery, disbelief, acceptance, and the future? Leukemia 2020 34 12 3126 3135 10.1038/s41375‑020‑01041‑z 32929129
    [Google Scholar]
  71. Zelli V. Compagnoni C. Capelli R. Corrente A. Di Vito Nolfi M. Zazzeroni F. Alesse E. Tessitore A. Role of exosomal microRNAs in cancer therapy and drug resistance mechanisms: Focus on hepatocellular carcinoma. Front. Oncol. 2022 12 940056 10.3389/fonc.2022.940056 35912267
    [Google Scholar]
  72. Jena B. C. Mandal M. The emerging roles of exosomes in anti-cancer drug resistance and tumor progression: An insight towards tumor-microenvironment interaction. Biochim. Biophys. Acta. Rev. Canc. 2021 1875 1 188488 10.1016/j.bbcan.2020.188488 33271308
    [Google Scholar]
  73. Taeb S. Ashrafizadeh M. Zarrabi A. Rezapoor S. Musa A.E. Farhood B. Najafi M. Role of tumor microenvironment in cancer stem cells resistance to radiotherapy. Curr. Cancer Drug Targets 2022 22 1 18 30 10.2174/1568009622666211224154952 34951575
    [Google Scholar]
  74. Garajová I. Balsano R. Wang H. Leonardi F. Giovannetti E. Deng D. Peters G.J. The role of the microbiome in drug resistance in gastrointestinal cancers. Expert Rev. Anticancer Ther. 2021 21 2 165 176 10.1080/14737140.2021.1844007 33115280
    [Google Scholar]
  75. Shui L. Yang X. Li J. Yi C. Sun Q. Zhu H. Gut microbiome as a potential factor for modulating resistance to cancer immunotherapy. Front. Immunol. 2020 10 2989 10.3389/fimmu.2019.02989 32010123
    [Google Scholar]
  76. Pandey K. Umar S. Microbiome in drug resistance to colon cancer. Curr. Opin. Physiol. 2021 23 100472 10.1016/j.cophys.2021.100472 34514218
    [Google Scholar]
  77. Chau C.H. Steeg P.S. Figg W.D. Antibody–drug conjugates for cancer. Lancet 2019 394 10200 793 804 10.1016/S0140‑6736(19)31774‑X 31478503
    [Google Scholar]
  78. Wells K. Liu T. Zhu L. Yang L. Immunomodulatory nanoparticles activate cytotoxic T cells for enhancement of the effect of cancer immunotherapy. Nanoscale 2024 16 38 17699 17722 10.1039/D4NR01780C 39257225
    [Google Scholar]
  79. Palazzolo S. Bayda S. Hadla M. Caligiuri I. Corona G. Toffoli G. Rizzolio F. The clinical translation of organic nanomaterials for cancer therapy: A focus on polymeric nanoparticles, micelles, liposomes and exosomes. Curr. Med. Chem. 2018 25 34 4224 4268 10.2174/0929867324666170830113755 28875844
    [Google Scholar]
  80. Bramel E.R. Sia D. Novel insights into molecular and immune subtypes of biliary tract cancers. Adv. Cancer. Res. 2022 156 167 199 10.1016/bs.acr.2022.01.008 35961699
    [Google Scholar]
  81. Xu Y. Xiong J. Sun X. Gao H. Targeted nanomedicines remodeling immunosuppressive tumor microenvironment for enhanced cancer immunotherapy. Acta Pharm. Sin. B 2022 12 12 4327 4347 10.1016/j.apsb.2022.11.001 36561994
    [Google Scholar]
  82. Chikuma S. Kanamori M. Mise-Omata S. Yoshimura A. Suppressors of cytokine signaling: Potential immune checkpoint molecules for cancer immunotherapy. Cancer Sci. 2017 108 4 574 580 10.1111/cas.13194 28188673
    [Google Scholar]
  83. Lawler S.E. Speranza M.C. Cho C.F. Chiocca E.A. Oncolytic viruses in cancer treatment: A review. JAMA Oncol. 2017 3 6 841 849 10.1001/jamaoncol.2016.2064 27441411
    [Google Scholar]
  84. Sterner R.C. Sterner R.M. CAR-T cell therapy: Current limitations and potential strategies. Blood Cancer J. 2021 11 4 69 10.1038/s41408‑021‑00459‑7 33824268
    [Google Scholar]
  85. Wolf N.K. Kissiov D.U. Raulet D.H. Roles of natural killer cells in immunity to cancer, and applications to immunotherapy. Nat. Rev. Immunol. 2023 23 2 90 105 10.1038/s41577‑022‑00732‑1 35637393
    [Google Scholar]
  86. Liu Y. Liang J. Zhang Y. Guo Q. Drug resistance and tumor immune microenvironment: An overview of current understandings (Review). Int. J. Oncol. 2024 65 4 96 10.3892/ijo.2024.5684 39219258
    [Google Scholar]
  87. Coley H. M. Overcoming multidrug resistance in cancer: Clinical studies of p-glycoprotein inhibitors. Meth. Mol. Biol. 2010 596 341 358 10.1007/978‑1‑60761‑416‑6_15 19949931
    [Google Scholar]
  88. Qin Y. Ashrafizadeh M. Mongiardini V. Grimaldi B. Crea F. Rietdorf K. Győrffy B. Klionsky D.J. Ren J. Zhang W. Zhang X. Autophagy and cancer drug resistance in dialogue: Pre-clinical and clinical evidence. Cancer Lett. 2023 570 216307 10.1016/j.canlet.2023.216307 37451426
    [Google Scholar]
  89. Grégoire H. Roncali L. Rousseau A. Chérel M. Delneste Y. Jeannin P. Hindré F. Garcion E. Targeting tumor associated macrophages to overcome conventional treatment resistance in glioblastoma. Front. Pharmacol. 2020 11 368 10.3389/fphar.2020.00368 32322199
    [Google Scholar]
  90. Mantovani A. Sozzani S. Locati M. Allavena P. Sica A. Macrophage polarization: Tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol. 2002 23 11 549 555 10.1016/S1471‑4906(02)02302‑5 12401408
    [Google Scholar]
  91. Zhang J. Hu C. Zhang R. Xu J. Zhang Y. Yuan L. Zhang S. Pan S. Cao M. Qin J. Cheng X. Xu Z. The role of macrophages in gastric cancer. Front. Immunol. 2023 14 1282176 10.3389/fimmu.2023.1282176 38143746
    [Google Scholar]
  92. Pourali G. Zafari N. Velayati M. Mehrabadi S. Maftooh M. Hassanian S.M. Mobarhan G.M. Ferns G.A. Avan A. Khazaei M. Therapeutic potential of targeting transforming growth factor-beta (TGF-β) and programmed death-ligand 1 (PD-L1) in pancreatic cancer. Curr. Drug Targets 2023 24 17 1335 1345 10.2174/0113894501264450231129042256 38053355
    [Google Scholar]
  93. Patil V.M. Role of CSF1R inhibitor pexidartinib for the treatment of cancer. Russ. J. Bioorganic Chem. 2022 48 S1 S1 S8 10.1134/S1068162023010223
    [Google Scholar]
  94. Dowlati A. Harvey R.D. Carvajal R.D. Hamid O. Klempner S.J. Kauh J.S.W. Peterson D.A. Yu D. Chapman S.C. Szpurka A.M. Carlsen M. Quinlan T. Wesolowski R. LY3022855, an anti–colony stimulating factor-1 receptor (CSF-1R) monoclonal antibody, in patients with advanced solid tumors refractory to standard therapy: Phase 1 dose-escalation trial. Invest. New Drugs 2021 39 4 1057 1071 10.1007/s10637‑021‑01084‑8 33624233
    [Google Scholar]
  95. Pathria P. Louis T.L. Varner J.A. Targeting tumor-associated macrophages in cancer. Trends Immunol. 2019 40 4 310 327 10.1016/j.it.2019.02.003 30890304
    [Google Scholar]
  96. Nowak M. Klink M. The role of tumor-associated macrophages in the progression and chemoresistance of ovarian cancer. Cells 2020 9 5 1299 10.3390/cells9051299 32456078
    [Google Scholar]
  97. Sugawara T. Franco R.S. Sherman S. Kirsch M.J. Colborn K. Ishida J. Grandi S. Al-Musawi M.H. Gleisner A. Schulick R.D. Del Chiaro M. Association of adjuvant chemotherapy in patients with resected pancreatic adenocarcinoma after multiagent neoadjuvant chemotherapy. JAMA Oncol. 2023 9 3 316 323 10.1001/jamaoncol.2022.5808 36480190
    [Google Scholar]
  98. Chen Y. Jin H. Song Y. Huang T. Cao J. Tang Q. Zou Z. Targeting tumor‐associated macrophages: A potential treatment for solid tumors. J. Cell. Physiol. 2021 236 5 3445 3465 10.1002/jcp.30139 33200401
    [Google Scholar]
  99. Foster C.C. Fleming G.F. Karrison T.G. Liao C.Y. Desai A.V. Moroney J.W. Ratain M.J. Nanda R. Polite B.N. Hahn O.M. O’Donnell P.H. Vokes E.E. Kindler H.L. Hseu R. Janisch L.A. Dai J. Hoffman M.D. Weichselbaum R.R. Pitroda S.P. Chmura S.J. Luke J.J. Phase I study of stereotactic body radiotherapy plus nivolumab and urelumab or cabiralizumab in advanced solid tumors. Clin. Cancer Res. 2021 27 20 5510 5518 10.1158/1078‑0432.CCR‑21‑0810 34168049
    [Google Scholar]
  100. Poh A.R. Ernst M. Tumor-associated macrophages in pancreatic ductal adenocarcinoma: Therapeutic opportunities and clinical challenges. Cancers (Basel) 2021 13 12 2860 10.3390/cancers13122860 34201127
    [Google Scholar]
  101. Pollard J.W. Trophic macrophages in development and disease. Nat. Rev. Immunol. 2009 9 4 259 270 10.1038/nri2528 19282852
    [Google Scholar]
  102. Beheshtizadeh N. Amiri Z. Tabatabaei S.Z. Seraji A.A. Gharibshahian M. Nadi A. Saeinasab M. Sefat F. Kolahi Azar H. Boosting antitumor efficacy using docetaxel-loaded nanoplatforms: From cancer therapy to regenerative medicine approaches. J. Transl. Med. 2024 22 1 520 10.1186/s12967‑024‑05347‑9 38816723
    [Google Scholar]
  103. Ho W.J. Jaffee E.M. Macrophage-targeting by CSF1/1R blockade in pancreatic cancers. Cancer Res. 2021 81 24 6071 6073 10.1158/0008‑5472.CAN‑21‑3603 34911778
    [Google Scholar]
  104. De Palma M. Lewis C.E. Macrophage regulation of tumor responses to anticancer therapies. Cancer Cell 2013 23 3 277 286 10.1016/j.ccr.2013.02.013 23518347
    [Google Scholar]
  105. Ginhoux F. Guilliams M. Tissue-resident macrophage ontogeny and homeostasis. Immunity 2016 44 3 439 449 10.1016/j.immuni.2016.02.024 26982352
    [Google Scholar]
  106. Xu Y. Wang X. Liu L. Wang J. Wu J. Sun C. Role of macrophages in tumor progression and therapy (Review). Int. J. Oncol. 2022 60 5 57 10.3892/ijo.2022.5347 35362544
    [Google Scholar]
  107. Ruffell B. Affara N.I. Coussens L.M. Differential macrophage programming in the tumor microenvironment. Trends Immunol. 2012 33 3 119 126 10.1016/j.it.2011.12.001 22277903
    [Google Scholar]
  108. Wang S. Yang Y. Ma P. Huang H. Tang Q. Miao H. Fang Y. Jiang N. Li Y. Zhu Q. Tao W. Zha Y. Li N. Landscape and perspectives of macrophage -targeted cancer therapy in clinical trials. Mol. Ther. Oncolytics 2022 24 799 813 10.1016/j.omto.2022.02.019 35317518
    [Google Scholar]
  109. Falleni M. Savi F. Tosi D. Agape E. Cerri A. Moneghini L. Bulfamante G.P. M1 and M2 macrophages’ clinicopathological significance in cutaneous melanoma. Melanoma Res. 2017 27 3 200 210 10.1097/CMR.0000000000000352 28272106
    [Google Scholar]
  110. Truxova I. Cibula D. Spisek R. Fucikova J. Targeting tumor-associated macrophages for successful immunotherapy of ovarian carcinoma. J. Immunother. Cancer 2023 11 2 e005968 10.1136/jitc‑2022‑005968 36822672
    [Google Scholar]
  111. Zhang W. Zhu X.D. Sun H.C. Xiong Y.Q. Zhuang P.Y. Xu H.X. Kong L.Q. Wang L. Wu W.Z. Tang Z.Y. Depletion of tumor-associated macrophages enhances the effect of sorafenib in metastatic liver cancer models by antimetastatic and antiangiogenic effects. Clin. Cancer Res. 2010 16 13 3420 3430 10.1158/1078‑0432.CCR‑09‑2904 20570927
    [Google Scholar]
  112. Yadav K. Pradhan M. Singh D. Singh M.R. Macrophage-associated disorders: Pathophysiology, treatment challenges, and possible solutions. Macrophage Targeted Delivery Systems Cham Springer 2022 65 99 10.1007/978‑3‑030‑84164‑5_4
    [Google Scholar]
  113. DeNardo D.G. Barreto J.B. Andreu P. Vasquez L. Tawfik D. Kolhatkar N. Coussens L.M. CD4+ T cells regulate pulmonary metastasis of mammary carcinomas by enhancing protumor properties of macrophages. Cancer Cell 2009 16 2 91 102 10.1016/j.ccr.2009.06.018 19647220
    [Google Scholar]
  114. Weiss S.A. Djureinovic D. Jessel S. Krykbaeva I. Zhang L. Jilaveanu L. Ralabate A. Johnson B. Levit N.S. Anderson G. Zelterman D. Wei W. Mahajan A. Trifan O. Bosenberg M. Kaech S.M. Perry C.J. Damsky W. Gettinger S. Sznol M. Hurwitz M. Kluger H.M. A phase I study of APX005M and cabiralizumab with or without nivolumab in patients with melanoma, kidney cancer, or non–small cell lung cancer resistant to anti-PD-1/PD-L1. Clin. Cancer Res. 2021 27 17 4757 4767 10.1158/1078‑0432.CCR‑21‑0903 34140403
    [Google Scholar]
  115. Wainberg Z.A. Eisenberg P.D. Sachdev J.C. Weise A.M. Kaufman D.R. Hutchinson M. Phase 1/2a study of double immune suppression blockade by combining a CSF1R inhibitor (pexidartinib/PLX3397) with an anti PD-1 antibody (pembrolizumab) to treat advanced melanoma and other solid tumors J. Clini. Oncol. 2016 34 4 465 10.1200/jco.2016.34.4_suppl.tps465
    [Google Scholar]
  116. Li C. Xu X. Wei S. Jiang P. Xue L. Wang J. Tumor-associated macrophages: Potential therapeutic strategies and future prospects in cancer. J. Immunother. Cancer 2021 9 1 e001341 10.1136/jitc‑2020‑001341 33504575
    [Google Scholar]
  117. Poh A.R. Ernst M. Targeting macrophages in cancer: From bench to bedside. Front. Oncol. 2018 8 49 10.3389/fonc.2018.00049 29594035
    [Google Scholar]
  118. Steeves J.D. Bench to bedside. Prog. Brain Res. 2015 218 227 239 10.1016/bs.pbr.2014.12.008 25890140
    [Google Scholar]
  119. Paganini C. Palmiero C.U. Pocsfalvi G. Touzet N. Bongiovanni A. Arosio P. Scalable production and isolation of extracellular vesicles: Available sources and lessons from current industrial bioprocesses. Biotechnol. J. 2019 14 10 1800528 10.1002/biot.201800528 31140717
    [Google Scholar]
  120. Mantovani A. Allavena P. Marchesi F. Garlanda C. Macrophages as tools and targets in cancer therapy. Nat. Rev. Drug Discov. 2022 21 11 799 820 10.1038/s41573‑022‑00520‑5 35974096
    [Google Scholar]
  121. Sluijter M. van der Sluis T.C. van der Velden P.A. Versluis M. West B.L. van der Burg S.H. van Hall T. Inhibition of CSF-1R supports T-cell mediated melanoma therapy. PLoS One 2014 9 8 e104230 10.1371/journal.pone.0104230 25110953
    [Google Scholar]
  122. Huang Y. Wang Z. Gong J. Zhu D. Chen W. Li F. Liang X.J. Liu X. Macrophages as potential targets in gene therapy for cancer treatment. Explor. Target. Antitumor Ther. 2023 4 1 89 101 10.37349/etat.2023.00124 36937317
    [Google Scholar]
  123. Qiu X. Zhao T. Luo R. Qiu R. Li Z. Tumor-associated macrophages: Key players in triple-negative breast cancer. Front. Oncol. 2022 12 772615 10.3389/fonc.2022.772615 35237507
    [Google Scholar]
  124. Khan S.U. Khan M.U. Azhar Ud Din M. Khan I.M. Khan M.I. Bungau S. Hassan S.S. Reprogramming tumor-associated macrophages as a unique approach to target tumor immunotherapy. Front. Immunol. 2023 14 1166487 10.3389/fimmu.2023.1166487 37138860
    [Google Scholar]
  125. Jian C.Z. Lin L. Hsu C.L. Chen Y.H. Hsu C. Tan C.T. Ou D.L. A potential novel cancer immunotherapy: Agonistic anti-CD40 antibodies. Drug Discov. Today 2024 29 3 103893 10.1016/j.drudis.2024.103893 38272173
    [Google Scholar]
  126. Chakraborty S. Ye J. Wang H. Sun M. Zhang Y. Sang X. Zhuang Z. Application of toll-like receptors (TLRs) and their agonists in cancer vaccines and immunotherapy. Front. Immunol. 2023 14 1227833 10.3389/fimmu.2023.1227833 37936697
    [Google Scholar]
  127. Zeng Q. Jewell C.M. Directing toll-like receptor signaling in macrophages to enhance tumor immunotherapy. Curr. Opin. Biotechnol. 2019 60 138 145 10.1016/j.copbio.2019.01.010 30831487
    [Google Scholar]
  128. Glaviano A. Foo A.S.C. Lam H.Y. Yap K.C.H. Jacot W. Jones R.H. Eng H. Nair M.G. Makvandi P. Geoerger B. Kulke M.H. Baird R.D. Prabhu J.S. Carbone D. Pecoraro C. Teh D.B.L. Sethi G. Cavalieri V. Lin K.H. Javidi-Sharifi N.R. Toska E. Davids M.S. Brown J.R. Diana P. Stebbing J. Fruman D.A. Kumar A.P. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer. Mol. Cancer 2023 22 1 138 10.1186/s12943‑023‑01827‑6 37596643
    [Google Scholar]
  129. Linton M.F. Moslehi J.J. Babaev V.R. Akt signaling in macrophage polarization, survival, and atherosclerosis. Int. J. Mol. Sci. 2019 20 11 2703 10.3390/ijms20112703 31159424
    [Google Scholar]
  130. Xia T. Zhang M. Lei W. Yang R. Fu S. Fan Z. Yang Y. Zhang T. Advances in the role of STAT3 in macrophage polarization. Front. Immunol. 2023 14 1160719 10.3389/fimmu.2023.1160719 37081874
    [Google Scholar]
  131. De Palma M. Biziato D. Petrova T.V. Microenvironmental regulation of tumour angiogenesis. Nat. Rev. Cancer 2017 17 8 457 474 10.1038/nrc.2017.51 28706266
    [Google Scholar]
  132. He W. Kapate N. Shields C.W. IV Mitragotri S. Drug delivery to macrophages: A review of targeting drugs and drug carriers to macrophages for inflammatory diseases. Adv. Drug Deliv. Rev. 2020 165-166 15 40 10.1016/j.addr.2019.12.001 31816357
    [Google Scholar]
  133. Anderson N.R. Minutolo N.G. Gill S. Klichinsky M. Macrophage-based approaches for cancer immunotherapy. Cancer Res. 2021 81 5 1201 1208 10.1158/0008‑5472.CAN‑20‑2990 33203697
    [Google Scholar]
  134. Li M. Yang Y. Xiong L. Jiang P. Wang J. Li C. Metabolism, metabolites, and macrophages in cancer. J. Hematol. Oncol. 2023 16 1 80 10.1186/s13045‑023‑01478‑6 37491279
    [Google Scholar]
  135. Wang Y. Yu G. Liu Y. Xie L. Ge J. Zhao G. Lin J. Hypoxia-induced PTTG3P contributes to colorectal cancer glycolysis and M2 phenotype of macrophage. Biosci. Rep. 2021 41 7 BSR20210764 10.1042/BSR20210764 34132347
    [Google Scholar]
  136. Wang H. Wang L. Pan H. Wang Y. Shi M. Yu H. Wang C. Pan X. Chen Z. Exosomes derived from macrophages enhance aerobic glycolysis and chemoresistance in lung cancer by stabilizing c-Myc via the inhibition of NEDD4L. Front. Cell Dev. Biol. 2021 8 620603 10.3389/fcell.2020.620603 33748098
    [Google Scholar]
  137. Marcucci F. Rumio C. Glycolysis-induced drug resistance in tumors—A response to danger signals? Neoplasia 2021 23 2 234 245 10.1016/j.neo.2020.12.009 33418276
    [Google Scholar]
  138. Liu H. Lv H. Duan X. Du Y. Tang Y. Xu W. Advancements in macrophage-targeted drug delivery for effective disease management. Int. J. Nanomedicine 2023 18 6915 6940 10.2147/IJN.S430877 38026516
    [Google Scholar]
  139. Wróblewska A. Szczygieł A. Szermer-Olearnik B. Pajtasz-Piasecka E. Macrophages as promising carriers for nanoparticle delivery in anticancer therapy. Int. J. Nanomedicine 2023 18 4521 4539 10.2147/IJN.S421173 37576466
    [Google Scholar]
  140. Zhang Y. Cai K. Li C. Guo Q. Chen Q. He X. Liu L. Zhang Y. Lu Y. Chen X. Sun T. Huang Y. Cheng J. Jiang C. Macrophage-membrane-coated nanoparticles for tumor-targeted chemotherapy. Nano Lett. 2018 18 3 1908 1915 10.1021/acs.nanolett.7b05263 29473753
    [Google Scholar]
  141. Feng L. Dong Z. Tao D. Zhang Y. Liu Z. The acidic tumor microenvironment: A target for smart cancer nano-theranostics. Natl. Sci. Rev. 2018 5 2 269 286 10.1093/nsr/nwx062
    [Google Scholar]
  142. Hosonuma M. Yoshimura K. Association between pH regulation of the tumor microenvironment and immunological state. Front. Oncol. 2023 13 1175563 10.3389/fonc.2023.1175563 37492477
    [Google Scholar]
  143. Ruffell B. Coussens L.M. Macrophages and therapeutic resistance in cancer. Cancer Cell 2015 27 4 462 472 10.1016/j.ccell.2015.02.015 25858805
    [Google Scholar]
  144. Duan Z. Luo Y. Targeting macrophages in cancer immunotherapy. Signal Transduct. Target. Ther. 2021 6 1 127 10.1038/s41392‑021‑00506‑6 33767177
    [Google Scholar]
  145. Xu M. Li S. Nano-drug delivery system targeting tumor microenvironment: A prospective strategy for melanoma treatment. Cancer Lett. 2023 574 216397 10.1016/j.canlet.2023.216397 37730105
    [Google Scholar]
  146. Belgiovine C. Digifico E. Anfray C. Ummarino A. Torres Andón F. Targeting tumor-associated macrophages in anti-cancer therapies: Convincing the traitors to do the right thing. J. Clin. Med. 2020 9 10 3226 10.3390/jcm9103226 33050070
    [Google Scholar]
  147. Guo Q. Qian Z.M. Macrophage based drug delivery: Key challenges and strategies. Bioact. Mater. 2024 38 55 72 10.1016/j.bioactmat.2024.04.004 38699242
    [Google Scholar]
  148. Gabrilovich D.I. Combination of chemotherapy and immunotherapy for cancer: A paradigm revisited. Lancet Oncol. 2007 8 1 2 3 10.1016/S1470‑2045(06)70985‑8 17196504
    [Google Scholar]
  149. Li J. Wang Q. Xia G. Adilijiang N. Li Y. Hou Z. Fan Z. Li J. Recent advances in targeted drug delivery strategy for enhancing oncotherapy. Pharmaceutics 2023 15 9 2233 10.3390/pharmaceutics15092233 37765202
    [Google Scholar]
  150. Sanmamed M.F. Chen L. A paradigm shift in cancer immunotherapy: From enhancement to normalization. Cell 2018 175 2 313 326 10.1016/j.cell.2018.09.035 30290139
    [Google Scholar]
  151. Tsao L.C. Force J. Hartman Z.C. Mechanisms of therapeutic antitumor monoclonal antibodies. Cancer Res. 2021 81 18 4641 4651 10.1158/0008‑5472.CAN‑21‑1109 34145037
    [Google Scholar]
  152. Malmberg R. Zietse M. Dumoulin D.W. Hendrikx J.J.M.A. Aerts J.G.J.V. van der Veldt A.A.M. Koch B.C.P. Sleijfer S. van Leeuwen R.W.F. Alternative dosing strategies for immune checkpoint inhibitors to improve cost-effectiveness: A special focus on nivolumab and pembrolizumab. Lancet Oncol. 2022 23 12 e552 e561 10.1016/S1470‑2045(22)00554‑X 36455584
    [Google Scholar]
  153. Dalle Vedove E. Costabile G. Merkel O.M. Mannose and mannose‐6‐phosphate receptor–targeted drug delivery systems and their application in cancer therapy. Adv. Healthc. Mater. 2018 7 14 1701398 10.1002/adhm.201701398 29719138
    [Google Scholar]
  154. Thomas T.P. Goonewardena S.N. Majoros I.J. Kotlyar A. Cao Z. Leroueil P.R. Baker J.R. Jr Folate‐targeted nanoparticles show efficacy in the treatment of inflammatory arthritis. Arthritis Rheum. 2011 63 9 2671 2680 10.1002/art.30459 21618461
    [Google Scholar]
  155. Gonzalez-Valdivieso J. Vallejo R. Rodriguez-Rojo S. Santos M. Schneider J. Arias F.J. Girotti A. CD44-targeted nanoparticles for co-delivery of docetaxel and an Akt inhibitor against colorectal cancer. Biomater. Adv. 2023 154 213595 10.1016/j.bioadv.2023.213595 37639856
    [Google Scholar]
  156. Suksiriworapong J. Pongprasert N. Bunsupa S. Taresco V. Crucitti V.C. Janurai T. Phruttiwanichakun P. Sakchaisri K. Wongrakpanich A. CD44-targeted lipid polymer hybrid nanoparticles enhance anti-breast cancer effect of Cordyceps militaris extracts. Pharmaceutics 2023 15 6 1771 10.3390/pharmaceutics15061771 37376218
    [Google Scholar]
  157. Yang P. Zhang L. Wang T. Liu Q. Wang J. Wang Y. Tu Z. Lin F. Doxorubicin and edelfosine combo-loaded lipid–polymer hybrid nanoparticles for synergistic anticancer effect against drug-resistant osteosarcoma. OncoTargets Ther. 2020 13 8055 8067 10.2147/OTT.S259428 32884291
    [Google Scholar]
  158. Cendrowicz E. Sas Z. Bremer E. Rygiel T. P. The role of macrophages in cancer development and therapy. Cancers. 2021 13 8 1946 10.3390/cancers13081946 33919517
    [Google Scholar]
  159. Zhang W. Taheri-Ledari R. Ganjali F. Mirmohammadi S.S. Qazi F.S. Saeidirad M. KashtiAray A. Zarei-Shokat S. Tian Y. Maleki A. Effects of morphology and size of nanoscale drug carriers on cellular uptake and internalization process: A review. RSC Advances 2022 13 1 80 114 10.1039/D2RA06888E 36605676
    [Google Scholar]
  160. Ghazal H. Waqar A. Yaseen F. Shahid M. Sultana M. Tariq M. Role of nanoparticles in enhancing chemotherapy efficacy for cancer treatment. Next Materials 2024 2 100128 10.1016/j.nxmate.2024.100128
    [Google Scholar]
  161. Musyanovych A. Dausend J. Dass M. Walther P. Mailänder V. Landfester K. Criteria impacting the cellular uptake of nanoparticles: A study emphasizing polymer type and surfactant effects. Acta Biomater. 2011 7 12 4160 4168 10.1016/j.actbio.2011.07.033 21855659
    [Google Scholar]
  162. Afzal O. Altamimi A. S. A. Nadeem M. S. Alzarea S. I. Almalki W. H. Tariq A. Nanoparticles in drug delivery: From history to therapeutic applications. Nanomaterials. 2022 12 24 4494 10.3390/nano12244494 36558344
    [Google Scholar]
  163. Kotta S. Aldawsari H. M. Badr-Eldin S. M. Nair A. B. Progress in polymeric micelles for drug delivery applications. Pharmaceutics. 2022 14 8 1636 10.3390/pharmaceutics14081636 36015262
    [Google Scholar]
  164. Kyriakides T.R. Raj A. Tseng T.H. Xiao H. Nguyen R. Mohammed F.S. Halder S. Xu M. Wu M.J. Bao S. Sheu W.C. Biocompatibility of nanomaterials and their immunological properties. Biomed. Mater. 2021 16 4 042005 10.1088/1748‑605X/abe5fa 33578402
    [Google Scholar]
  165. Maeda H. Sawa T. Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including the EPR effect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. J. Control. Release 2001 74 1-3 47 61 10.1016/S0168‑3659(01)00309‑1 11489482
    [Google Scholar]
  166. Cabral H. Matsumoto Y. Mizuno K. Chen Q. Murakami M. Kimura M. Terada Y. Kano M.R. Miyazono K. Uesaka M. Nishiyama N. Kataoka K. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 2011 6 12 815 823 10.1038/nnano.2011.166 22020122
    [Google Scholar]
  167. Perrault S.D. Walkey C. Jennings T. Fischer H.C. Chan W.C.W. Mediating tumor targeting efficiency of nanoparticles through design. Nano Lett. 2009 9 5 1909 1915 10.1021/nl900031y 19344179
    [Google Scholar]
  168. Parmar K. Patel J. Pathak Y. Factors affecting the clearance and biodistribution of polymeric nanoparticles Pharmacokinetics and Pharmacodynamics of Nanoparticulate Drug Delivery Systems Cham Springer 2022 261 272 10.1007/978‑3‑030‑83395‑4_14
    [Google Scholar]
  169. Oussoren C. Zuidema J. Crommelin D.J.A. Storm G. Lymphatic uptake and biodistribution of liposomes after subcutaneous injection. Biochim. Biophys. Acta Biomembr. 1997 1328 2 261 272 10.1016/S0005‑2736(97)00122‑3
    [Google Scholar]
  170. Geng Y. Dalhaimer P. Cai S. Tsai R. Tewari M. Minko T. Discher D.E. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat. Nanotechnol. 2007 2 4 249 255 10.1038/nnano.2007.70 18654271
    [Google Scholar]
  171. Zhang J. Zhou X. Hao H. Macrophage phenotype-switching in cancer. Eur. J. Pharmacol. 2022 931 175229 10.1016/j.ejphar.2022.175229 36002039
    [Google Scholar]
  172. Wang H. Yang L. Wang D. Zhang Q. Zhang L. Pro-tumor activities of macrophages in the progression of melanoma. Hum. Vaccin. Immunother. 2017 13 7 1556 1562 10.1080/21645515.2017.1312043 28441072
    [Google Scholar]
  173. Ding Y. Cao Q. Yang W. Xu J. Xiao P. Macrophage: Hidden criminal in therapy resistance. J. Innate Immun. 2024 16 1 188 202 10.1159/000538212 38442696
    [Google Scholar]
  174. Wang P. Zhang Y. Lei H. Yu J. Zhou Q. Shi X. Zhu Y. Zhang D. Zhang P. Wang K. Dong K. Xing J. Dong Y. Hyaluronic acid-based M1 macrophage targeting and environmental responsive drug releasing nanoparticle for enhanced treatment of rheumatoid arthritis. Carbohydr. Polym. 2023 316 121018 10.1016/j.carbpol.2023.121018 37321721
    [Google Scholar]
  175. Subhan M.A. Yalamarty S.S.K. Filipczak N. Parveen F. Torchilin V.P. Recent advances in tumor targeting via EPR effect for cancer treatment. J. Pers. Med. 2021 11 6 571 10.3390/jpm11060571 34207137
    [Google Scholar]
  176. Emens L.A. Romero P.J. Anderson A.C. Bruno T.C. Capitini C.M. Collyar D. Gulley J.L. Hwu P. Posey A.D. Jr Silk A.W. Wargo J.A. Challenges and opportunities in cancer immunotherapy: A Society for Immunotherapy of Cancer (SITC) strategic vision. J. Immunother. Cancer 2024 12 6 e009063 10.1136/jitc‑2024‑009063 38901879
    [Google Scholar]
  177. Yarchoan M. Albacker L.A. Hopkins A.C. Montesion M. Murugesan K. Vithayathil T.T. Zaidi N. Azad N.S. Laheru D.A. Frampton G.M. Jaffee E.M. PD-L1 expression and tumor mutational burden are independent biomarkers in most cancers. JCI Insight 2019 4 6 e126908 10.1172/jci.insight.126908 30895946
    [Google Scholar]
  178. Horgan R.P. Kenny L.C. ‘Omic’ technologies: Genomics, transcriptomics, proteomics and metabolomics. Obstet. Gynaecol. 2011 13 3 189 195 10.1576/toag.13.3.189.27672
    [Google Scholar]
  179. Menyhárt O. Győrffy B. Multi-omics approaches in cancer research with applications in tumor subtyping, prognosis, and diagnosis. Comput. Struct. Biotechnol. J. 2021 19 949 960 10.1016/j.csbj.2021.01.009 33613862
    [Google Scholar]
  180. Oelkrug C. Ramage J.M. Enhancement of T cell recruitment and infiltration into tumours. Clin. Exp. Immunol. 2014 178 1 1 8 10.1111/cei.12382 24828133
    [Google Scholar]
  181. Houot R. Schultz L.M. Marabelle A. Kohrt H. T-cell–based immunotherapy: Adoptive cell transfer and checkpoint inhibition. Cancer Immunol. Res. 2015 3 10 1115 1122 10.1158/2326‑6066.CIR‑15‑0190 26438444
    [Google Scholar]
  182. Dianat-Moghadam H. Nedaeinia R. Keshavarz M. Azizi M. Kazemi M. Salehi R. Immunotherapies targeting tumor vasculature: Challenges and opportunities. Front. Immunol. 2023 14 1226360 10.3389/fimmu.2023.1226360 37727791
    [Google Scholar]
  183. Wang H. Yung M.M.H. Ngan H.Y.S. Chan K.K.L. Chan D.W. The impact of the tumor microenvironment on macrophage polarization in cancer metastatic progression. Int. J. Mol. Sci. 2021 22 12 6560 10.3390/ijms22126560 34207286
    [Google Scholar]
  184. Kuryk L. Bertinato L. Staniszewska M. Pancer K. Wieczorek M. Salmaso S. Caliceti P. Garofalo M. From conventional therapies to immunotherapy: Melanoma treatment in review. Cancers (Basel) 2020 12 10 3057 10.3390/cancers12103057 33092131
    [Google Scholar]
  185. Butterfield L.H. Najjar Y.G. Immunotherapy combination approaches: Mechanisms, biomarkers and clinical observations. Nat. Rev. Immunol. 2024 24 6 399 416 10.1038/s41577‑023‑00973‑8 38057451
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206365310250310081445
Loading
/content/journals/acamc/10.2174/0118715206365310250310081445
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test