Skip to content
2000
image of Recent Advances in Therapeutic Potential of Dual-Acting Aromatase/COX-2

Abstract

Aromatase, a crucial enzyme assigned for transforming androgen into estrogen, has a vital function in the advancement of drug-resistant breast cancers that respond to endocrine treatments. Aromatase (CYP19A1) is a monooxygenase from the cytochrome P450 family that is involved in the conversion of androgens to estrogens. Breast cancer cells express aromatase activity, indicating that the tumor cells may be able to produce local estrogen. By inhibiting aromatase, serum estrogen levels decrease, which, in turn, hinders estrogen-driven cancer cell growth in hormone receptor-positive breast cancer cases. In this sense, the introduction of novel aromatase inhibitors could be a significant step forward in the fight against cancer. This is especially true in hormone-dependent cancers. Many compounds have been introduced as aromatase inhibitors, classified as steroidal or nonsteroidal. However, it should be noted that these drugs have encountered resistance in numerous cases, particularly in recent years. Thus, the search for new aromatase inhibitor drugs has always been critical. Newly, there seems to be a surge of enthusiasm in the discovery and production of molecules with dual inhibitory effects, which can inhibit two or more enzymes simultaneously. This method enables a significant reduction in potential drug resistance. The design of these compounds has an opportunity to significantly boost the efficacy of anti-cancer treatments by causing synergistic effects. This article offers a review of newly developed aromatase inhibitors with potential anticancer effects.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206359499250318063747
2025-03-26
2025-09-04
Loading full text...

Full text loading...

References

  1. Tarver T. Cancer facts & figures. Atlanta, GA American cancer society (ACS) 2012 66
    [Google Scholar]
  2. Arnold M. Morgan E. Rumgay H. Mafra A. Singh D. Laversanne M. Vignat J. Gralow J.R. Cardoso F. Siesling S. Soerjomataram I. Current and future burden of breast cancer: Global statistics for 2020 and 2040. Breast 2022 66 15 23 10.1016/j.breast.2022.08.010 36084384
    [Google Scholar]
  3. Shoombuatong W. Schaduangrat N. Nantasenamat C. Towards understanding aromatase inhibitory activity via QSAR modeling. EXCLI J. 2018 17 688 708 30190660
    [Google Scholar]
  4. Clusan L. Ferrière F. Flouriot G. Pakdel F. A basic review on estrogen receptor signaling pathways in breast cancer. Int. J. Mol. Sci. 2023 24 7 6834 10.3390/ijms24076834 37047814
    [Google Scholar]
  5. Łukasiewicz S. Czeczelewski M. Forma A. Baj J. Sitarz R. Stanisławek A. Breast cancer—epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—an updated review. Cancers (Basel) 2021 13 17 4287 10.3390/cancers13174287 34503097
    [Google Scholar]
  6. Lumachi F. Santeufemia D.A. Basso S.M. Current medical treatment of estrogen receptor-positive breast cancer. World J. Biol. Chem. 2015 6 3 231 239 10.4331/wjbc.v6.i3.231 26322178
    [Google Scholar]
  7. Chan H.J. Petrossian K. Chen S. Structural and functional characterization of aromatase, estrogen receptor, and their genes in endocrine-responsive and –resistant breast cancer cells. J. Steroid Biochem. Mol. Biol. 2016 161 73 83 10.1016/j.jsbmb.2015.07.018 26277097
    [Google Scholar]
  8. Zarghi A. Arfaei S. Selective COX-2 inhibitors: a review of their structure-activity relationships. Iran. J. Pharm. Res. 2011 10 4 655 683 24250402
    [Google Scholar]
  9. Drina M. Peptic ulcer disease and non-steroidal anti-inflammatory drugs. Aust. Prescr. 2017 40 3 91 93 10.18773/austprescr.2017.037 28798512
    [Google Scholar]
  10. Szczuko M. Kozioł I. Kotlęga D. Brodowski J. Drozd A. The role of thromboxane in the course and treatment of ischemic stroke. Int. J. Mol. Sci. 2021 22 21 11644 10.3390/ijms222111644 34769074
    [Google Scholar]
  11. Abu Deiab G.I. Croatt M.P. Prostacyclin (PGI2) scaffolds in medicinal chemistry: current and emerging drugs. Med. Chem. Res. 2022 31 8 1241 1251 10.1007/s00044‑022‑02914‑x
    [Google Scholar]
  12. Spinello A. Ritacco I. Magistrato A. The catalytic mechanism of steroidogenic cytochromes P450 from all-atom simulations: Entwinement with membrane environment, redox partners, and post-transcriptional regulation. Catalysts 2019 9 1 81 10.3390/catal9010081
    [Google Scholar]
  13. Zucchini G. Geuna E. Milani A. Aversa C. Martinello R. Montemurro F. Clinical utility of exemestane in the treatment of breast cancer. Int. J. Womens Health 2015 7 551 563 26064072
    [Google Scholar]
  14. Rashdan H. R. Shehadi I. A. Triazoles synthesis & applications as nonsteroidal aromatase inhibitors for hormone-dependent breast cancer treatment. Heteroa. Chem. 2022 2022 1 16 10.1155/2022/5349279
    [Google Scholar]
  15. Kadakia K. C. Henry N. L. Adjuvant endocrine therapy in premenopausal women with breast cancer. Clini. Adv. Hematol. Oncol. 2015 13 10 663
    [Google Scholar]
  16. Fabian C.J. The what, why and how of aromatase inhibitors: hormonal agents for treatment and prevention of breast cancer. Int. J. Clin. Pract. 2007 61 12 2051 2063 10.1111/j.1742‑1241.2007.01587.x 17892469
    [Google Scholar]
  17. Brodie A. Aromatase inhibitors in breast cancer. Trends Endocrinol. Metab. 2002 13 2 61 65 10.1016/S1043‑2760(01)00529‑X 11854020
    [Google Scholar]
  18. Rho J.M. White H.S. Brief history of anti‐seizure drug development. Epilepsia Open 2018 3 S2 Suppl. 2 114 119 10.1002/epi4.12268 30564769
    [Google Scholar]
  19. Cocconi G. First generation aromatase inhibitors? aminoglutethimide and testololactone. Breast Cancer Res. Treat. 1994 30 1 57 80 10.1007/BF00682741 7949205
    [Google Scholar]
  20. Michaud L.B. Buzdar A.U. Risks and benefits of aromatase inhibitors in postmenopausal breast cancer. Drug Saf. 1999 21 4 297 309 10.2165/00002018‑199921040‑00005 10514021
    [Google Scholar]
  21. Rani S. Raheja K. Luxami V. Paul K. A review on diverse heterocyclic compounds as the privileged scaffolds in non-steroidal aromatase inhibitors. Bioorg. Chem. 2021 113 105017 10.1016/j.bioorg.2021.105017 34091288
    [Google Scholar]
  22. Hamilton A. Piccart M. The third-generation non-steroidal aromatase inhibitors: A review of their clinical benefits in the second-line hormonal treatment of advanced breast cancer. Ann. Oncol. 1999 10 4 377 384 10.1023/A:1008368300827 10370778
    [Google Scholar]
  23. Cui J. Shen Y. Li R. Estrogen synthesis and signaling pathways during aging: from periphery to brain. Trends Mol. Med. 2013 19 3 197 209 10.1016/j.molmed.2012.12.007 23348042
    [Google Scholar]
  24. Fuentes N. Silveyra P. Estrogen receptor signaling mechanisms. Adv. Protein Chem. Struct. Biol. 2019 116 135 170 10.1016/bs.apcsb.2019.01.001 31036290
    [Google Scholar]
  25. Thomas M.P. Potter B.V.L. The structural biology of oestrogen metabolism. J. Steroid Biochem. Mol. Biol. 2013 137 27 49 10.1016/j.jsbmb.2012.12.014 23291110
    [Google Scholar]
  26. Meyers K. López M. Ho J. Wills S. Rayalam S. Taval S. Lipocalin-2 deficiency may predispose to the progression of spontaneous age-related adiposity in mice. Sci. Rep. 2020 10 1 14589 10.1038/s41598‑020‑71249‑7 32883997
    [Google Scholar]
  27. Zhao H. Zhou L. Shangguan A.J. Bulun S.E. Aromatase expression and regulation in breast and endometrial cancer. J. Mol. Endocrinol. 2016 57 1 R19 R33 10.1530/JME‑15‑0310 27067638
    [Google Scholar]
  28. Bacchi S. Palumbo P. Sponta A. Coppolino M. F. Clinical pharmacology of non-steroidal anti-inflammatory drugs: a review. Anti-Inflammat. Anti-Alle. Agen. Medi. Chem. 2012 11 1 52 64
    [Google Scholar]
  29. Sostres C. Gargallo C.J. Arroyo M.T. Lanas A. Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol. 2010 24 2 121 132 10.1016/j.bpg.2009.11.005 20227026
    [Google Scholar]
  30. Ricciotti E. FitzGerald G.A. Prostaglandins and Inflammation. Arterioscler. Thromb. Vasc. Biol. 2011 31 5 986 1000 10.1161/ATVBAHA.110.207449 21508345
    [Google Scholar]
  31. Hertelendy F. Zakár T. Prostaglandins and the myometrium and cervix. Prostaglandins Leukot. Essent. Fatty Acids 2004 70 2 207 222 10.1016/j.plefa.2003.04.009 14683694
    [Google Scholar]
  32. Pingaew R. Prachayasittikul V. Mandi P. Nantasenamat C. Prachayasittikul S. Ruchirawat S. Prachayasittikul V. Synthesis and molecular docking of 1,2,3-triazole-based sulfonamides as aromatase inhibitors. Bioorg. Med. Chem. 2015 23 13 3472 3480 10.1016/j.bmc.2015.04.036 25934226
    [Google Scholar]
  33. Song J. Wu Z. Wangtrakuldee B. Choi S.R. Zha Z. Ploessl K. Mach R.H. Kung H. 4-(((4-Iodophenyl)methyl)-4 H -1,2,4-triazol-4-ylamino)-benzonitrile: A Potential Imaging Agent for Aromatase. J. Med. Chem. 2016 59 20 9370 9380 10.1021/acs.jmedchem.6b00849 27690428
    [Google Scholar]
  34. Song Z. Liu Y. Dai Z. Liu W. Zhao K. Zhang T. Hu Y. Zhang X. Dai Y. Synthesis and aromatase inhibitory evaluation of 4-N-nitrophenyl substituted amino-4H-1,2,4-triazole derivatives. Bioorg. Med. Chem. 2016 24 19 4723 4730 10.1016/j.bmc.2016.08.014 27567077
    [Google Scholar]
  35. El-Naggar M. Abd El-All A.S. El-Naem S.I.A. Abdalla M.M. Rashdan H.R.M. New potent 5α-Reductase and aromatase inhibitors derived from 1, 2, 3-triazole derivative. Molecules 2020 25 3 672 10.3390/molecules25030672 32033281
    [Google Scholar]
  36. Di Matteo M. Ammazzalorso A. Andreoli F. Caffa I. De Filippis B. Fantacuzzi M. Giampietro L. Maccallini C. Nencioni A. Parenti M.D. Soncini D. Del Rio A. Amoroso R. Synthesis and biological characterization of 3-(imidazol-1-ylmethyl)piperidine sulfonamides as aromatase inhibitors. Bioorg. Med. Chem. Lett. 2016 26 13 3192 3194 10.1016/j.bmcl.2016.04.078 27161804
    [Google Scholar]
  37. Yi X.J. El-Idreesy T.T. Eldebss T.M.A. Farag A.M. Abdulla M.M. Hassan S.A. Mabkhot Y.N. Synthesis, biological evaluation, and molecular docking studies of new pyrazol‐3‐one derivatives with aromatase inhibition activities. Chem. Biol. Drug Des. 2016 88 6 832 843 10.1111/cbdd.12812 27565954
    [Google Scholar]
  38. Omar A.M.M.E. AboulWafa O.M. El-Shoukrofy M.S. Amr M.E. Benzoxazole derivatives as new generation of anti-breast cancer agents. Bioorg. Chem. 2020 96 103593 10.1016/j.bioorg.2020.103593 32004897
    [Google Scholar]
  39. Stefanachi A. Hanke N. Pisani L. Leonetti F. Nicolotti O. Catto M. Cellamare S. Hartmann R.W. Carotti A. Discovery of new 7-substituted-4-imidazolylmethyl coumarins and 4′-substituted-2-imidazolyl acetophenones open analogues as potent and selective inhibitors of steroid-11β-hydroxylase. Eur. J. Med. Chem. 2015 89 106 114 10.1016/j.ejmech.2014.10.021 25462231
    [Google Scholar]
  40. Lokesh B. V. Prasad Y. R. Shaik A. B. Synthesis, Biological evaluation and molecular docking studies of new pyrazolines as an antitubercular and cytotoxic agents. Infect. Disord.-Drug Targ. 2019 19 3 310 321
    [Google Scholar]
  41. Chamduang C. Pingaew R. Prachayasittikul V. Prachayasittikul S. Ruchirawat S. Prachayasittikul V. Novel triazole-tetrahydroisoquinoline hybrids as human aromatase inhibitors. Bioorg. Chem. 2019 93 103327 10.1016/j.bioorg.2019.103327 31614285
    [Google Scholar]
  42. Pragathi Y.J. Sreenivasulu R. Veronica D. Raju R.R. Design, synthesis, and biological evaluation of 1, 2, 4-thiadiazole-1, 2, 4-triazole derivatives bearing amide functionality as anticancer agents. Arab. J. Sci. Eng. 2021 46 1 225 232 10.1007/s13369‑020‑04626‑z 32837812
    [Google Scholar]
  43. Kang H. Xiao X. Huang C. Yuan Y. Tang D. Dai X. Zeng X. Potent aromatase inhibitors and molecular mechanism of inhibitory action. Eur. J. Med. Chem. 2018 143 426 437 10.1016/j.ejmech.2017.11.057 29202405
    [Google Scholar]
  44. Ammazzalorso A. Gallorini M. Fantacuzzi M. Gambacorta N. De Filippis B. Giampietro L. Maccallini C. Nicolotti O. Cataldi A. Amoroso R. Design, synthesis and biological evaluation of imidazole and triazole-based carbamates as novel aromatase inhibitors. Eur. J. Med. Chem. 2021 211 113115 10.1016/j.ejmech.2020.113115 33360796
    [Google Scholar]
  45. Sağlık B.N. Şen A.M. Evren A.E. Çevik U.A. Osmaniye D. Kaya Çavuşoğlu B. Levent S. Karaduman A.B. Özkay Y. Kaplancıklı Z.A. Synthesis, investigation of biological effects and in silico studies of new benzimidazole derivatives as aromatase inhibitors. Z. Naturforsch. C J. Biosci. 2020 75 9-10 353 362 10.1515/znc‑2020‑0104 32681791
    [Google Scholar]
  46. Doiron J. Soultan A.H. Richard R. Touré M.M. Picot N. Richard R. Čuperlović-Culf M. Robichaud G.A. Touaibia M. Synthesis and structure–activity relationship of 1- and 2-substituted-1,2,3-triazole letrozole-based analogues as aromatase inhibitors. Eur. J. Med. Chem. 2011 46 9 4010 4024 10.1016/j.ejmech.2011.05.074 21703734
    [Google Scholar]
  47. Pratap R. Ram V.J. Natural and synthetic chromenes, fused chromenes, and versatility of dihydrobenzo[h]chromenes in organic synthesis. Chem. Rev. 2014 114 20 10476 10526 10.1021/cr500075s 25303539
    [Google Scholar]
  48. Patil S.A. Patil S.A. Patil R. Microwave-assisted synthesis of chromenes: biological and chemical importance. Future Med. Chem. 2015 7 7 893 909 10.4155/fmc.15.38 26061107
    [Google Scholar]
  49. Majumdar N. Paul N.D. Mandal S. de Bruin B. Wulff W.D. Catalytic synthesis of 2 H-chromenes. ACS Catal. 2015 5 4 2329 2366 10.1021/acscatal.5b00026
    [Google Scholar]
  50. Bhuvaneswari K. Sivaguru P. Lalitha A. Synthesis, anticancer evaluation, and docking studies of some novel azo chromene derivatives. J. Chin. Chem. Soc. (Taipei) 2020 67 10 1877 1886 10.1002/jccs.201900481
    [Google Scholar]
  51. Ghorab M.M. Alsaid M.S. Al-Ansary G.H. Abdel-Latif G.A. Abou El Ella D.A. Analogue based drug design, synthesis, molecular docking and anticancer evaluation of novel chromene sulfonamide hybrids as aromatase inhibitors and apoptosis enhancers. Eur. J. Med. Chem. 2016 124 946 958 10.1016/j.ejmech.2016.10.020 27770735
    [Google Scholar]
  52. Gobbi S. Hu Q. Zimmer C. Engel M. Belluti F. Rampa A. Hartmann R.W. Bisi A. Exploiting the chromone scaffold for the development of inhibitors of corticosteroid biosynthesis. J. Med. Chem. 2016 59 6 2468 2477 10.1021/acs.jmedchem.5b01609 26938274
    [Google Scholar]
  53. fürstner A. Jumbam D.N. Seidel G. Syntheses of Zindoxifene and Analogues by Titanium‐Induced Oxo‐Amide Coupling. Chem. Ber. 1994 127 6 1125 1130 10.1002/cber.19941270624
    [Google Scholar]
  54. Prior A.M. Yu X. Park E.J. Kondratyuk T.P. Lin Y. Pezzuto J.M. Sun D. Structure-activity relationships and docking studies of synthetic 2-arylindole derivatives determined with aromatase and quinone reductase 1. Bioorg. Med. Chem. Lett. 2017 27 24 5393 5399 10.1016/j.bmcl.2017.11.010 29153737
    [Google Scholar]
  55. Pingaew R. Mandi P. Prachayasittikul V. Prachayasittikul S. Ruchirawat S. Prachayasittikul V. Synthesis, molecular docking, and QSAR study of sulfonamide-based indoles as aromatase inhibitors. Eur. J. Med. Chem. 2018 143 1604 1615 10.1016/j.ejmech.2017.10.057 29137864
    [Google Scholar]
  56. Fantacuzzi M. De Filippis B. Gallorini M. Ammazzalorso A. Giampietro L. Maccallini C. Aturki Z. Donati E. Ibrahim R.S. Shawky E. Cataldi A. Amoroso R. Synthesis, biological evaluation, and docking study of indole aryl sulfonamides as aromatase inhibitors. Eur. J. Med. Chem. 2020 185 111815 10.1016/j.ejmech.2019.111815 31732252
    [Google Scholar]
  57. Marella A. Rahmat Ali M. Alam T.M. Saha R. Tanwar O. Akhter M. Shaquiquzzaman M. Mumtaz Alam M. Pyrazolines: a biological review. Mini Rev. Med. Chem. 2013 13 6 921 931 10.2174/1389557511313060012 23544604
    [Google Scholar]
  58. Bergstrom F.W. Heterocyclic Nitrogen Compounds. Part IIA. Hexacyclic Compounds: Pyridine, Quinoline, and Isoquinoline. Chem. Rev. 1944 35 2 77 277 10.1021/cr60111a001
    [Google Scholar]
  59. Grombein C.M. Hu Q. Rau S. Zimmer C. Hartmann R.W. Heteroatom insertion into 3,4-dihydro-1H-quinolin-2-ones leads to potent and selective inhibitors of human and rat aldosterone synthase. Eur. J. Med. Chem. 2015 90 788 796 10.1016/j.ejmech.2014.12.022 25528333
    [Google Scholar]
  60. Burdzhiev N.T. Baramov T.I. Stanoeva E.R. Yanev S.G. Stoyanova T.D. Dimitrova D.H. Kostadinova K.A. Synthesis of novel trans-4-(phthalimidomethyl)- and 4-(imidazol-1-ylmethyl)-3-indolyl-tetrahydroisoquinolinones as possible aromatase inhibitors. Chem. Pap. 2019 73 5 1263 1277 10.1007/s11696‑018‑00677‑7
    [Google Scholar]
  61. Ghodsi R. Azizi E. Ferlin G.M. Pezzi V. Zarghi A. Design, synthesis and biological evaluation of 4-(imidazolylmethyl)-2-aryl-quinoline derivatives as aromatase inhibitors and anti-breast cancer agents. Lett. Drug Des. Discov. 2015 13 1 89 97 10.2174/1570180812666150611185605
    [Google Scholar]
  62. Movassaghi M. Hill M.D. Ahmad O.K. Direct synthesis of pyridine derivatives. J. Am. Chem. Soc. 2007 129 33 10096 10097 10.1021/ja073912a 17663557
    [Google Scholar]
  63. Patel K.S. Raval K.N. Patel S.P. Patel A.G. Patel S.V. A review on synthesis and biological activities of pyrimidine derivatives. Int J Pharm Bio Sci 2012 2 3 170 182
    [Google Scholar]
  64. Kuruva C.S. Gandavaram S.P. Kadiam V.S. Valluru L. Chamarthi N.R. Synthesis of new heteroaryl α‐aminophosphonates and evaluation of their cytotoxicity against human breast cancer MCF‐7 cell lines. ChemistrySelect 2018 3 23 6479 6487 10.1002/slct.201800700
    [Google Scholar]
  65. Hu Q. Kunde J. Hanke N. Hartmann R.W. Identification of 4-(4-nitro-2-phenethoxyphenyl)pyridine as a promising new lead for discovering inhibitors of both human and rat 11β-Hydroxylase. Eur. J. Med. Chem. 2015 96 139 150 10.1016/j.ejmech.2015.04.013 25874338
    [Google Scholar]
  66. Ertas M. Sahin Z. Berk B. Yurttas L. Biltekin S.N. Demirayak S. Pyridine‐substituted thiazolylphenol derivatives: Synthesis, modeling studies, aromatase inhibition, and antiproliferative activity evaluation. Arch. Pharm. (Weinheim) 2018 351 3-4 1700272 10.1002/ardp.201700272 29522642
    [Google Scholar]
  67. AboulWafa O.M. Daabees H.M.G. Badawi W.A. 2-Anilinopyrimidine derivatives: Design, synthesis, in vitro anti-proliferative activity, EGFR and ARO inhibitory activity, cell cycle analysis and molecular docking study. Bioorg. Chem. 2020 99 103798 10.1016/j.bioorg.2020.103798 32247112
    [Google Scholar]
  68. Gomha S.M. Abdelrazek F.M. Abdulla M.M. Synthesis of new functionalised derivatives of [1, 2, 4] triazolo [4, 3-a] pyrimidine and pyrimido [2, 1-b][1, 3, 5] thiadiazine as aromatase inhibitors. J. Chem. Res. 2015 39 7 425 429 10.3184/174751915X14360216187281
    [Google Scholar]
  69. Sahin Z. Ertas M. Berk B. Biltekin S.N. Yurttas L. Demirayak S. Studies on non-steroidal inhibitors of aromatase enzyme; 4-(aryl/heteroaryl)-2-(pyrimidin-2-yl)thiazole derivatives. Bioorg. Med. Chem. 2018 26 8 1986 1995 10.1016/j.bmc.2018.02.048 29525337
    [Google Scholar]
  70. Licznerska B. Szaefer H. Wierzchowski M. Mikstacka R. Papierska K. Baer-Dubowska W. Evaluation of the effect of the new methoxy-stilbenes on expression of receptors and enzymes involved in estrogen synthesis in cancer breast cells. Mol. Cell. Biochem. 2018 444 1-2 53 62 10.1007/s11010‑017‑3230‑7 29189985
    [Google Scholar]
  71. Nielsen A.J. Raez-Villanueva S. Crankshaw D.J. Holloway A.C. McNulty J. Synthesis of α-methylstilbenes using an aqueous Wittig methodology and application toward the development of potent human aromatase inhibitors. Bioorg. Med. Chem. Lett. 2019 29 11 1395 1398 10.1016/j.bmcl.2019.03.033 30952594
    [Google Scholar]
  72. Orsini F. Verotta L. Klimo K. Gerhäuser C. Synthesis of resveratrol derivatives and in vitro screening for potential cancer chemopreventive activities. Arch. Pharm. (Weinheim) 2016 349 6 414 427 10.1002/ardp.201600022 27159630
    [Google Scholar]
  73. Blass B.E. Iyer P. Abou-Gharbia M. Childers W.E. Gordon J.C. Ramanjulu M. Morton G. Arumugam P. Boruwa J. Ellingboe J. Mitra S. Nimmareddy R.R. Paliwal S. Rajasekhar J. Shivakumar S. Srivastava P. Tangirala R.S. Venkataramanaiah K. Bobbala R. Yanamandra M. Krishnakanth Reddy L. Design and synthesis of functionalized piperazin-1yl-(E)-stilbenes as inhibitors of 17α-hydroxylase-C17,20-lyase (Cyp17). Bioorg. Med. Chem. Lett. 2018 28 13 2270 2274 10.1016/j.bmcl.2018.05.040 29803730
    [Google Scholar]
  74. Khan F.A. Mushtaq S. Naz S. Farooq U. Zaidi A. Bukhari S.M. Rauf A. Mubarak M.S. Sulfonamides as potential bioactive scaffolds. Curr. Org. Chem. 2018 22 8 818 830 10.2174/1385272822666180122153839
    [Google Scholar]
  75. Leechaisit R. Pingaew R. Prachayasittikul V. Worachartcheewan A. Prachayasittikul S. Ruchirawat S. Prachayasittikul V. Synthesis, molecular docking, and QSAR study of bis-sulfonamide derivatives as potential aromatase inhibitors. Bioorg. Med. Chem. 2019 27 19 115040 10.1016/j.bmc.2019.08.001 31416738
    [Google Scholar]
  76. Lu W.J. Xu C. Pei Z. Mayhoub A.S. Cushman M. Flockhart D.A. The tamoxifen metabolite norendoxifen is a potent and selective inhibitor of aromatase (CYP19) and a potential lead compound for novel therapeutic agents. Breast Cancer Res. Treat. 2012 133 1 99 109 10.1007/s10549‑011‑1699‑4 21814747
    [Google Scholar]
  77. Zhao L.M. Jin H.S. Liu J. Skaar T.C. Ipe J. Lv W. Flockhart D.A. Cushman M. A new Suzuki synthesis of triphenylethylenes that inhibit aromatase and bind to estrogen receptors α and β. Bioorg. Med. Chem. 2016 24 21 5400 5409 10.1016/j.bmc.2016.08.064 27647367
    [Google Scholar]
  78. Lv W. Liu J. Skaar T.C. O’Neill E. Yu G. Flockhart D.A. Cushman M. Synthesis of triphenylethylene bisphenols as aromatase inhibitors that also modulate estrogen receptors. J. Med. Chem. 2016 59 1 157 170 10.1021/acs.jmedchem.5b01677 26704594
    [Google Scholar]
  79. Coogan M.P. Dyson P.J. Bochmann M. Introduction to the organometallics in biology and medicine issue. Organometallics 2012 31 16 5671 5672 10.1021/om300737y
    [Google Scholar]
  80. Mudi S. Usman M. Ibrahim S. Clinical and industrial application of organometallic compounds and complexes: a review. Am. J. Chem. Appl 2015 2 6 151 158
    [Google Scholar]
  81. Hussain R.A. Badshah A. Pezzuto J.M. Ahmed N. Kondratyuk T.P. Park E.J. Ferrocene incorporated selenoureas as anticancer agents. J. Photochem. Photobiol. B 2015 148 197 208 10.1016/j.jphotobiol.2015.04.024 25966308
    [Google Scholar]
  82. Golbaghi G. Haghdoost M.M. Yancu D. López de los Santos Y. Doucet N. Patten S.A. Sanderson J.T. Castonguay A. Organoruthenium (II) complexes bearing an aromatase inhibitor: synthesis, characterization, in vitro biological activity and in vivo toxicity in zebrafish embryos. Organometallics 2019 38 3 702 711 10.1021/acs.organomet.8b00897 31762529
    [Google Scholar]
  83. Golbaghi G. Pitard I. Lucas M. Haghdoost M.M. de los Santos Y.L. Doucet N. Patten S.A. Sanderson J.T. Castonguay A. Synthesis and biological assessment of a ruthenium(II) cyclopentadienyl complex in breast cancer cells and on the development of zebrafish embryos. Eur. J. Med. Chem. 2020 188 112030 10.1016/j.ejmech.2019.112030 31945643
    [Google Scholar]
  84. Caciolla J. Spinello A. Martini S. Bisi A. Zaffaroni N. Gobbi S. Magistrato A. Targeting orthosteric and allosteric pockets of aromatase via dual-mode novel azole inhibitors. ACS Med. Chem. Lett. 2020 11 5 732 739 10.1021/acsmedchemlett.9b00591 32435378
    [Google Scholar]
  85. Gobbi S. Zimmer C. Belluti F. Rampa A. Hartmann R.W. Recanatini M. Bisi A. Novel highly potent and selective nonsteroidal aromatase inhibitors: synthesis, biological evaluation and structure-activity relationships investigation. J. Med. Chem. 2010 53 14 5347 5351 10.1021/jm100319h 20568782
    [Google Scholar]
  86. Gobbi S. Cavalli A. Negri M. Schewe K.E. Belluti F. Piazzi L. Hartmann R.W. Recanatini M. Bisi A. Imidazolylmethylbenzophenones as highly potent aromatase inhibitors. J. Med. Chem. 2007 50 15 3420 3422 10.1021/jm0702938 17585752
    [Google Scholar]
  87. Gobbi S. Hu Q. Foschi G. Catanzaro E. Belluti F. Rampa A. Fimognari C. Hartmann R.W. Bisi A. Benzophenones as xanthone-open model CYP11B1 inhibitors potentially useful for promoting wound healing. Bioorg. Chem. 2019 86 401 409 10.1016/j.bioorg.2019.01.066 30769265
    [Google Scholar]
  88. Zhang M. Park E.J. Kondratyuk T.P. Pezzuto J.M. Sun D. Synthesis and structure–activity relationships of tetrahydro-β-carboline derivatives as anticancer and cancer-chemopreventive agents. Anticancer Res. 2018 38 8 4425 4433 10.21873/anticanres.12744 30061206
    [Google Scholar]
  89. Acar Çevik U. Sağlık B.N. Osmaniye D. Levent S. Kaya Çavuşoğlu B. Karaduman A.B. Özkay Y. Kaplancıklı Z.A. Synthesis and docking study of benzimidazole–triazolothiadiazine hybrids as aromatase inhibitors. Arch. Pharm. (Weinheim) 2020 353 5 e2000008 10.1002/ardp.202000008 32159244
    [Google Scholar]
  90. Sable P.M. Potey L.C. Synthesis and antiproliferative activity of imidazole and triazole derivatives of flavonoids. Pharm. Chem. J. 2018 52 5 438 443 10.1007/s11094‑018‑1836‑z
    [Google Scholar]
  91. Varela C.L. Amaral C. Correia-da-Silva G. Costa S.C. Carvalho R.A. Costa G. Alcaro S. Teixeira N.A.A. Tavares-da-Silva E.J. Roleira F.M.F. Exploring new chemical functionalities to improve aromatase inhibition of steroids. Bioorg. Med. Chem. 2016 24 12 2823 2831 10.1016/j.bmc.2016.04.056 27160054
    [Google Scholar]
  92. Howe L.R. Dannenberg A.J. COX-2 inhibitors for the prevention of breast cancer. J. Mammary Gland Biol. Neoplasia 2003 8 1 31 43 10.1023/A:1025731204719 14587862
    [Google Scholar]
  93. Harris R.E. Cyclooxygenase-2 (cox-2) and the inflammogenesis of cancer. Subcell. Biochem. 2007 42 93 126 10.1007/1‑4020‑5688‑5_4 17612047
    [Google Scholar]
  94. Falandry C. Canney P.A. Freyer G. Dirix L.Y. Role of combination therapy with aromatase and cyclooxygenase-2 inhibitors in patients with metastatic breast cancer. Ann. Oncol. 2009 20 4 615 620 10.1093/annonc/mdn693 19254941
    [Google Scholar]
  95. Bundred N.J. Barnes N.L.P. Potential use of COX-2–aromatase inhibitor combinations in breast cancer. Br. J. Cancer 2005 93 S1 Suppl. 1 S10 S15 10.1038/sj.bjc.6602690 16100520
    [Google Scholar]
  96. Dutta U. Pant K. Aromatase inhibitors: past, present and future in breast cancer therapy. Med. Oncol. 2008 25 2 113 124 10.1007/s12032‑007‑9019‑x 17973095
    [Google Scholar]
  97. Hong Y. Chen S. Aromatase Inhibitors. Ann. N. Y. Acad. Sci. 2006 1089 1 237 251 10.1196/annals.1386.022 17261771
    [Google Scholar]
  98. Su B. Cai X. Hong Y. Chen S. COX-2 inhibitor nimesulide analogs are aromatase suppressors in breast cancer cells. J. Steroid Biochem. Mol. Biol. 2010 122 4 232 238 10.1016/j.jsbmb.2010.06.004 20542113
    [Google Scholar]
  99. Chumsri S. Howes T. Bao T. Sabnis G. Brodie A. Aromatase, aromatase inhibitors, and breast cancer. J. Steroid Biochem. Mol. Biol. 2011 125 1-2 13 22 10.1016/j.jsbmb.2011.02.001 21335088
    [Google Scholar]
  100. A A Fadaly W. A M M Elshaier Y. T M Nemr M. R A Abdellatif K. Design, synthesis, modeling studies and biological evaluation of pyrazole derivatives linked to oxime and nitrate moieties as nitric oxide donor selective COX-2 and aromatase inhibitors with dual anti-inflammatory and anti-neoplastic activities. Bioorg. Chem. 2023 134 106428 10.1016/j.bioorg.2023.106428 36893546
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206359499250318063747
Loading
/content/journals/acamc/10.2174/0118715206359499250318063747
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Dual-acting ; anticancer ; aromatase ; COX-2 ; aromatase inhibitors ; aromatase/COX-2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test