Skip to content
2000
Volume 25, Issue 20
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Introduction/Objective

Cancer is a global health burden. Despite advances in early detection and therapeutics, cancer prevalence continues to increase, underscoring the need for innovative therapeutic strategies. Dysregulation of cell death mechanisms is a hallmark of cancer that can lead to apoptosis evasion, which strongly contributes to tumor progression and therapy resistance. Isothiouronium salts have attracted attention as promising antitumor agents. This study aimed to evaluate the antitumor effect of an isothiouronium salt (IS-MF08) on the B16F10 melanoma cell line.

Methods

The antitumor properties of IS-MF08 were investigated by incubating B16F10 cells with the compound at different concentrations. Cytotoxicity was determined by the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay, cell cycle arrest and cell death mechanisms by flow cytometry, and morphological alterations by transmission electron microscopy. Physicochemical parameters related to drug-likeness were predicted using the SwissADME tool.

Results

IS-MF08 was cytotoxic to melanoma cells, triggering cell cycle arrest and disrupting mitosis. The mechanism of cell death was compatible with apoptosis, as indicated by annexin V-FITC experiments and the relevant morphological changes in cell structure observed by transmission electron microscopy. SwissADME predicted that IS-MF08 has good physicochemical properties related to absorption and permeation.

Conclusion

The numerous mechanisms of cell death triggered by IS-MF08 and its drug-likeness make it an interesting molecule in the search for new antitumor compounds, contributing to therapies targeting the dysregulation of cellular mechanisms such as apoptosis.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206358941250413154017
2025-11-01
2025-12-18
Loading full text...

Full text loading...

References

  1. SungH. FerlayJ. SiegelR.L. LaversanneM. SoerjomataramI. JemalA. BrayF. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202171320924910.3322/caac.21660 33538338
    [Google Scholar]
  2. KocarnikJ.M. ComptonK. DeanF.E. FuW. GawB.L. HarveyJ.D. HenriksonH.J. LuD. PenniniA. XuR. AbabnehE. Abbasi-KangevariM. AbbastabarH. Abd-ElsalamS.M. AbdoliA. AbediA. AbidiH. AbolhassaniH. AdedejiI.A. AdnaniQ.E.S. AdvaniS.M. AfzalM.S. AghaaliM. AhinkorahB.O. AhmadS. AhmadT. AhmadiA. AhmadiS. AhmedR.T. AhmedS.Y. AkaluG.T. AkliluA. AkramT. AkunnaC.J. Al HamadH. AlahdabF. Al-AlyZ. AliS. AlimohamadiY. AlipourV. AljunidS.M. AlkhayyatM. Almasi-HashianiA. AlmasriN.A. Al-MaweriS.A.A. AlmustanyirS. AlonsoN. Alvis-GuzmanN. AmuH. AnbesuE.W. AncuceanuR. AnsariF. Ansari-MoghaddamA. AntwiM.H. AnvariD. AnyasodorA.E. AqeelM. ArablooJ. Arab-ZozaniM. AremuO. AriffinH. AripovT. ArshadM. ArtamanA. ArulappanJ. AsemiZ. Asghari JafarabadiM. AshrafT. AtorkeyP. AujayebA. AusloosM. AwedewA.F. Ayala QuintanillaB.P. AyenewT. AzabM.A. AzadnajafabadS. Azari JafariA. AzarianG. AzzamA.Y. BadiyeA.D. BahadoryS. BaigA.A. BakerJ.L. BalakrishnanS. BanachM. BärnighausenT.W. Barone-AdesiF. BarraF. BarrowA. BehzadifarM. BelgaumiU.I. BezabheW.M.M. BezabihY.M. BhagatD.S. BhagavathulaA.S. BhardwajN. BhardwajP. BhaskarS. BhattacharyyaK. BhojarajaV.S. BibiS. BijaniA. BiondiA. BisignanoC. BjørgeT. BleyerA. BlyussO. BolarinwaO.A. BollaS.R. BraithwaiteD. BrarA. BrennerH. Bustamante-TeixeiraM.T. ButtN.S. ButtZ.A. Caetano dos SantosF.L. CaoY. CarrerasG. Catalá-LópezF. CembranelF. CerinE. CernigliaroA. ChakinalaR.C. ChattuS.K. ChattuV.K. ChaturvediP. Chimed-OchirO. ChoD.Y. ChristopherD.J. ChuD.T. ChungM.T. CondeJ. CortésS. CortesiP.A. CostaV.M. CunhaA.R. DadrasO. DagnewA.B. DahlawiS.M.A. DaiX. DandonaL. DandonaR. DarweshA.M. das Neves, J.; De la Hoz, F.P.; Demis, A.B.; Denova-Gutiérrez, E.; Dhamnetiya, D.; Dhimal, M.L.; Dhimal, M.; Dianatinasab, M.; Diaz, D.; Djalalinia, S.; Do, H.P.; Doaei, S.; Dorostkar, F.; dos Santos Figueiredo, F.W.; Driscoll, T.R.; Ebrahimi, H.; Eftekharzadeh, S.; El Tantawi, M.; El-Abid, H.; Elbarazi, I.; Elhabashy, H.R.; Elhadi, M.; El-Jaafary, S.I.; Eshrati, B.; Eskandarieh, S.; Esmaeilzadeh, F.; Etemadi, A.; Ezzikouri, S.; Faisaluddin, M.; Faraon, E.J.A.; Fares, J.; Farzadfar, F.; Feroze, A.H.; Ferrero, S.; Ferro Desideri, L.; Filip, I.; Fischer, F.; Fisher, J.L.; Foroutan, M.; Fukumoto, T.; Gaal, P.A.; Gad, M.M.; Gadanya, M.A.; Gallus, S.; Gaspar Fonseca, M.; Getachew Obsa, A.; Ghafourifard, M.; Ghashghaee, A.; Ghith, N.; Gholamalizadeh, M.; Gilani, S.A.; Ginindza, T.G.; Gizaw, A.T.T.; Glasbey, J.C.; Golechha, M.; Goleij, P.; Gomez, R.S.; Gopalani, S.V.; Gorini, G.; Goudarzi, H.; Grosso, G.; Gubari, M.I.M.; Guerra, M.R.; Guha, A.; Gunasekera, D.S.; Gupta, B.; Gupta, V.B.; Gupta, V.K.; Gutiérrez, R.A.; Hafezi-Nejad, N.; Haider, M.R.; Haj-Mirzaian, A.; Halwani, R.; Hamadeh, R.R.; Hameed, S.; Hamidi, S.; Hanif, A.; Haque, S.; Harlianto, N.I.; Haro, J.M.; Hasaballah, A.I.; Hassanipour, S.; Hay, R.J.; Hay, S.I.; Hayat, K.; Heidari, G.; Heidari, M.; Herrera-Serna, B.Y.; Herteliu, C.; Hezam, K.; Holla, R.; Hossain, M.M.; Hossain, M.B.H.; Hosseini, M.S.; Hosseini, M.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Househ, M.; Hsairi, M.; Huang, J.; Hugo, F.N.; Hussain, R.; Hussein, N.R.; Hwang, B.F.; Iavicoli, I.; Ibitoye, S.E.; Ida, F.; Ikuta, K.S.; Ilesanmi, O.S.; Ilic, I.M.; Ilic, M.D.; Irham, L.M.; Islam, J.Y.; Islam, R.M.; Islam, S.M.S.; Ismail, N.E.; Isola, G.; Iwagami, M.; Jacob, L.; Jain, V.; Jakovljevic, M.B.; Javaheri, T.; Jayaram, S.; Jazayeri, S.B.; Jha, R.P.; Jonas, J.B.; Joo, T.; Joseph, N.; Joukar, F.; Jürisson, M.; Kabir, A.; Kahrizi, D.; Kalankesh, L.R.; Kalhor, R.; Kaliyadan, F.; Kalkonde, Y.; Kamath, A.; Kameran Al-Salihi, N.; Kandel, H.; Kapoor, N.; Karch, A.; Kasa, A.S.; Katikireddi, S.V.; Kauppila, J.H.; Kavetskyy, T.; Kebede, S.A.; Keshavarz, P.; Keykhaei, M.; Khader, Y.S.; Khalilov, R.; Khan, G.; Khan, M.; Khan, M.N.; Khan, M.A.B.; Khang, Y.H.; Khater, A.M.; Khayamzadeh, M.; Kim, G.R.; Kim, Y.J.; Kisa, A.; Kisa, S.; Kissimova-Skarbek, K.; Kopec, J.A.; Koteeswaran, R.; Koul, P.A.; Koulmane, L.S.L.; Koyanagi, A.; Kucuk Bicer, B.; Kugbey, N.; Kumar, G.A.; Kumar, N.; Kumar, N.; Kurmi, O.P.; Kutluk, T.; La Vecchia, C.; Lami, F.H.; Landires, I.; Lauriola, P.; Lee, S.; Lee, S.W.H.; Lee, W.C.; Lee, Y.H.; Leigh, J.; Leong, E.; Li, J.; Li, M.C.; Liu, X.; Loureiro, J.A.; Lunevicius, R.; Magdy Abd El Razek, M.; Majeed, A.; Makki, A.; Male, S.; Malik, A.A.; Mansournia, M.A.; Martini, S.; Masoumi, S.Z.; Mathur, P.; McKee, M.; Mehrotra, R.; Mendoza, W.; Menezes, R.G.; Mengesha, E.W.; Mesregah, M.K.; Mestrovic, T.; Miao, J.J.; Miazgowski, B.; Miazgowski, T.; Michalek, I.M.; Miller, T.R.; Mirzaei, H.; Mirzaei, H.R.; Misra, S.; Mithra, P.; Moghadaszadeh, M.; Mohammad, K.A.; Mohammad, Y.; Mohammadi, M.; Mohammadi, S.M.; Mohammadian-Hafshejani, A.; Mohammed, S.; Moka, N.; Mokdad, A.H.; Molokhia, M.; Monasta, L.; Moni, M.A.; Moosavi, M.A.; Moradi, Y.; Moraga, P.; Morgado-da-Costa, J.; Morrison, S.D.; Mosapour, A.; Mubarik, S.; Mwanri, L.; Nagarajan, A.J.; Nagaraju, S.P.; Nagata, C.; Naimzada, M.D.; Nangia, V.; Naqvi, A.A.; Narasimha Swamy, S.; Ndejjo, R.; Nduaguba, S.O.; Negoi, I.; Negru, S.M.; Neupane Kandel, S.; Nguyen, C.T.; Nguyen, H.L.T.; Niazi, R.K.; Nnaji, C.A.; Noor, N.M.; Nuñez-Samudio, V.; Nzoputam, C.I.; Oancea, B.; Ochir, C.; Odukoya, O.O.; Ogbo, F.A.; Olagunju, A.T.; Olakunde, B.O.; Omar, E.; Omar Bali, A.; Omonisi, A.E.E.; Ong, S.; Onwujekwe, O.E.; Orru, H.; Ortega-Altamirano, D.V.; Otstavnov, N.; Otstavnov, S.S.; Owolabi, M.O.; P A, M.; Padubidri, J.R.; Pakshir, K.; Pana, A.; Panagiotakos, D.; Panda-Jonas, S.; Pardhan, S.; Park, E.C.; Park, E.K.; Pashazadeh Kan, F.; Patel, H.K.; Patel, J.R.; Pati, S.; Pattanshetty, S.M.; Paudel, U.; Pereira, D.M.; Pereira, R.B.; Perianayagam, A.; Pillay, J.D.; Pirouzpanah, S.; Pishgar, F.; Podder, I.; Postma, M.J.; Pourjafar, H.; Prashant, A.; Preotescu, L.; Rabiee, M.; Rabiee, N.; Radfar, A.; Radhakrishnan, R.A.; Radhakrishnan, V.; Rafiee, A.; Rahim, F.; Rahimzadeh, S.; Rahman, M.; Rahman, M.A.; Rahmani, A.M.; Rajai, N.; Rajesh, A.; Rakovac, I.; Ram, P.; Ramezanzadeh, K.; Ranabhat, K.; Ranasinghe, P.; Rao, C.R.; Rao, S.J.; Rawassizadeh, R.; Razeghinia, M.S.; Renzaho, A.M.N.; Rezaei, N.; Rezaei, N.; Rezapour, A.; Roberts, T.J.; Rodriguez, J.A.B.; Rohloff, P.; Romoli, M.; Ronfani, L.; Roshandel, G.; Rwegerera, G.M.; S, M.; Sabour, S.; Saddik, B.; Saeed, U.; Sahebkar, A.; Sahoo, H.; Salehi, S.; Salem, M.R.; Salimzadeh, H.; Samaei, M.; Samy, A.M.; Sanabria, J.; Sankararaman, S.; Santric-Milicevic, M.M.; Sardiwalla, Y.; Sarveazad, A.; Sathian, B.; Sawhney, M.; Saylan, M.; Schneider, I.J.C.; Sekerija, M.; Seylani, A.; Shafaat, O.; Shaghaghi, Z.; Shaikh, M.A.; Shamsoddin, E.; Shannawaz, M.; Sharma, R.; Sheikh, A.; Sheikhbahaei, S.; Shetty, A.; Shetty, J.K.; Shetty, P.H.; Shibuya, K.; Shirkoohi, R.; Shivakumar, K.M.; Shivarov, V.; Siabani, S.; Siddappa Malleshappa, S.K.; Silva, D.A.S.; Singh, J.A.; Sintayehu, Y.; Skryabin, V.Y.; Skryabina, A.A.; Soeberg, M.J.; Sofi-Mahmudi, A.; Sotoudeh, H.; Steiropoulos, P.; Straif, K.; Subedi, R.; Sufiyan, M.B.; Sultan, I.; Sultana, S.; Sur, D.; Szerencsés, V.; Szócska, M.; Tabarés-Seisdedos, R.; Tabuchi, T.; Tadbiri, H.; Taherkhani, A.; Takahashi, K.; Talaat, I.M.; Tan, K.K.; Tat, V.Y.; Tedla, B.A.A.; Tefera, Y.G.; Tehrani-Banihashemi, A.; Temsah, M.H.; Tesfay, F.H.; Tessema, G.A.; Thapar, R.; Thavamani, A.; Thoguluva, C.V.; Thomas, N.; Tohidinik, H.R.; Touvier, M.; Tovani-Palone, M.R.; Traini, E.; Tran, B.X.; Tran, K.B.; Tran, M.T.N.; Tripathy, J.P.; Tusa, B.S.; Ullah, I.; Ullah, S.; Umapathi, K.K.; Unnikrishnan, B.; Upadhyay, E.; Vacante, M.; Vaezi, M.; Valadan, T.S.; Velazquez, D.Z.; Veroux, M.; Violante, F.S.; Vlassov, V.; Vo, B.; Volovici, V.; Vu, G.T.; Waheed, Y.; Wamai, R.G.; Ward, P.; Wen, Y.F.; Westerman, R.; Winkler, A.S.; Yadav, L.; Yahyazadeh, J.S.H.; Yang, L.; Yaya, S.; Yazie, T.S.Y.; Yeshaw, Y.; Yonemoto, N.; Younis, M.Z.; Yousefi, Z.; Yu, C.; Yuce, D.; Yunusa, I.; Zadnik, V.; Zare, F.; Zastrozhin, M.S.; Zastrozhina, A.; Zhang, J.; Zhong, C.; Zhou, L.; Zhu, C.; Ziapour, A.; Zimmermann, I.R.; Fitzmaurice, C.; Murray, C.J.L.; Force, L.M. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019.JAMA Oncol.20228342044410.1001/jamaoncol.2021.6987 34967848
    [Google Scholar]
  3. BrayF. LaversanneM. SungH. FerlayJ. SiegelR.L. SoerjomataramI. JemalA. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.202474322926310.3322/caac.21834 38572751
    [Google Scholar]
  4. SiegelR.L. KratzerT.B. GiaquintoA.N. SungH. JemalA. Cancer statistics, 2025.CA Cancer J. Clin.2025751104510.3322/caac.21871 39817679
    [Google Scholar]
  5. CornB.W. FeldmanD.B. Cancer statistics, 2025: A hinge moment for optimism to morph into hope?CA Cancer J. Clin.20257517910.3322/caac.21877 39817675
    [Google Scholar]
  6. PrkačinI. MokosM. FeraraN. ŠitumM. Melanoma’s new frontier: Exploring the latest advances in blood-based biomarkers for melanoma.Cancers (Basel)20241624421910.3390/cancers16244219 39766118
    [Google Scholar]
  7. CarrS. SmithC. WernbergJ. Epidemiology and risk factors of melanoma.Surg. Clin. North Am.2020100111210.1016/j.suc.2019.09.005 31753105
    [Google Scholar]
  8. AtkinsM.B. Curiel-LewandrowskiC. FisherD.E. SwetterS.M. TsaoH. Aguirre-GhisoJ.A. SoengasM.S. WeeraratnaA.T. FlahertyK.T. HerlynM. SosmanJ.A. TawbiH.A. PavlickA.C. CassidyP.B. ChandraS. ChapmanP.B. DaudA. ErogluZ. FerrisL.K. FoxB.A. GershenwaldJ.E. GibneyG.T. GrossmanD. HanksB.A. HannifordD. HernandoE. JeterJ.M. JohnsonD.B. KhleifS.N. KirkwoodJ.M. LeachmanS.A. MaysD. NelsonK.C. SondakV.K. SullivanR.J. MerlinoG. The State of Melanoma: Emergent challenges and opportunities.Clin. Cancer Res.202127102678269710.1158/1078‑0432.CCR‑20‑4092 33414132
    [Google Scholar]
  9. LongG.V. SwetterS.M. MenziesA.M. GershenwaldJ.E. ScolyerR.A. Cutaneous melanoma.Lancet20234021040048550210.1016/S0140‑6736(23)00821‑8 37499671
    [Google Scholar]
  10. DominguesB. LopesJ. SoaresP. PópuloH. Melanoma treatment in review.ImmunoTargets Ther.20187354910.2147/ITT.S134842 29922629
    [Google Scholar]
  11. Advancing cancer therapy.Nat. Can.20212324524610.1038/s43018‑021‑00192‑x 35121963
    [Google Scholar]
  12. SoengasM.S. LoweS.W. Apoptosis and melanoma chemoresistance.Oncogene200322203138315110.1038/sj.onc.1206454 12789290
    [Google Scholar]
  13. ElmoreS. Apoptosis: A review of programmed cell death.Toxicol. Pathol.200735449551610.1080/01926230701320337 17562483
    [Google Scholar]
  14. FuldaS. Apoptosis pathways and their therapeutic exploitation in pancreatic cancer.J. Cell. Mol. Med.20091371221122710.1111/j.1582‑4934.2009.00748.x 19382915
    [Google Scholar]
  15. ChenP. JiX.Y. FengJ.T. WangX.Q. ZhangB. The synergistic mechanism of Chelidonium majus alkaloids on melanoma treatment via a multi-strategy insight.Molecules20242922541210.3390/molecules29225412 39598801
    [Google Scholar]
  16. NeophytouC.M. TrougakosI.P. ErinN. PapageorgisP. Apoptosis deregulation and the development of cancer multi-drug resistance.Cancers (Basel)20211317436310.3390/cancers13174363 34503172
    [Google Scholar]
  17. HanahanD. WeinbergR.A. Hallmarks of cancer: The next generation.Cell2011144564667410.1016/j.cell.2011.02.013 21376230
    [Google Scholar]
  18. KoolivandZ. BahreiniF. RayzanE. RezaeiN. Inducing apoptosis in acute myeloid leukemia; mechanisms and limitations.Heliyon2025111e4135510.1016/j.heliyon.2024.e41355 39811307
    [Google Scholar]
  19. TarhiniA.A. KirkwoodJ.M. TawbiH. GoodingW.E. IslamM.F. AgarwalaS.S. Safety and efficacy of arsenic trioxide for patients with advanced metastatic melanoma.Cancer200811251131113810.1002/cncr.23284 18286511
    [Google Scholar]
  20. JanR. ChaudhryG.S. Understanding apoptosis and apoptotic pathways targeted cancer therapeutics.Adv. Pharm. Bull.20199220521810.15171/apb.2019.024 31380246
    [Google Scholar]
  21. AshkenaziA. HerbstR.S. To kill a tumor cell: The potential of proapoptotic receptor agonists.J. Clin. Invest.200811861979199010.1172/JCI34359 18523647
    [Google Scholar]
  22. FuldaS. Targeting apoptosis for anticancer therapy.Semin. Cancer Biol.201531848810.1016/j.semcancer.2014.05.002 24859747
    [Google Scholar]
  23. YuC.T.R. LiaoY.T.A. ChiangC.Y.N. ChenJ.M.M. PanH.Y.B. PanC.Y. JiangW.J. TsaiJ.R. YangT.Y. TengC.L.J. Doxorubicin synergizes bortezomib-induced multiple myeloma cell death by inhibiting aggresome formation and augmenting endoplasmic reticulum/Golgi stress and apoptosis.J. Transl. Med.2024221109510.1186/s12967‑024‑05920‑2 39623468
    [Google Scholar]
  24. BellaM.D. TaitA. ParentiC. BondiM. QuaglioG. S-aryl(tetramethyl)isothiouronium salts as possible antimicrobial agents, I.Arch. Pharm. (Weinheim)1986319545145610.1002/ardp.19863190513 3089193
    [Google Scholar]
  25. VenkatachalamT. VassilevA. BenyunovA. GrigoriantsO. TibblesH. UckunF. Stereochemistry as a determinant of the anti-leukemic potency of halopyridyl and thiazolyl thiourea compounds.Lett. Drug Des. Discov.20074531832610.2174/157018007780867870
    [Google Scholar]
  26. El-HenawyA. KhowdiaryM. BadawiA. SolimanH. In vivo anti-leukemia, quantum chemical calculations and ADMET investigations of some quaternary and isothiouronium surfactants.Pharmaceuticals (Basel)20136563464910.3390/ph6050634 24276171
    [Google Scholar]
  27. FerreiraM. AssunçãoL.S. Filippin-MonteiroF.B. Creczynski-PasaT.B. SáM.M. Synthesis of 1,3-thiazine-2,4-diones with potential anticancer activity.Eur. J. Med. Chem.20137041141810.1016/j.ejmech.2013.10.017 24177368
    [Google Scholar]
  28. CisilottoJ. FerreiraM. Filippin-MonteiroF.B. BortoluzziA.J. SaM.M. Creczynski-PasaT.B. Isothiouronium salts reduce NRAS expression, induce apoptosis and decrease invasion of melanoma cells.Anticancer. Agents Med. Chem.201515335336210.2174/1871520614666141130125148 25469513
    [Google Scholar]
  29. CohenS. GelberC. NatanM. BaninE. Corem-SalkmonE. MargelS. Synthesis and characterization of crosslinked polyisothiouronium methylstyrene nanoparticles of narrow size distribution for antibacterial and antibiofilm applications.J. Nanobiotechnology20161415610.1186/s12951‑016‑0208‑7 27388790
    [Google Scholar]
  30. WangD.P. WuL.H. LiR. HeN. ZhangQ.Y. ZhaoC.Y. JiangT. A novel aldisine derivative exhibits potential antitumor effects by targeting JAK/STAT3 signaling.Mar. Drugs202321421810.3390/md21040218 37103357
    [Google Scholar]
  31. FerreiraM. AssunçãoL.S. SilvaA.H. Filippin-MonteiroF.B. Creczynski-PasaT.B. SáM.M. Allylic isothiouronium salts: The discovery of a novel class of thiourea analogues with antitumor activity.Eur. J. Med. Chem.201712915115810.1016/j.ejmech.2017.02.013 28222315
    [Google Scholar]
  32. YuH. AdedoyinA. ADME–Tox in drug discovery: Integration of experimental and computational technologies.Drug Discov. Today200381885286110.1016/S1359‑6446(03)02828‑9 12963322
    [Google Scholar]
  33. ChengF. LiW. LiuG. TangY. In silico ADMET prediction: Recent advances, current challenges and future trends.Curr. Top. Med. Chem.201313111273128910.2174/15680266113139990033 23675935
    [Google Scholar]
  34. van de WaterbeemdH. GiffordE. ADMET in silico modelling: Towards prediction paradise?Nat. Rev. Drug Discov.20032319220410.1038/nrd1032 12612645
    [Google Scholar]
  35. ZamanH. SaeedA. IsmailH. RashidM. Unveiling the cyclopropyl appended acyl thiourea derivatives as antimicrobial, α-amylase and proteinase K inhibitors: Design, synthesis, biological evaluation, molecular docking, DFT and ADMET studies.Arch. Biochem. Biophys.202576511030410.1016/j.abb.2025.110304 39814157
    [Google Scholar]
  36. EkinsS. LaneT.R. UrbinaF. PuhlA.C. In silico ADME/tox comes of age: Twenty years later.Xenobiotica202454735235810.1080/00498254.2023.2245049 37539466
    [Google Scholar]
  37. KarS. LeszczynskiJ. Open access in silico tools to predict the ADMET profiling of drug candidates.Expert Opin. Drug Discov.202015121473148710.1080/17460441.2020.1798926 32735147
    [Google Scholar]
  38. FerreiraL.L.G. AndricopuloA.D. ADMET modeling approaches in drug discovery.Drug Discov. Today20192451157116510.1016/j.drudis.2019.03.015 30890362
    [Google Scholar]
  39. CáceresE.L. TudorM. ChengA.C. Deep learning approaches in predicting ADMET properties.Future Med. Chem.202012221995199910.4155/fmc‑2020‑0259 33124448
    [Google Scholar]
  40. BeckersM. SturmN. SirockinF. FechnerN. StieflN. Prediction of small-molecule developability using large-scale in silico ADMET models.J. Med. Chem.20236620140471406010.1021/acs.jmedchem.3c01083 37815201
    [Google Scholar]
  41. AksamitN. TchagangA. LiY. Ombuki-BermanB. Hybrid fragment-SMILES tokenization for ADMET prediction in drug discovery.BMC Bioinformatics202425125510.1186/s12859‑024‑05861‑z 39090573
    [Google Scholar]
  42. FreshneyR.I. Culture of Animal Cells: A manual of basic techniques.2nd edNew YorkWiley-Liss198714
    [Google Scholar]
  43. Capes-DavisA. FreshneyR.I. Freshney’s Culture of animal cells: A manual of basic technique and specialized applications.8th edNew YorkWiley-Blackwel202116
    [Google Scholar]
  44. SáM.M. FerreiraM. BortoluzziA.J. FernandesL. CunhaS. Exploring the reaction of multifunctional allylic bromides with N,S-dinucleophiles: Isothiouronium salts and analogs as useful motifs to assemble the 1,3-thiazine core.ARKIVOC201020101130332110.3998/ark.5550190.0011.b24
    [Google Scholar]
  45. MosmannT. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays.J. Immunol. Meth.1983651-2556310.1016/0022‑1759(83)90303‑4 6606682
    [Google Scholar]
  46. DasS. RoayapalleyP.K. SakagamiH. UmemuraN. GoreckiD.K.J. HossainM. KawaseM. DasU. DimmockJ.R. Dimeric 3,5-Bis(benzylidene)-4-piperidones: Tumor-selective cytotoxicity and structure-activity relationships.Medicines (Basel)2024111310.3390/medicines11010003 38248717
    [Google Scholar]
  47. DainaA. MichielinO. ZoeteV. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules.Sci. Rep.2017714271710.1038/srep42717 28256516
    [Google Scholar]
  48. WahlA.F. DonaldsonK.L. FaircnildC. LeeF.Y.F. FosterS.A. DemersG.W. GallowayD.A. Loss of normal p53 function confers sensitization to Taxol by increasing G2/M arrest and apoptosis.Nat. Med.199621727910.1038/nm0196‑72 8564846
    [Google Scholar]
  49. AssunçãoL.S. KretzerI.F. SierraR.J.A. de Mello JuniorL.J.; SilvaA.H. de Medeiros OliveiraE. FerreiraM. SáM.M. Creczynski-PasaT.B. Antitumor activity of methyl (Z)-2-(isothioureidomethyl)-2-pentenoate hydrobromide against leukemia cell lines via mitotic arrest and apoptotic pathways.Biochim. Biophys. Acta, Gen. Subj.2019186391332134210.1016/j.bbagen.2019.05.018 31170497
    [Google Scholar]
  50. LicaJ.J. WieczórM. GrabeG.J. HeldtM. JanczM. MisiakM. GucwaK. BrankiewiczW. MaciejewskaN. StupakA. BagińskiM. RolkaK. HellmannA. SkładanowskiA. Effective Drug concentration and selectivity depends on fraction of primitive cells.Int. J. Mol. Sci.2021229493110.3390/ijms22094931 34066491
    [Google Scholar]
  51. van den BoschQ.C.C. KiliçE. BrosensE. Uveal Melanoma Zebrafish Xenograft Models illustrate the mutation status-dependent effect of compound synergism or antagonism.Invest. Ophthalmol. Vis. Sci.202465102610.1167/iovs.65.10.26 39163035
    [Google Scholar]
  52. SherrC.J. Principles of tumor suppression.Cell2004116223524610.1016/S0092‑8674(03)01075‑4 14744434
    [Google Scholar]
  53. ClarkeP.R. AllanL.A. Cell-cycle control in the face of damage – a matter of life or death.Trends Cell Biol.2009193899810.1016/j.tcb.2008.12.003 19168356
    [Google Scholar]
  54. AlshwyehH.A. Al-SheikhW.M.S. RasedeeA. AlnasserS.M. Al-QubaisiM.S. IbrahimW.N. Mangifera indica L. kernel ethanol extract inhibits cell viability and proliferation with induction of cell cycle arrest and apoptosis in lung cancer cells.Mol. Cell. Oncol.2024111229904610.1080/23723556.2023.2299046 38196561
    [Google Scholar]
  55. LeeJ.M. LeeW.H. ChoS.H. ParkJ.W. KwonH.N. KimJ.H. LeeS.H. YoonJ.H. ParkS. KimS.C. DRG2 levels in prostate cancer cell lines predict response to PARP inhibitor during docetaxel treatment.Investig. Clin. Urol.2025661566610.4111/icu.20240263 39791585
    [Google Scholar]
  56. KoronkiewiczM. KazimierczukZ. SzarpakK. ChilmonczykZ. Proapoptotic effects of new pentabromobenzylisothiouronium salts in a human prostate adenocarcinoma cell line.Acta Pol. Pharm.201269613251333 23285698
    [Google Scholar]
  57. HooseS.A. DuranC. MalikI. EslamfamS. ShasserreS.C. DowningS.S. HooverE.M. DowdK.E. SmithR.III PolymenisM. Systematic analysis of cell cycle effects of common drugs leads to the discovery of a suppressive interaction between gemfibrozil and fluoxetine.PLoS One201275e3650310.1371/journal.pone.0036503 22567160
    [Google Scholar]
  58. ArjonaM.I. DuchM. Hernández-PintoA. VázquezP. AgusilJ.P. Gómez-MartínezR. Redondo-HorcajoM. AmirthalingamE. Pérez-GarcíaL. SuárezT. PlazaJ.A. Intracellular mechanical drugs induce cell‐cycle altering and cell death.Adv. Mater.20223417210958110.1002/adma.202109581 35174908
    [Google Scholar]
  59. HiraA. ZhangJ. KadakiaM.P. TIP60 enhances cisplatin resistance via regulating ΔNp63α acetylation in SCC.Cell Death Dis.2024151287710.1038/s41419‑024‑07265‑6 39627186
    [Google Scholar]
  60. Środa-PomianekK. BaryckaA. GleńskM. RajbhandariM. SkoniecznaM. Palko-ŁabuzA. WesołowskaO. Pretreatment of melanoma cells with aqueous ethanol extract from Madhuca longifolia Bark strongly potentiates the activity of a low dose of dacarbazine.Int. J. Mol. Sci.20242513722010.3390/ijms25137220 39000329
    [Google Scholar]
  61. AndreeH.A. ReutelingspergerC.P. HauptmannR. HemkerH.C. HermensW.T. WillemsG.M. Binding of vascular anticoagulant alpha (VAC alpha) to planar phospholipid bilayers.J. Biol. Chem.199026594923492810.1016/S0021‑9258(19)34062‑1 2138622
    [Google Scholar]
  62. BeversE.M. ComfuriusP. DekkersD.W.C. ZwaalR.F.A. Lipid translocation across the plasma membrane of mammalian cells.Biochim. Biophys. Acta Mol. Cell Biol. Lipids19991439331733010.1016/S1388‑1981(99)00110‑9 10446420
    [Google Scholar]
  63. MizushimaN. Autophagy: Process and function.Genes Dev.200721222861287310.1101/gad.1599207 18006683
    [Google Scholar]
  64. LevineB. KroemerG. Autophagy in the pathogenesis of disease.Cell20081321274210.1016/j.cell.2007.12.018 18191218
    [Google Scholar]
  65. NodaN.N. InagakiF. Mechanisms of autophagy.Annu. Rev. Biophys.201544110112210.1146/annurev‑biophys‑060414‑034248 25747593
    [Google Scholar]
  66. LuoY. LiuR. ZhangH. WangH. YinH. TianG. WangB. YanY. DingZ. DaiJ. NiuL. YuanG. PanY. Amantadine against glioma via ROS-mediated apoptosis and autophagy arrest.Cell Death Dis.2024151183410.1038/s41419‑024‑07228‑x 39548081
    [Google Scholar]
  67. LipinskiC.A. LombardoF. DominyB.W. FeeneyP.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article.Adv. Drug Deliv. Rev.2001461-332610.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  68. VeberD.F. JohnsonS.R. ChengH.Y. SmithB.R. WardK.W. KoppleK.D. Molecular properties that influence the oral bioavailability of drug candidates.J. Med. Chem.200245122615262310.1021/jm020017n 12036371
    [Google Scholar]
  69. DongJ. YuanL. HuC. ChengX. QinJ.J. Strategies to overcome cancer multidrug resistance (MDR) through targeting P-glycoprotein (ABCB1): An updated review.Pharmacol. Ther.202324910848810.1016/j.pharmthera.2023.108488 37442207
    [Google Scholar]
  70. HakkolaJ. HukkanenJ. TurpeinenM. PelkonenO. Inhibition and induction of CYP enzymes in humans: An update.Arch. Toxicol.202094113671372210.1007/s00204‑020‑02936‑7 33111191
    [Google Scholar]
  71. LeeJ. BeersJ.L. GeffertR.M. JacksonK.D. A review of CYP-mediated drug interactions: Mechanisms and in vitro drug-drug interaction assessment.Biomolecules20241419910.3390/biom14010099 38254699
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206358941250413154017
Loading
/content/journals/acamc/10.2174/0118715206358941250413154017
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): Antitumor activity; apoptosis; B16F10; cancer; isothiouronium salts; melanoma
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test