
Full text loading...
Cancer is a global health burden. Despite advances in early detection and therapeutics, cancer prevalence continues to increase, underscoring the need for innovative therapeutic strategies. Dysregulation of cell death mechanisms is a hallmark of cancer that can lead to apoptosis evasion, which strongly contributes to tumor progression and therapy resistance. Isothiouronium salts have attracted attention as promising antitumor agents. This study aimed to evaluate the in vitro antitumor effect of an isothiouronium salt (IS-MF08) on the B16F10 melanoma cell line.
The antitumor properties of IS-MF08 were investigated by incubating B16F10 cells with the compound at different concentrations. Cytotoxicity was determined by the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) (MTT) assay, cell cycle arrest and cell death mechanisms by flow cytometry, and morphological alterations by transmission electron microscopy. Physicochemical parameters related to drug-likeness were predicted in silico using the SwissADME tool.
IS-MF08 was cytotoxic to melanoma cells, triggering cell cycle arrest and disrupting mitosis. The mechanism of cell death was compatible with apoptosis, as indicated by annexin V-FITC experiments and the relevant morphological changes in cell structure observed by transmission electron microscopy. SwissADME predicted that IS-MF08 has good physicochemical properties related to absorption and permeation.
The numerous mechanisms of cell death triggered by IS-MF08 and its drug-likeness make it an interesting molecule in the search for new antitumor compounds, contributing to therapies targeting the dysregulation of cellular mechanisms such as apoptosis.
Article metrics loading...
Full text loading...
References
Data & Media loading...
Supplements