Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Xanthene derivatives are a notable class of heterocyclic compounds widely studied for their significant biological impact. These molecules, found in both natural and synthetic forms, have attracted substantial scientific interest due to their broad spectrum of biological activities. The xanthene nucleus, in particular, is associated with a range of potential pharmaceutical properties, including antibacterial, antiviral, anti-inflammatory, anticancer, and antioxidant effects. Their structural flexibility allows for modifications that can enhance specific biological functions, making them valuable candidates in medicinal chemistry and drug development.

Objective

Multi-component reactions involving two equivalents of 5,5-dimethylcyclohexane-1,3-dione with aromatic aldehydes yield xanthene derivatives that are known for their biological activity. Additionally, fused xanthene derivatives are formed through subsequent heterocyclization reactions, resulting in compounds with a broad range of biological properties.

Methods

Various Xanthene derivatives incorporating thiophene and thiazole moieties were synthesized. Compounds were further subjected to heterocyclization reactions to produce fused xanthene derivatives with additional heterocyclic components, enhancing their biological activity. The cytotoxic effects of the synthesized compounds were assessed across six cancer cell lines. Inhibition studies on c-Met kinase and the PC-3 cell line were conducted.

Results

Additionally, the compounds' inhibitory activity against tyrosine kinases was evaluated, and morphological changes in the A549 cell line were observed with the two most potent compounds.

Conclusion

The synthesized heterocyclic compounds, derived from 5,5-dimethylcyclohexane-1,3-dione and related cyclohexanone derivatives, exhibited significant inhibitory effects across various cancer cell lines. Specifically, compounds , , , , , , , , , , , , , , , , , , and demonstrated high levels of inhibition, indicating potential for further exploration of xanthene-based heterocyclic compounds to enhance anticancer properties.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206350037241206062610
2025-01-16
2025-08-14
Loading full text...

Full text loading...

References

  1. RajanD. RajamanikandanR. IlanchelianM. Exploring the photophysical interaction of Xanthene dyes with gold nanorods by optical spectroscopic techniques and in-vitro cytotoxicity studies of dye-nano conjugates.Dyes Pigments202322011174610.1016/j.dyepig.2023.111746
    [Google Scholar]
  2. KhanZ. SekarN. Effect of spirocyclization of Xanthene dyes on linear and nonlinear optical properties by considering D-π-A and D-A-D Systems: DFT and TD-DFT approach.Spectrochim. Acta A Mol. Biomol. Spectrosc.202431412418310.1016/j.saa.2024.12418338554693
    [Google Scholar]
  3. SharmaS. MohanD. SinghN. SharmaM. SharmaA.K. Spectroscopic and lasing properties of Xanthene dyes encapsulated in silica and polymeric matrices.Optik (Stuttg.)20101211111810.1016/j.ijleo.2008.05.005
    [Google Scholar]
  4. KalampalikiA.D. VincentS. MallickS. LeH.N. BarnoinG. MoreY.W. BurgerA. DotsikasY. GikasE. MichelB.Y. KostakisI.K. Synthesis, spectroscopic and computational evaluation of a Xanthene-based fluorogenic derivatization reagent for the determination of primary amines.Dyes Pigments202119610979810.1016/j.dyepig.2021.109798
    [Google Scholar]
  5. WuY. LunW. ZengH. GuoX. YangM. LanQ. A facile near-infrared Xanthene fluorescence probe for visualizing of hypochlorous acid in vitro and in vivo.Anal. Chim. Acta2024129434229210.1016/j.aca.2024.34229238336413
    [Google Scholar]
  6. El MeskyM. ZgueniH. RhaziY. El-GuourramiO. AbchirO. JabhaM. NakkabiA. ChtitaS. AchamlaleS. ChalkhaM. ChebabeD. MabroukE.H. Prediction by DFT and synthesis of new Xanthene derivatives: Evaluation of their toxicity and antihyperlipidemic properties in vivo and in silico.J. Mol. Struct.2024131313870510.1016/j.molstruc.2024.138705
    [Google Scholar]
  7. MennanaI. NemouchiS. SehoutI. KridA. BoulcinaR. MechoucheM.S. DebacheA. Synthesis, characterization, in silico molecular docking and antibacterial properties of some tetrahydrobenzo[a]xanthene-11-ones.Org. Prep. Proced. Int.202456437939110.1080/00304948.2024.2327227
    [Google Scholar]
  8. RanjbariS. JarrahpourA. HeiranR. SepehriS. KianpourS. GhasemiY. Dibenzoxanthene-β-lactam hybrids as potential antioxidant and anticancer agents: Synthesis, biological evaluation, and docking study.J. Mol. Struct.2025132214045510.1016/j.molstruc.2024.140455
    [Google Scholar]
  9. KhakiD. NamaziH. AmininasabS.M. Synthesis and identification of new thermostable polyamides containing Xanthene units with antibacterial properties and relevant composite grafted with modified GO nanoparticles.React. Funct. Polym.202115810478010.1016/j.reactfunctpolym.2020.104780
    [Google Scholar]
  10. KaurN. DhairwalP. BrarA. KaurG. BhallaA. PrakashC. ChaudharyG.R. Amphiphilic metallosurfactants as potential scaffolds for facile fabrication of PdO-NiO nanocomposites for environmentally benign synthesis of Xanthene derivatives.Mater. Today Chem.20191410019410.1016/j.mtchem.2019.100194
    [Google Scholar]
  11. BongardR.D. LepleyM. GastonguayA. SyrlybaevaR.R. TalipovM.R. Jones LipinskiR.A. LeighN.R. BrahmbhattJ. KuttyR. RathoreR. RamchandranR. SemD.S. Discovery and characterization of halogenated Xanthene inhibitors of DUSP5 as potential photodynamic therapeutics.J. Photochem. Photobiol. Chem.201937511413110.1016/j.jphotochem.2019.01.00531839699
    [Google Scholar]
  12. NiasarF.N. MoradianM. Synthesis of some derivatives of 1,8-dioxo-octa-hydro Xanthene and 9-aryl-hexahydro acridine-1,8-dione using metal ion-exchanged NaY zeolite as heterogeneous catalyst.RSC Advances20241415103221033010.1039/D3RA03020B38549799
    [Google Scholar]
  13. ParhadA.R. AuteD.S. GadhaveA.G. UphadeB.K. Synthesis of tetrahydrobenzo[a]xanthene-11-ones by indium sulfide nanoparticles as green an efficient and reusable catalyst under solvent-free condition.J. Sulfur Chem.202445445947610.1080/17415993.2024.2350389
    [Google Scholar]
  14. KarimianA. NorouziM. EbrahimniaA. NozariA. Fe3O4@SiO2@APTES@MPIB-Mn(II) as an eco-friendly and magnetically recyclable nano catalyst for the green synthesis of various Xanthene derivatives.J. Mol. Struct.2024129713701410.1016/j.molstruc.2023.137014
    [Google Scholar]
  15. AlotaibiM.A. AlharthiA.I. QahtanT.F. AlotibiS. AliI. BakhtM.A. Green synthesis of Xanthene derivatives through visible light-driven photocatalysis using blackberry dye-sensitized TiO2.J. Alloys Compd.202497817338810.1016/j.jallcom.2023.173388
    [Google Scholar]
  16. NasseriS. KiasatA.R. Designing of a novel dual-function cross-linked wrinkled fibrous silica nanocomposite containing bipyridinum dichloride bridges and brønsted acidic unites and its catalytic application in Xanthene synthesis.J. Taiwan Inst. Chem. Eng.202415710540210.1016/j.jtice.2024.105402
    [Google Scholar]
  17. LuoY. ShiM. DongL. XieT. LarteyP.O. ZhaoS. GuoK. WangH. MiaoY. LiJ. Synthesis and properties of naphthylamine derivative functionalized spiro-[fluorene-9,9′-xanthene] for single-component white light-emitting diodes.J. Mol. Struct.2024131713912210.1016/j.molstruc.2024.139122
    [Google Scholar]
  18. MerrounY. ChehabS. El HallaouiA. GuediraT. BoukhrisS. GhailaneR. SouiziA. Synthesis, characterization, and catalytic application of SnP 2 O 7 for the highly efficient synthesis of Xanthene derivatives.Polycycl. Aromat. Compd.20244474349436310.1080/10406638.2023.2247128
    [Google Scholar]
  19. NaderiS. SandaroosR. PeimanS. MalekiB. Novel crowned cobalt (II) complex containing an ionic liquid: A green and efficient catalyst for the one-pot synthesis of chromene and Xanthene derivatives starting from benzylic alcohols.J. Phys. Chem. Solids202318011145910.1016/j.jpcs.2023.111459
    [Google Scholar]
  20. LondheG.S. GnanaprakasamB. FeCl 3 ⋅ 6H 2 O mediated sequential oxidative cleavage and spiro coupling of peroxyoxindole with cyclic‐1,3‐diketone/1‐naphthol for the synthesis of spirooxindolo‐xanthene derivatives.Asian J. Org. Chem.20231211e20230035810.1002/ajoc.202300358
    [Google Scholar]
  21. ThanarajC. AlagesanM. VelladuraiR. Reusable SiO 2 @NiO core-shell nanoparticles catalyzed efficient synthesis of 14-aryl-14 H -dibenzo [a,i] xanthene-8, 13-dione derivatives.Synth. Commun.202353232002201710.1080/00397911.2023.2261571
    [Google Scholar]
  22. TaibL.A. KeshavarzM. PanahimehrM. Introduction of click synthesized novel organic-inorganic solid acid catalysts for highly promoted synthesis of substituted xanthenes.Polycycl. Aromat. Compd.20234332233224910.1080/10406638.2022.2128380
    [Google Scholar]
  23. MohamadpourF. Supramolecular β -cyclodextrin as a reusable catalyst for Xanthene synthesis in aqueous medium.Org. Prep. Proced. Int.202355431732510.1080/00304948.2022.2141047
    [Google Scholar]
  24. AlsharifM.A. AhmedN. Issa AlahmdiM. MukhtarS. ParveenH. ObaidR.J. AlmalkiA.S.A. Divergent synthesis of fused Benzo-xanthene and oxazine derivatives via Cu-catalyst.J. Saudi Chem. Soc.202226610156810.1016/j.jscs.2022.101568
    [Google Scholar]
  25. ChawalaV. KhetoA. SharmaL. SehrawatR. Chapter Two - Microwave and ultrasound-assisted sample preparation as green analytical technology in food analysis.Green Chemistry in Food Analysis Conventional and Emerging Approaches20242543
    [Google Scholar]
  26. KajalK. ShakyaR. RashidM. NigamV. KurmiB.D. GuptaG.D. PatelP. Recent green chemistry approaches for pyrimidine derivatives as a potential anti-cancer agent: An overview (2013–2023).Sustain. Chem. Pharm.20243710137410.1016/j.scp.2023.101374
    [Google Scholar]
  27. VermaC. ChauhanD.S. AslamR. BanerjeeP. AslamJ. QuadriT.W. ZehraS. VermaD.K. QuraishiM.A. DubeyS. AlFantaziA. RasheedT. Principles and theories of green chemistry for corrosion science and engineering: design and application.Green Chem.20242684270435710.1039/D3GC05207A
    [Google Scholar]
  28. MajhiS. Applications of ultrasound in total synthesis of bioactive natural products: A promising green tool.Ultrason. Sonochem.20217710566510.1016/j.ultsonch.2021.10566534298310
    [Google Scholar]
  29. FujitaM. FurushoY. Ultrasound-assisted synthesis of substituted guanidines using 1H-pyrazole-1-carboxamidine and S-methylisothiouronium sulfate under solvent-free conditions.Tetrahedron201874324339434210.1016/j.tet.2018.06.057
    [Google Scholar]
  30. BhosaleM.A. UmmineniD. SasakiT. Nishio-HamaneD. BhanageB.M. Magnetically separable γ-Fe2O3 nanoparticles: An efficient catalyst for acylation of alcohols, phenols, and amines using sonication energy under solvent free condition.J. Mol. Catal. Chem.2015404-40581710.1016/j.molcata.2015.04.002
    [Google Scholar]
  31. SahuC.C. BiswasS. HommelsheimR. BolmC. Synthesis of α-ketothioamides with elemental sulfur under solvent-free conditions in a mixer mill.RSC Mechanochemistry202411384210.1039/D3MR00025G
    [Google Scholar]
  32. TasicG. MitrovicN. SimicM. KoravovicM. JovanovicP. PetkovicM. JovanovicM. IvkovicB. SavicV. Synthesis of hydantoins from N‐Boc protected amino acid derived amides using polymer‐supported PPh 3 / CBr 4 as a reagent.J. Heterocycl. Chem.202461575376010.1002/jhet.4802
    [Google Scholar]
  33. MaB. YaoJ. KnudsenT.Š. ChenZ. LiuB. ZhaoC. ZhuX. Simultaneous removal of typical flotation reagent 8-hydroxyquinoline and Cr(VI) through heterogeneous Fenton-like processes mediated by polydopamine functionalized ATP supported nZVI.J. Hazard. Mater.2022424Pt C12669810.1016/j.jhazmat.2021.12669834315632
    [Google Scholar]
  34. MoharebR.M. IbrahimR.A. Al FaroukF.O. AlwanE.S. Ionic liquid immobilized synthesis of new Xantheses derivatives and their antiproliferative, molecular docking and morphological studies.Anticancer. Agents Med. Chem.20242413990100810.2174/011871520629940724032411050538685778
    [Google Scholar]
  35. MoharebR.M. MukhtarS. ParveenH. AbdelazizM.A. AlwanE.S. Anti-proliferative, morphological and molecular docking studies of new thiophene derivatives and their strategy in ionic liquids immobilized reactions.Anticancer. Agents Med. Chem.202424969170810.2174/011871520626230723112210474838321904
    [Google Scholar]
  36. ReeveA.M. Reaction of dimedone and benzaldehyde: A discovery-based lab for second-semester organic chemistry.J. Chem. Educ.201592358258510.1021/ed400457c
    [Google Scholar]
  37. WangD.L. WuJ.Y. CuiQ.T. An efficient one-pot synthesis of thiophene-fused pyrido[3,2-a]azulenes via Gewald reaction.Chin. Chem. Lett.201425121591159410.1016/j.cclet.2014.07.007
    [Google Scholar]
  38. El-BoraiM.A. RizkH.F. IbrahimS.A. FaresA.K. An eco‐friendly synthesis and biological screening of fused heterocyclic compounds containing a thiophene moiety via Gewald reaction.J. Heterocycl. Chem.201956102787279510.1002/jhet.3658
    [Google Scholar]
  39. BarnesD.M. HaightA.R. HameuryT. McLaughlinM.A. MeiJ. TedrowJ.S. Riva TomaJ.D. New conditions for the synthesis of thiophenes via the Knoevenagel/Gewald reaction sequence. Application to the synthesis of a multitargeted kinase inhibitor.Tetrahedron20066249113111131910.1016/j.tet.2006.07.008
    [Google Scholar]
  40. SavickienėV. BieliauskasA. BelyakovS. ŠačkusA. ArbačiauskienėE. Synthesis and characterization of novel biheterocyclic compounds from 3‐alkoxy‐1 H ‐pyrazole‐4‐carbaldehydes via multicomponent reactions.J. Heterocycl. Chem.202461692794710.1002/jhet.4804
    [Google Scholar]
  41. ZhongY. Arylformylacetonitriles in multicomponent reactions leading to heterocycles.Eur. J. Org. Chem.2022202248e20220103810.1002/ejoc.202201038
    [Google Scholar]
  42. MandalA. KhanA.T. Recent advancement in the synthesis of quinoline derivatives via multicomponent reactions.Org. Biomol. Chem.202422122339235810.1039/D4OB00034J38444342
    [Google Scholar]
  43. JeliziH. ToumiA. AbdellaF.I.A. DaoudI. BoudrigaS. AlshamariA.K. AlanaziT.Y.A. AlrashdiA.A. EdziriH. KnorrM. KirchhoffJ.L. StrohmannC. Asymmetric synthesis of enantiopure tetracyclic dispirooxindolopyrrolidine-piperidones via microwave-assisted multicomponent reaction: Crystallographic analysis, antimicrobial activity and in silico studies.J. Mol. Struct.2024130813810410.1016/j.molstruc.2024.138104
    [Google Scholar]
  44. PeachM.L. TanN. ChoykeS.J. GiubellinoA. AthaudaG. BurkeT.R.Jr NicklausM.C. BottaroD.P. BottaroD.P. Directed discovery of agents targeting the Met tyrosine kinase domain by virtual screening.J. Med. Chem.200952494395110.1021/jm800791f19199650
    [Google Scholar]
  45. De BaccoF. LuraghiP. MedicoE. ReatoG. GirolamiF. PereraT. GabrieleP. ComoglioP.M. BoccaccioC. Induction of MET by ionizing radiation and its role in radioresistance and invasive growth of cancer.J. Natl. Cancer Inst.2011103864566110.1093/jnci/djr09321464397
    [Google Scholar]
  46. Jabbarzadeh KaboliP. ChenH.F. BabaeizadA. Roustai GeraylowK. YamaguchiH. HungM.C. Unlocking c-MET: A comprehensive journey into targeted therapies for breast cancer.Cancer Lett.202458821678010.1016/j.canlet.2024.21678038462033
    [Google Scholar]
  47. RajuR.M. JoyJ.A. ManjunathaiahR.N. JustinA. KumarB.R. EGFR as therapeutic target to develop new generation tyrosine kinase inhibitors against breast cancer: A critical.Results Chem.20247101490
    [Google Scholar]
  48. OrganS.L. TsaoM.S. An overview of the c-MET signaling pathway.Ther. Adv. Med. Oncol.201131_supplS7S1910.1177/175883401142255622128289
    [Google Scholar]
  49. JeffersM. RongS. Vande WoudeG.F. Hepatocyte growth factor/scatter factor—Met signaling in tumorigenicity and invasion/metastasis.J. Mol. Med. (Berl.)199674950551310.1007/BF002049768892055
    [Google Scholar]
  50. KnudsenB.S. GmyrekG.A. InraJ. ScherrD.S. VaughanE.D. NanusD.M. KattanM.W. GeraldW.L. Vande WoudeG.F. High expression of the Met receptor in prostate cancer metastasis to bone.Urology20026061113111710.1016/S0090‑4295(02)01954‑412475693
    [Google Scholar]
  51. HumphreyP.A. ZhuX. ZarnegarR. SwansonP.E. RatliffT.L. VollmerR.T. DayM.L. Hepatocyte growth factor and its receptor (c-MET) in prostatic carcinoma.Am. J. Pathol.199514723863967639332
    [Google Scholar]
  52. VerrasM. LeeJ. XueH. LiT.H. WangY. SunZ. The androgen receptor negatively regulates the expression of c-Met: implications for a novel mechanism of prostate cancer progression.Cancer Res.200767396797510.1158/0008‑5472.CAN‑06‑355217283128
    [Google Scholar]
  53. DaouiO. ElkhattabiS. ChtitaS. ElkhalabiR. ZgouH. BenjellounA.T. QSAR, molecular docking and ADMET properties in silico studies of novel 4,5,6,7-tetrahydrobenzo[D]-thiazol-2-Yl derivatives derived from dimedone as potent anti-tumor agents through inhibition of C-Met receptor tyrosine kinase.Heliyon202177e0746310.1016/j.heliyon.2021.e07463
    [Google Scholar]
  54. LiS. ZhaoY. WangK. GaoY. HanJ. CuiB. GongP. Discovery of novel 4-(2-fluorophenoxy)quinoline derivatives bearing 4-oxo-1,4-dihydrocinnoline-3-carboxamide moiety as c-Met kinase inhibitors.Bioorg. Med. Chem.201321112843285510.1016/j.bmc.2013.04.01323628470
    [Google Scholar]
  55. ZhangC. ShengM. lvJ. CaoY. ChenD. JiaL. SunY. RenY. LiL. WengY. YuW. Single-cell analysis reveals the immune heterogeneity and interactions in lungs undergoing hepatic ischemia–reperfusion.Int. Immunopharmacol.2023124Pt B11104310.1016/j.intimp.2023.11104337844464
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206350037241206062610
Loading
/content/journals/acamc/10.2174/0118715206350037241206062610
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test