Skip to content
2000
Volume 25, Issue 14
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Antibody-drug conjugates (ADCs) are a groundbreaking advancement in targeted cancer therapy, combining the precision of monoclonal antibodies with the potency of cytotoxic drugs. This review first outlines the components of ADCs and their mechanisms of action before providing a comprehensive overview of the current state of ADC technology. It covers both FDA-approved ADCs and those in various stages of clinical development, as well as future research directions. The review also explores recent innovations, such as bispecific antibodies and pro-body-drug conjugates, which offer promising new strategies for improving efficacy and minimizing off-target effects. The review emphasizes the need for ongoing research to optimize ADC design and develop novel approaches to enhance their therapeutic potential.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206348204241128063329
2025-01-06
2025-10-26
Loading full text...

Full text loading...

References

  1. Guerra-MartínM.D. Tejedor-BuenoM.S. Correa-CasadoM. Effectiveness of complementary therapies in cancer patients: A systematic review.Int. J. Environ. Res. Public Health2021183101710.3390/ijerph1803101733498883
    [Google Scholar]
  2. SiegelR.L. GiaquintoA.N. JemalA. Cancer statistics, 2024.CA Cancer J. Clin.2024741124910.3322/caac.2182038230766
    [Google Scholar]
  3. Global cancer burden grows amid growing need for services.Available from: https://www.who.int/es/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services (accessed 2024-10-08).
  4. LindleyC. McCuneJ.S. ThomasonT.E. LauderD. SaulsA. AdkinsS. SawyerW.T. Perception of chemotherapy side effects cancer versus noncancer patients.Cancer Pract.199972596510.1046/j.1523‑5394.1999.07205.x10352062
    [Google Scholar]
  5. KaurR. BhardwajA. GuptaS. Cancer treatment therapies: Traditional to modern approaches to combat cancers.Mol. Biol. Rep.202350119663967610.1007/s11033‑023‑08809‑337828275
    [Google Scholar]
  6. Targeted therapy to treat cancer.Available from: https://www.cancer.gov/espanol/cancer/tratamiento/tipos/terapia-dirigida (accessed 2024-10-08).
  7. SinghA.P. GuoL. VermaA. WongG.G.L. ThurberG.M. ShahD.K. Antibody coadministration as a strategy to overcome binding-site barrier for ADCs: A quantitative investigation.AAPS J.20202222810.1208/s12248‑019‑0387‑x31938899
    [Google Scholar]
  8. JinY. SchladetschM.A. HuangX. BalunasM.J. WiemerA.J. Stepping forward in antibody-drug conjugate development.Pharmacol. Ther.202222910791710.1016/j.pharmthera.2021.10791734171334
    [Google Scholar]
  9. YaghoubiS. KarimiM.H. LotfiniaM. GharibiT. Mahi-BirjandM. KaviE. HosseiniF. SinehS.K. KhatamiM. BagheriN. Abdollahpour-AlitappehM. Potential drugs used in the antibody–drug conjugate (ADC) architecture for cancer therapy.J. Cell. Physiol.20202351316410.1002/jcp.2896731215038
    [Google Scholar]
  10. PetersC. BrownS. Antibody–drug conjugates as novel anti-cancer chemotherapeutics.Biosci. Rep.2015354e0022510.1042/BSR2015008926182432
    [Google Scholar]
  11. FuZ. LiS. HanS. ShiC. ZhangY. Antibody drug conjugate: The “biological missile” for targeted cancer therapy.Signal Transduct. Target. Ther.2022719310.1038/s41392‑022‑00947‑735318309
    [Google Scholar]
  12. LiY. SuJ. TanS. LuoY. ZhangL. Research progress of novel antibody-drug conjugates in cancer treatment.Zhong Nan Da Xue Xue Bao Yi Xue Ban202449229630410.11817/J.ISSN.1672‑7347.2024.23041838755726
    [Google Scholar]
  13. Anticuerpos dirigidos - Cancer Research Institute.Available from: https://www.cancerresearch.org/es/treatment-types/targeted-antibodies (accessed 2024-10-08).
  14. AlleyS.C. OkeleyN.M. SenterP.D. Antibody–drug conjugates: Targeted drug delivery for cancer.Curr. Opin. Chem. Biol.201014452953710.1016/j.cbpa.2010.06.17020643572
    [Google Scholar]
  15. DamelinM. ZhongW. MyersJ. SapraP. Evolving strategies for target selection for antibody-drug conjugates.Pharm. Res.201532113494350710.1007/s11095‑015‑1624‑325585957
    [Google Scholar]
  16. AndersenM.H. Tumor microenvironment antigens.Semin. Immunopathol.202345225326410.1007/s00281‑022‑00966‑036175673
    [Google Scholar]
  17. ChenS. Antibody-Drug Conjugates and Cellular Metabolic DynamicsSpringer202310.1007/978‑981‑19‑5638‑6
    [Google Scholar]
  18. DoM. WuC.C.N. SonavaneP.R. JuarezE.F. AdamsS.R. RossJ. Rodriguez y BaenaA. PatelC. MesirovJ.P. CarsonD.A. AdvaniS.J. WillertK. A FZD7-specific antibody–drug conjugate induces ovarian tumor regression in preclinical models.Mol. Cancer Ther.202221111312410.1158/1535‑7163.MCT‑21‑054834667113
    [Google Scholar]
  19. ChangF.L. LeeC.C. TsaiK.C. LinT.Y. ChiangC.W. PanS.L. LeeY.C. An auristatin-based antibody-drug conjugate targeting EphA2 in pancreatic cancer treatment.Biochem. Biophys. Res. Commun.202368814921410.1016/j.bbrc.2023.14921437951154
    [Google Scholar]
  20. ShinmiD. NakanoR. MitamuraK. Suzuki-ImaizumiM. IwanoJ. IsodaY. EnokizonoJ. ShiraishiY. ArakawaE. TomizukaK. MasudaK. Novel anticarcinoembryonic antigen antibody–drug conjugate has antitumor activity in the existence of soluble antigen.Cancer Med.20176479880810.1002/cam4.100328211613
    [Google Scholar]
  21. BirrerM.J. MooreK.N. BetellaI. BatesR.C. Antibody-drug conjugate-based therapeutics: State of the science.J. Natl. Cancer Inst.2019111653854910.1093/jnci/djz03530859213
    [Google Scholar]
  22. LiangK. KhanM.S. KalimM. ZhanJ. The internalization and intracellular trafficking of ADCs.Antibody-Drug Conjugates and Cellular Metabolic DynamicsSpringerSingapore2023354410.1007/978‑981‑19‑5638‑6_4
    [Google Scholar]
  23. SamantasingharA. SunilduttN.P. AhmedF. SoomroA.M. SalihA.R.C. PariharP. MemonF.H. KimK.H. KangI.S. ChoiK.H. A comprehensive review of key factors affecting the efficacy of antibody drug conjugate.Biomed. Pharmacother.202316111440810.1016/j.biopha.2023.11440836841027
    [Google Scholar]
  24. TrailP.A. DubowchikG.M. LowingerT.B. Antibody drug conjugates for treatment of breast cancer: Novel targets and diverse approaches in ADC design.Pharmacol. Ther.201818112614210.1016/j.pharmthera.2017.07.01328757155
    [Google Scholar]
  25. DucryL. StumpB. Antibody-drug conjugates: Linking cytotoxic payloads to monoclonal antibodies.Bioconjug. Chem.201021151310.1021/bc900201919769391
    [Google Scholar]
  26. JoubertN. Denevault-SabourinC. BrydenF. Viaud-MassuardM.C. Towards antibody-drug conjugates and prodrug strategies with extracellular stimuli-responsive drug delivery in the tumor microenvironment for cancer therapy.Eur. J. Med. Chem.201714239341510.1016/j.ejmech.2017.08.04928911823
    [Google Scholar]
  27. MatsumuraY. Cancer stromal targeting therapy to overcome the pitfall of EPR effect.Adv. Drug Deliv. Rev.2020154-15514215010.1016/j.addr.2020.07.00332652119
    [Google Scholar]
  28. WangY.J. LiY.Y. LiuX.Y. LuX.L. CaoX. JiaoB.H. Marine antibody–drug conjugates: Design strategies and research progress.Mar. Drugs20171511810.3390/md1501001828098746
    [Google Scholar]
  29. WaldmannT. A. Monoclonal antibodies in diagnosis and therapy.Science199125250131657166210.1126/science.2047874
    [Google Scholar]
  30. WangB. YangC. JinX. DuQ. WuH. Dall’AcquaW. MazorY. Regulation of antibody-mediated complement-dependent cytotoxicity by modulating the intrinsic affinity and binding valency of IgG for target antigen.MAbs2020121169095910.1080/19420862.2019.169095931829766
    [Google Scholar]
  31. YuJ. SongY. TianW. How to select IgG subclasses in developing anti-tumor therapeutic antibodies.J. Hematol. Oncol.20201314510.1186/s13045‑020‑00876‑432370812
    [Google Scholar]
  32. VidarssonG. DekkersG. RispensT. IgG subclasses and allotypes: From structure to effector functions.Front. Immunol.20145OCT52010.3389/fimmu.2014.0052025368619
    [Google Scholar]
  33. High Affinity Restricts the Localization and Tumor Penetration of Single-Chain Fv Antibody Molecules1 | Cancer Research | American Association for Cancer Research.Available from: https://aacrjournals.org/cancerres/article/61/12/4750/507649/High-Affinity-Restricts-the-Localization-and-Tumor (accessed 2024-07-10).
  34. FujimoriK. CovellD.G. FletcherJ.E. WeinsteinJ.N. A modeling analysis of monoclonal antibody percolation through tumors: A binding-site barrier.J. Nucl. Med.1990317119111982362198
    [Google Scholar]
  35. TeicherB.A. MorrisJ. Antibody-drug conjugate targets, drugs, and linkers.Curr. Cancer Drug Targets202222646352910.2174/156800962266622022411053835209819
    [Google Scholar]
  36. GorovitsB. Krinos-FiorottiC. Proposed mechanism of off-target toxicity for antibody–drug conjugates driven by mannose receptor uptake.Cancer Immunol. Immunother.201362221722310.1007/s00262‑012‑1369‑323223907
    [Google Scholar]
  37. YamazoeS. KotapatiS. HoganJ.M. WestS.M. DengX.A. DiongS.J. ArbanasJ. NguyenT.A. JashnaniA. GuptaD. RajpalA. DollingerG. StropP. Impact of drug conjugation on thermal and metabolic stabilities of aglycosylated and N -glycosylated antibodies.Bioconjug. Chem.202233457658510.1021/acs.bioconjchem.1c0057235344340
    [Google Scholar]
  38. HayatS. AmirhosseinS. Antibody-drug conjugates: Smart weapons against cancer.Arch. Med. Sci.20201651257126210.5114/aoms.2019.83020
    [Google Scholar]
  39. KostovaV. DésosP. StarckJ.B. KotschyA. The chemistry behind ADCs.Pharmaceuticals202114544210.3390/ph1405044234067144
    [Google Scholar]
  40. TsuchikamaK. AnZ. Antibody-drug conjugates: Recent advances in conjugation and linker chemistries.Protein Cell201891334610.1007/s13238‑016‑0323‑027743348
    [Google Scholar]
  41. BeckA. D’AtriV. EhkirchA. FeketeS. Hernandez-AlbaO. GahoualR. Leize-WagnerE. FrançoisY. GuillarmeD. CianféraniS. Cutting-edge multi-level analytical and structural characterization of antibody-drug conjugates: Present and future.Expert Rev. Proteomics201916433736210.1080/14789450.2019.157821530706723
    [Google Scholar]
  42. ParitS. ManchareA. GholapA.D. MundheP. HatvateN. RojekarS. PatravaleV. Antibody-drug conjugates: A promising breakthrough in cancer therapy.Int. J. Pharm.202465912421110.1016/j.ijpharm.2024.12421138750981
    [Google Scholar]
  43. SheyiR. de la TorreB.G. AlbericioF. Linkers: An assurance for controlled delivery of antibody-drug conjugate.Pharmaceutics202214239610.3390/pharmaceutics1402039635214128
    [Google Scholar]
  44. EstrelaJ.M. OrtegaA. ObradorE. Glutathione in cancer biology and therapy.Crit. Rev. Clin. Lab. Sci.200643214318110.1080/1040836050052387816517421
    [Google Scholar]
  45. LambertJ.M. BerkenblitA. Antibody–drug conjugates for cancer treatment.Annu. Rev. Med.201869119120710.1146/annurev‑med‑061516‑12135729414262
    [Google Scholar]
  46. McCombsJ.R. OwenS.C. Antibody drug conjugates: Design and selection of linker, payload and conjugation chemistry.AAPS J.201517233935110.1208/s12248‑014‑9710‑825604608
    [Google Scholar]
  47. AshmanN. BarghJ.D. SpringD.R. Non-internalising antibody–drug conjugates.Chem. Soc. Rev.202251229182920210.1039/D2CS00446A36322071
    [Google Scholar]
  48. BarghJ.D. Isidro-LlobetA. ParkerJ.S. SpringD.R. Cleavable linkers in antibody–drug conjugates.Chem. Soc. Rev.201948164361437410.1039/C8CS00676H31294429
    [Google Scholar]
  49. KovtunY.V. GoldmacherV.S. Cell killing by antibody–drug conjugates.Cancer Lett.2007255223224010.1016/j.canlet.2007.04.01017553616
    [Google Scholar]
  50. ThomasA. TeicherB.A. HassanR. Antibody–drug conjugates for cancer therapy.Lancet Oncol.2016176e254e26210.1016/S1470‑2045(16)30030‑427299281
    [Google Scholar]
  51. HafeezU. ParakhS. GanH.K. ScottA.M. Antibody–drug conjugates for cancer therapy.Molecules20202520476410.3390/molecules2520476433081383
    [Google Scholar]
  52. MachJ.P. CarrelS. ForniM. RitschardJ. DonathA. AlbertoP. Tumor localization of radio-labeled antibodies against carcinoembryonic antigen in patients with carcinoma: A critical evaluation.N. Engl. J. Med.1980303151010.1056/NEJM1980070330301027189578
    [Google Scholar]
  53. TeicherB.A. ChariR.V.J. Antibody conjugate therapeutics: Challenges and potential.Clin. Cancer Res.201117206389639710.1158/1078‑0432.CCR‑11‑141722003066
    [Google Scholar]
  54. PonzianiS. Di VittorioG. PitariG. CiminiA.M. ArdiniM. GentileR. IacobelliS. SalaG. CaponeE. FlavellD.J. IppolitiR. GiansantiF. Antibody-drug conjugates: The new frontier of chemotherapy.Int. J. Mol. Sci.20202115551010.3390/ijms2115551032752132
    [Google Scholar]
  55. DragoJ.Z. ModiS. ChandarlapatyS. Unlocking the potential of antibody–drug conjugates for cancer therapy.Nat. Rev. Clin. Oncol.202118632734410.1038/s41571‑021‑00470‑833558752
    [Google Scholar]
  56. ChisA.A. DobreaC.M. ArseniuA.M. FrumA. RusL.L. CormosG. GeorgescuC. MorgovanC. ButucaA. GligorF.G. Vonica-TincuA.L. Antibody–drug conjugates—evolution and perspectives.Int. J. Mol. Sci.20242513696910.3390/ijms2513696939000079
    [Google Scholar]
  57. ChenH. LinZ. ArnstK. MillerD. LiW. Tubulin inhibitor-based antibody-drug conjugates for cancer therapy.Molecules2017228128110.3390/molecules2208128128763044
    [Google Scholar]
  58. DanN. SetuaS. KashyapV. KhanS. JaggiM. YallapuM. ChauhanS. Antibody-drug conjugates for cancer therapy: Chemistry to clinical implications.Pharmaceuticals20181123210.3390/ph1102003229642542
    [Google Scholar]
  59. GogiaP. AshrafH. BhasinS. XuY. Antibody–drug conjugates: A review of approved drugs and their clinical level of evidence.Cancers20231515388610.3390/cancers1515388637568702
    [Google Scholar]
  60. DamleN. FrostP. Antibody-targeted chemotherapy with immunoconjugates of calicheamicin.Curr. Opin. Pharmacol.20033438639010.1016/S1471‑4892(03)00083‑312901947
    [Google Scholar]
  61. HartleyJ.A. The development of pyrrolobenzodiazepines as antitumour agents.Expert Opin. Investig. Drugs201120673374410.1517/13543784.2011.57347721457108
    [Google Scholar]
  62. SuZ. XiaoD. XieF. LiuL. WangY. FanS. ZhouX. LiS. Antibody–drug conjugates: Recent advances in linker chemistry.Acta Pharm. Sin. B202111123889390710.1016/j.apsb.2021.03.04235024314
    [Google Scholar]
  63. LiM. ZhaoX. YuC. WangL. Antibody-drug conjugate overview: A state-of-the-art manufacturing process and control strategy.Pharm. Res.202441341944010.1007/s11095‑023‑03649‑z38366236
    [Google Scholar]
  64. JunutulaJ.R. RaabH. ClarkS. BhaktaS. LeipoldD.D. WeirS. ChenY. SimpsonM. TsaiS.P. DennisM.S. LuY. MengY.G. NgC. YangJ. LeeC.C. DuenasE. GorrellJ. KattaV. KimA. McDormanK. FlagellaK. VenookR. RossS. SpencerS.D. Lee WongW. LowmanH.B. VandlenR. SliwkowskiM.X. SchellerR.H. PolakisP. MalletW. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index.Nat. Biotechnol.200826892593210.1038/nbt.148018641636
    [Google Scholar]
  65. WangS. LiY. MeiJ. WuS. YingG. YiY. Precision engineering of antibodies: A review of modification and design in the Fab region.Int. J. Biol. Macromol.2024275Pt 213373010.1016/j.ijbiomac.2024.13373038986973
    [Google Scholar]
  66. AdhikariP. ZachariasN. OhriR. SadowskyJ. Site-specific conjugation to cys-engineered THIOMAB™ antibodies.Methods Mol. Biol.20202078516910.1007/978‑1‑4939‑9929‑3_431643049
    [Google Scholar]
  67. AxupJ.Y. BajjuriK.M. RitlandM. HutchinsB.M. KimC.H. KazaneS.A. HalderR. ForsythJ.S. SantidrianA.F. StafinK. LuY. TranH. SellerA.J. BirocS.L. SzydlikA. PinkstaffJ.K. TianF. SinhaS.C. Felding-HabermannB. SmiderV.V. SchultzP.G. Synthesis of site-specific antibody-drug conjugates using unnatural amino acids.Proc. Natl. Acad. Sci. USA201210940161011610610.1073/pnas.121102310922988081
    [Google Scholar]
  68. OkeleyN.M. TokiB.E. ZhangX. JeffreyS.C. BurkeP.J. AlleyS.C. SenterP.D. Metabolic engineering of monoclonal antibody carbohydrates for antibody-drug conjugation.Bioconjug. Chem.201324101650165510.1021/bc400269524050213
    [Google Scholar]
  69. YamazakiS. MatsudaY. Tag‐free enzymatic modification for antibody−drug conjugate production.ChemistrySelect2022748e20220375310.1002/slct.202203753
    [Google Scholar]
  70. LyonR.P. BoveeT.D. DoroninaS.O. BurkeP.J. HunterJ.H. Neff-LaFordH.D. JonasM. AndersonM.E. SetterJ.R. SenterP.D. Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index.Nat. Biotechnol.201533773373510.1038/nbt.321226076429
    [Google Scholar]
  71. StropP. DelariaK. FolettiD. WittJ.M. Hasa-MorenoA. PoulsenK. CasasM.G. DorywalskaM. FariasS. PiosA. LuiV. DushinR. ZhouD. NavaratnamT. TranT.T. SuttonJ. LindquistK.C. HanB. LiuS.H. SheltonD.L. PonsJ. RajpalA. Site-specific conjugation improves therapeutic index of antibody drug conjugates with high drug loading.Nat. Biotechnol.201533769469610.1038/nbt.3274
    [Google Scholar]
  72. HamblettK.J. SenterP.D. ChaceD.F. SunM.M.C. LenoxJ. CervenyC.G. KisslerK.M. BernhardtS.X. KopchaA.K. ZabinskiR.F. MeyerD.L. FranciscoJ.A. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate.Clin. Cancer Res.200410207063707010.1158/1078‑0432.CCR‑04‑078915501986
    [Google Scholar]
  73. DuerrC. FriessW. Antibody-drug conjugates- stability and formulation.Eur. J. Pharm. Biopharm.201913916817610.1016/j.ejpb.2019.03.02130940541
    [Google Scholar]
  74. RiccardiF. Dal BoM. MacorP. ToffoliG. A comprehensive overview on antibody-drug conjugates: from the conceptualization to cancer therapy.Front. Pharmacol.202314127408810.3389/fphar.2023.127408837790810
    [Google Scholar]
  75. UdofaE. SankholkarD. MitragotriS. ZhaoZ. Antibody drug conjugates in the clinic.Bioeng. Transl. Med.2024e10677e1067710.1002/btm2.10677
    [Google Scholar]
  76. TarantinoP. Carmagnani PestanaR. CortiC. ModiS. BardiaA. TolaneyS.M. CortesJ. SoriaJ.C. CuriglianoG. Antibody–drug conjugates: Smart chemotherapy delivery across tumor histologies.CA Cancer J. Clin.202272216518210.3322/caac.2170534767258
    [Google Scholar]
  77. ThurberG. SchmidtM. WittrupK. Factors determining antibody distribution in tumors.Trends Pharmacol. Sci.2008292576110.1016/j.tips.2007.11.00418179828
    [Google Scholar]
  78. NejadmoghaddamM.R. Minai-TehraniA. GhahremanzadehR. MahmoudiM. DinarvandR. ZarnaniA.H. Antibody-drug conjugates: Possibilities and challenges.Avicenna J. Med. Biotechnol.201911132330800238
    [Google Scholar]
  79. TakakuraY. TakahashiY. Strategies for persistent retention of macromolecules and nanoparticles in the blood circulation.J. Control. Release202235048649310.1016/j.jconrel.2022.05.06336029894
    [Google Scholar]
  80. ShindeV.R. ReviN. MurugappanS. SinghS.P. RenganA.K. Enhanced permeability and retention effect: A key facilitator for solid tumor targeting by nanoparticles.Photodiagn. Photodyn. Ther.20223910291510.1016/j.pdpdt.2022.10291535597441
    [Google Scholar]
  81. BanderN.H. Antibody-drug conjugate target selection: Critical factors.Methods Mol. Biol.20131045294010.1007/978‑1‑62703‑541‑5_223913139
    [Google Scholar]
  82. GiddabasappaA. GuptaV.R. NorbergR. GuptaP. SpilkerM.E. WentlandJ. RagoB. EswarakaJ. LealM. SapraP. Biodistribution and targeting of anti-5T4 antibody–drug conjugate using fluorescence molecular tomography.Mol. Cancer Ther.201615102530254010.1158/1535‑7163.MCT‑15‑101227466353
    [Google Scholar]
  83. WichmannC.W. BurvenichI.J.G. GuoN. RigopoulosA. McDonaldA. CaoD. O’KeefeG.J. GongS.J. GanH.K. ScottF.E. PoreN. CoatsS. ScottA.M. Preclinical radiolabeling, in vivo biodistribution and positron emission tomography of a novel pyrrolobenzodiazepine (PBD)-based antibody drug conjugate targeting ASCT2.Nucl. Med. Biol.2023122-12310836610.1016/j.nucmedbio.2023.10836637473513
    [Google Scholar]
  84. AlleyS.C. ZhangX. OkeleyN.M. AndersonM. LawC.L. SenterP.D. BenjaminD.R. The pharmacologic basis for antibody-auristatin conjugate activity.J. Pharmacol. Exp. Ther.2009330393293810.1124/jpet.109.15554919498104
    [Google Scholar]
  85. WeiQ. YangT. ZhuJ. ZhangZ. YangL. ZhangY. HuC. ChenJ. WangJ. TianX. ShimuraT. FangJ. YingJ. FanM. GuoP. ChengX. Spatiotemporal quantification of HER2-targeting antibody–drug conjugate bystander activity and enhancement of solid tumor penetration.Clin. Cancer Res.202430598499710.1158/1078‑0432.CCR‑23‑172538113039
    [Google Scholar]
  86. TarantinoP. RicciutiB. PradhanS.M. TolaneyS.M. Optimizing the safety of antibody–drug conjugates for patients with solid tumours.Nat. Rev. Clin. Oncol.202320855857610.1038/s41571‑023‑00783‑w37296177
    [Google Scholar]
  87. MaasB.M. CaoY. A minimal physiologically based pharmacokinetic model to investigate FcRn-mediated monoclonal antibody salvage: Effects of K on, K off , endosome trafficking, and animal species.MAbs20181081322133110.1080/19420862.2018.150664830130450
    [Google Scholar]
  88. RedmanJ.M. HillE.M. AlDeghaitherD. WeinerL.M. Mechanisms of action of therapeutic antibodies for cancer.Mol. Immunol.20156722 Pt A284510.1016/j.molimm.2015.04.00225911943
    [Google Scholar]
  89. NarvekarA. PardeshiA. JainR. DandekarP. ADCC enhancement: A conundrum or a boon to mAb therapy?Biologicals202279101810.1016/j.biologicals.2022.08.00636085129
    [Google Scholar]
  90. ConnerS.D. SchmidS.L. Regulated portals of entry into the cell.Nature20034226927374410.1038/nature0145112621426
    [Google Scholar]
  91. ChalouniC. DollS. Fate of antibody-drug conjugates in cancer cells.J. Exp. Clin. Cancer Res.20183712010.1186/s13046‑017‑0667‑129409507
    [Google Scholar]
  92. StaudacherA.H. LiY. LiapisV. HouJ.J.C. ChinD. DolezalO. AdamsT.E. van BerkelP.H. BrownM.P. APOMAB antibody–drug conjugates targeting dead tumor cells are effective in vivo.Mol. Cancer Ther.201918233534510.1158/1535‑7163.MCT‑18‑084230413648
    [Google Scholar]
  93. StaudacherA.H. BrownM.P. Antibody drug conjugates and bystander killing: Is antigen-dependent internalisation required?Br. J. Cancer2017117121736174210.1038/bjc.2017.36729065110
    [Google Scholar]
  94. KalimM. ChenJ. WangS. LinC. UllahS. LiangK. DingQ. ChenS. ZhanJ.B. Intracellular trafficking of new anticancer therapeutics: Antibody–drug conjugates.Drug Des. Devel. Ther.2017112265227610.2147/DDDT.S13557128814834
    [Google Scholar]
  95. WangY. TianZ. ThirumalaiD. ZhangX. Neonatal Fc receptor (FcRn): A novel target for therapeutic antibodies and antibody engineering.J. Drug Target.201422426927810.3109/1061186X.2013.87503024404896
    [Google Scholar]
  96. ChariR.V.J. MillerM.L. WiddisonW.C. Antibody-drug conjugates: An emerging concept in cancer therapy.Angew. Chem. Int. Ed.201453153796382710.1002/anie.20130762824677743
    [Google Scholar]
  97. NajminejadZ. DehghaniF. MirzaeiY. MerA.H. SaghiS.A. AbdolvahabM.H. BagheriN. MeyfourA. JafariA. JahandidehS. GharibiT. AmirkhaniZ. DelamH. MashatanN. ShahsavaraniH. Abdollahpour-AlitappehM. Clinical perspective: Antibody-drug conjugates for the treatment of HER2-positive breast cancer.Mol. Ther.20233171874190310.1016/j.ymthe.2023.03.01936950736
    [Google Scholar]
  98. KovtunY.V. AudetteC.A. YeY. XieH. RubertiM.F. PhinneyS.J. LeeceB.A. ChittendenT. BlättlerW.A. GoldmacherV.S. Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen.Cancer Res.20066663214322110.1158/0008‑5472.CAN‑05‑397316540673
    [Google Scholar]
  99. KesireddyM. KothapalliS.R. GundepalliS.G. AsifS. A review of the current FDA-approved antibody-drug conjugates: Landmark clinical trials and indications.Pharmaceut. Med.2024381395410.1007/s40290‑023‑00505‑838019416
    [Google Scholar]
  100. TongJ.T.W. HarrisP.W.R. BrimbleM.A. KavianiniaI. An insight into FDA approved antibody-drug conjugates for cancer therapy.Molecules20212619584710.3390/molecules2619584734641391
    [Google Scholar]
  101. JunttilaT.T. LiG. ParsonsK. PhillipsG.L. SliwkowskiM.X. Trastuzumab-DM1 (T-DM1) retains all the mechanisms of action of trastuzumab and efficiently inhibits growth of lapatinib insensitive breast cancer.Breast Cancer Res. Treat.2011128234735610.1007/s10549‑010‑1090‑x20730488
    [Google Scholar]
  102. TurshudzhyanA. The role of ado-trastuzumab emtansine in current clinical practice.J. Oncol. Pharm. Pract.202127115015510.1177/107815522095186232838683
    [Google Scholar]
  103. NguyenX. HooperM. BorlagdanJ.P. PalumboA. A review of fam-trastuzumab deruxtecan-nxki in HER2-positive breast cancer.Ann. Pharmacother.202155111410141810.1177/106002802199832033629601
    [Google Scholar]
  104. ShafiqueM.A. HaseebA. SiddiqM.A. MussaratA. RangwalaH.S. MustafaM.S. Current and emerging treatments for Urothelial carcinoma: A focus on enfortumab vedotin.Cancer Manag. Res.20231569970610.2147/CMAR.S41800937485038
    [Google Scholar]
  105. SyedY.Y. Sacituzumab govitecan: First approval.Drugs202080101019102510.1007/s40265‑020‑01337‑532529410
    [Google Scholar]
  106. MarkhamA. Tisotumab vedotin: First approval.Drugs202181182141214710.1007/s40265‑021‑01633‑834748188
    [Google Scholar]
  107. Tisotumab vedotin marketing authorization application validated by european medicines agency for treatment of recurrent or metastatic cervical cancer - genmab a/s.Available from: https://ir.genmab.com/news-releases/news-release-details/tisotumab-vedotin-marketing-authorization-application-validated/
  108. Tisotumab vedotin marketing authorization application validated by european medicines agency for treatment of recurrent or metastatic cervical cancer | pfizer.Available from: https://www.pfizer.com/news/announcements/tisotumab-vedotin-marketing-authorization-application-validated-european
  109. HeoY.A. Mirvetuximab soravtansine: First approval.Drugs202383326527310.1007/s40265‑023‑01834‑336656533
    [Google Scholar]
  110. Immunogen announces european medicines agency acceptance of marketing authorization application for mirvetuximab soravtansine in platinum-resistant ovarian cancer.Available from: https://investor.immunogen.com/news-releases/news-release-details/immunogen-announces-european-medicines-agency-acceptance
  111. DeeksE.D. Disitamab vedotin: First approval.Drugs202181161929193510.1007/s40265‑021‑01614‑x34661865
    [Google Scholar]
  112. RemeGen Voluntary announcement-nmpa approves ind applications for disitamab vedotin or in combination with toripalimab or sequential chemotherapy for treatment of breast cancer patients and disitamab vedotin in combination with toripalim.Available from: https://www.remegen.com/index.php?v=show&cid=113&id=1087
  113. RemeGen Voluntary announcement-nmpa approves ind application for disitamab vedotin in combination with radiotherapy in the treatment of patients with advanced solid tumors.Available from: https://www.remegen.com/index.php?v=show&cid=113&id=1131
  114. RemeGen Voluntary announcement-nmpa has approved ind application for disitamab vedotin for injection, given intravenously, in combination with gemcitabine hydrochloride for injection, given intravesically, for treatment of NMIBC.Available from: https://www.remegen.com/index.php?v=show&cid=113&id=1024
  115. MiyazakiN.L. FurusawaA. ChoykeP.L. KobayashiH. Review of RM-1929 near-infrared photoimmunotherapy clinical efficacy for unresectable and/or recurrent head and neck squamous cell carcinoma.Cancers20231521511710.3390/cancers1521511737958293
    [Google Scholar]
  116. JenE.Y. KoC.W. LeeJ.E. Del ValleP.L. AydanianA. JewellC. NorsworthyK.J. PrzepiorkaD. NieL. LiuJ. ShethC.M. ShapiroM. FarrellA.T. PazdurR. FDA approval: Gemtuzumab ozogamicin for the treatment of adults with newly diagnosed CD33-positive acute myeloid leukemia.Clin. Cancer Res.201824143242324610.1158/1078‑0432.CCR‑17‑317929476018
    [Google Scholar]
  117. Van Der WeydenC. DickinsonM. WhisstockJ. PrinceH.M. Brentuximab vedotin in T-cell lymphoma.Expert Rev. Hematol.201912151910.1080/17474086.2019.155839930526166
    [Google Scholar]
  118. LambY.N. Inotuzumab ozogamicin: First global approval.Drugs201777141603161010.1007/s40265‑017‑0802‑528819740
    [Google Scholar]
  119. LinA.Y. DinnerS.N. Moxetumomab pasudotox for hairy cell leukemia: Preclinical development to FDA approval.Blood Adv.20193192905291010.1182/bloodadvances.201900050731594764
    [Google Scholar]
  120. DhillonS. Moxetumomab pasudotox: First global approval.Drugs201878161763176710.1007/s40265‑018‑1000‑930357593
    [Google Scholar]
  121. AstraZeneca will withdraw leukemia drug lumoxiti from US market.Available from: https://www.empr.com/home/news/safety-alerts-and-recalls/astrazeneca-will-withdraw-leukemia-drug-lumoxiti-from-us-market/
  122. Hairy cell leukemia drug moxetumomab pasudotox-tdfk to be withdrawn in the united states market.Available from: https://www.cancernetwork.com/view/hairy-cell-leukemia-drug-moxetumomab-pasudotox-tdfk-to-be-withdrawn-in-the-united-states-market
  123. DeeksE.D. Polatuzumab vedotin: First global approval.Drugs201979131467147510.1007/s40265‑019‑01175‑031352604
    [Google Scholar]
  124. MarkhamA. Belantamab mafodotin: First approval.Drugs202080151607161310.1007/s40265‑020‑01404‑x32936437
    [Google Scholar]
  125. LeeA. Loncastuximab tesirine: First approval.Drugs202181101229123310.1007/s40265‑021‑01550‑w34143407
    [Google Scholar]
  126. Home.Available from: https://clinicaltrials.gov/
  127. Study details | A prospective, multi-center, phase 4 study to assess the safety of trastuzumab deruxtecan, an anti-her2-antibody drug conjugate in indian patients with unresectable or metastatic her2-positive breast cancer who have received a prior anti-her2-based regimen.Available from: https://clinicaltrials.gov/study/NCT06429761?term=NCT06429761&rank=1
  128. Study details | Study of brentuximab vedotin in participants with relapsed or refractory systemic anaplastic large cell lymphoma.Available from: https://clinicaltrials.gov/study/NCT01909934?term=NCT01909934&rank=1
  129. MetrangoloV. EngelholmL.H. Antibody–drug conjugates: The dynamic evolution from conventional to next-generation constructs.Cancers202416244710.3390/cancers1602044738275888
    [Google Scholar]
  130. BeckA. GoetschL. DumontetC. CorvaïaN. Strategies and challenges for the next generation of antibody–drug conjugates.Nat. Rev. Drug Discov.201716531533710.1038/nrd.2016.26828303026
    [Google Scholar]
  131. GrünewaldJ. JinY. VanceJ. ReadJ. WangX. WanY. ZhouH. OuW. KlockH.E. PetersE.C. UnoT. BrockA. GeierstangerB.H. Optimization of an enzymatic antibody–drug conjugation approach based on coenzyme a analogs.Bioconjug. Chem.20172871906191510.1021/acs.bioconjchem.7b0023628590752
    [Google Scholar]
  132. DorywalskaM. StropP. Melton-WittJ.A. Hasa-MorenoA. FariasS.E. Galindo CasasM. DelariaK. LuiV. PoulsenK. LooC. KrimmS. BoltonG. MoineL. DushinR. TranT.T. LiuS.H. RickertM. FolettiD. SheltonD.L. PonsJ. RajpalA. Effect of attachment site on stability of cleavable antibody drug conjugates.Bioconjug. Chem.201526465065910.1021/bc500574725643134
    [Google Scholar]
  133. De CeccoM. GalbraithD.N. McDermottL.L. What makes a good antibody–drug conjugate?Expert Opin. Biol. Ther.202121784184710.1080/14712598.2021.188056233605810
    [Google Scholar]
  134. Dagogo-JackI. ShawA.T. Tumour heterogeneity and resistance to cancer therapies.Nat. Rev. Clin. Oncol.2018152819410.1038/nrclinonc.2017.16629115304
    [Google Scholar]
  135. MaruaniA. Bispecifics and antibody–drug conjugates: A positive synergy.Drug Discov. Today. Technol.201830556110.1016/j.ddtec.2018.09.00330553521
    [Google Scholar]
  136. ShimH. Bispecific antibodies and antibody–drug conjugates for cancer therapy: Technological considerations.Biomolecules202010336010.3390/biom1003036032111076
    [Google Scholar]
  137. DeonarainM. YahiogluG. StamatiI. PomowskiA. ClarkeJ. EdwardsB. Diez-PosadaS. StewartA. Small-format drug conjugates: A viable alternative to adcs for solid tumours?Antibodies2018721610.3390/antib702001631544868
    [Google Scholar]
  138. LiJ.Y. PerryS.R. Muniz-MedinaV. WangX. WetzelL.K. RebelattoM.C. Masson HinrichsM.J. BezabehB.Z. FlemingR.L. DimasiN. FengH. ToaderD. YuanA.Q. XuL. LinJ. GaoC. WuH. DixitR. OsbournJ.K. CoatsS.R. A biparatopic HER2-targeting antibody-drug conjugate induces tumor regression in primary models refractory to or ineligible for her2-targeted therapy.Cancer Cell201935694894910.1016/j.ccell.2019.05.01031185215
    [Google Scholar]
  139. HamblettK.j. BarnscherS.D. DaviesR.H. HammondP.W. HernandezA WickmanG.R. FungV.K. DingT GarnettG. GaleyA.S. ZwierzchowskiP. Abstract P6-17-13: ZW49, a HER2 Targeted Biparatopic Antibody Drug Conjugate for the Treatment of HER2 Expressing Cancers.Cancer Research201979(4_Supplement)617
    [Google Scholar]
  140. PatelM. LeeJ-S. De MiguelM.J. BurnsT. Falcon GonzalezA. KimT.W. KrebsM.G. PrenenH. Shacham ShmueliE. DesaiJ. LorussoP. SacherA. ChoiY. DhariaN. LinM.T. MandlekarS. Royer-JooS. SchutzmanJ.L. GarraldaE. 459MO phase ia study to evaluate GDC-6036 monotherapy in patients with solid tumors with a KRAS G12C mutation.Ann. Oncol.202233S74910.1016/j.annonc.2022.07.588
    [Google Scholar]
  141. AggarwalC. AzzoliC. G. SpiraA. I. SolomonB. J. LeX. RolfoC. PlanchardD. FelipE. WuY.-L. AhnM.-J. SeiwertT. Y. GotoK. AzaroA. LissaD. HamidO. McGrathL. MaudsleyR. EGRET: A first-in-human study of the novel antibody-drug conjugate (ADC) AZD9592 as monotherapy or combined with other anticancer agents in patients (pts) with advanced solid tumors.J. Clin. Oncol.202341TPS315610.1200/JCO.2023.41.16_suppl.TPS3156
    [Google Scholar]
  142. AndreevJ. ThambiN. Perez BayA.E. DelfinoF. MartinJ. KellyM.P. KirshnerJ.R. RafiqueA. KunzA. NittoliT. MacDonaldD. DalyC. OlsonW. ThurstonG. Bispecific antibodies and antibody–drug conjugates (ADCs) bridging HER2 and prolactin receptor improve efficacy of HER2 ADCs.Mol. Cancer Ther.201716468169310.1158/1535‑7163.MCT‑16‑065828108597
    [Google Scholar]
  143. de GoeijB.E.C.G. VinkT. ten NapelH. BreijE.C.W. SatijnD. WubboltsR. MiaoD. ParrenP.W.H.I. Efficient payload delivery by a bispecific antibody–drug conjugate targeting HER2 and CD63.Mol. Cancer Ther.201615112688269710.1158/1535‑7163.MCT‑16‑036427559142
    [Google Scholar]
  144. WuL. SeungE. XuL. RaoE. LordD. M. WeiR. R. Cortez-RetamozoV. OspinaB. PosternakV. UlinskiG. PiepenhagenP. FrancesconiE. El-MurrN. BeilC. KirbyP. LiA. FretlandJ. VicenteR. DengG. DabdoubiT. CameronB. BertrandT. FerrariP. PouzieuxS. LemoineC. PradesC. ParkA. QiuH. SongZ. ZhangB. SunF. ChironM. RaoS. RadoševićK. YangZ. Y. NabelG. J. Trispecific antibodies enhance the therapeutic efficacy of tumor-directed T cells through T cell receptor co-stimulation.Nat. Cancer201911869810.1038/s43018‑019‑0004‑z
    [Google Scholar]
  145. CastoldiR. EckerV. WiehleL. MajetyM. Busl-SchullerR. AsmussenM. NoporaA. JucknischkeU. OslF. KoboldS. ScheuerW. VenturiM. KleinC. NiederfellnerG. SustmannC. A novel bispecific EGFR/Met antibody blocks tumor-promoting phenotypic effects induced by resistance to EGFR inhibition and has potent antitumor activity.Oncogene201332505593560110.1038/onc.2013.24523812422
    [Google Scholar]
  146. TolcherA.W. Antibody drug conjugates: Lessons from 20 years of clinical experience.Ann. Oncol.201627122168217210.1093/annonc/mdw42427733376
    [Google Scholar]
  147. LutterbueseR. RaumT. KischelR. HoffmannP. MangoldS. RattelB. FriedrichM. ThomasO. LorenczewskiG. RauD. SchallerE. HerrmannI. WolfA. UrbigT. BaeuerleP.A. KuferP. T cell-engaging BiTE antibodies specific for EGFR potently eliminate KRAS- and BRAF-mutated colorectal cancer cells.Proc. Natl. Acad. Sci. USA201010728126051261010.1073/pnas.100097610720616015
    [Google Scholar]
  148. GuY. WangZ. WangY. Bispecific antibody drug conjugates: Making 1+1>2.Acta Pharm. Sin. B20241451965198610.1016/j.apsb.2024.01.00938799638
    [Google Scholar]
  149. HongY. NamS.M. MoonA. Antibody–drug conjugates and bispecific antibodies targeting cancers: Applications of click chemistry.Arch. Pharm. Res.202346313114810.1007/s12272‑023‑01433‑636877356
    [Google Scholar]
  150. WallerD.G. GeorgeC.F. Prodrugs.Br. J. Clin. Pharmacol.198928549750710.1111/j.1365‑2125.1989.tb03535.x2686738
    [Google Scholar]
  151. PoluK.R. LowmanH.B. Probody therapeutics for targeting antibodies to diseased tissue.Expert Opin. Biol. Ther.20141481049105310.1517/14712598.2014.92081424845630
    [Google Scholar]
  152. LiuY. NguyenA.W. MaynardJ.A. Engineering antibodies for conditional activity in the solid tumor microenvironment.Curr. Opin. Biotechnol.20227810280910.1016/j.copbio.2022.10280936182870
    [Google Scholar]
  153. LucchiR. BentanachsJ. Oller-SalviaB. The masking game: Design of activatable antibodies and mimetics for selective therapeutics and cell control.ACS Cent. Sci.20217572473810.1021/acscentsci.0c0144834079893
    [Google Scholar]
  154. OberoiH.K. GarraldaE. Unmasking new promises: Expanding the antigen landscape for antibody–drug conjugates.Clin. Cancer Res.202127164459446110.1158/1078‑0432.CCR‑21‑135334135020
    [Google Scholar]
  155. LiuX. TianX. HaoX. ZhangH. WangK. WeiZ. WeiX. LiY. SuiJ. A cross-reactive pH-dependent EGFR antibody with improved tumor selectivity and penetration obtained by structure-guided engineering.Mol. Ther. Oncolytics20222725626910.1016/j.omto.2022.11.00136458200
    [Google Scholar]
  156. SuleaT. RohaniN. BaardsnesJ. CorbeilC.R. DeprezC. Cepero-DonatesY. RobertA. SchragJ.D. ParatM. DuchesneM. JaramilloM.L. PurisimaE.O. ZwaagstraJ.C. Structure-based engineering of pH-dependent antibody binding for selective targeting of solid-tumor microenvironment.MAbs2020121168286610.1080/19420862.2019.168286631777319
    [Google Scholar]
  157. TsuchikamaK. AnamiY. HaS.Y.Y. YamazakiC.M. Exploring the next generation of antibody–drug conjugates.Nat. Rev. Clin. Oncol.202421320322310.1038/s41571‑023‑00850‑238191923
    [Google Scholar]
  158. TrangV.H. ZhangX. YumulR.C. ZengW. StoneI.J. WoS.W. DominguezM.M. CochranJ.H. SimmonsJ.K. RyanM.C. LyonR.P. SenterP.D. LevengoodM.R. A coiled-coil masking domain for selective activation of therapeutic antibodies.Nat. Biotechnol.201937776176510.1038/s41587‑019‑0135‑x31133742
    [Google Scholar]
  159. PanchalA. SetoP. WallR. HillierB.J. ZhuY. KrakowJ. DattA. PongoE. BagheriA. ChenT.H.T. DegenhardtJ.D. CulpP.A. DettlingD.E. VinogradovaM.V. MayC. DuBridgeR.B. COBRA™: A highly potent conditionally active T cell engager engineered for the treatment of solid tumors.MAbs2020121179213010.1080/19420862.2020.179213032684124
    [Google Scholar]
  160. KangJ. SunW. KhareP. KarimiM. Engineering a HER2-specific antibody-drug conjugate to increase lysosomal delivery and therapeutic efficacy.Nat. Biotechnol.2019375523526
    [Google Scholar]
  161. LeeP.S. MacdonaldK.G. MassiE. ChewP.V. BeeC. PerkinsP. ChauB. ThudiumK. LohreJ. NandiP. DeyanovaE.G. BarmanI. GudmundssonO. DollingerG. SproulT. EngelhardtJ.J. StropP. RajpalA. Improved therapeutic index of an acidic pH-selective antibody.MAbs2022141202464210.1080/19420862.2021.2024642
    [Google Scholar]
  162. ChangH.W. FreyG. LiuH. XingC. SteinmanL. BoyleW.J. ShortJ.M. Generating tumor-selective conditionally active biologic anti-CTLA4 antibodies via protein-associated chemical switches.Proc. Natl. Acad. Sci. USA20211189e202060611810.1073/pnas.202060611833627407
    [Google Scholar]
  163. RautioJ. MeanwellN.A. DiL. HagemanM.J. The expanding role of prodrugs in contemporary drug design and development.Nat. Rev. Drug Discov.201817855958710.1038/nrd.2018.4629700501
    [Google Scholar]
  164. EdupugantiV.V.S.R. TyndallJ.D.A. GambleA.B. Self-immolative linkers in prodrugs and antibody drug conjugates in cancer treatment.Recent Patents Anticancer Drug Discov.202116447949710.2174/157489281666621050900113933966624
    [Google Scholar]
  165. TianH. YuL. ZhangM. HeJ. SunX. NiP. Dextran-doxorubicin prodrug nanoparticles conjugated with CD147 monoclonal antibody for targeted drug delivery in hepatoma therapy.Colloids Surf. B Biointerfaces202322811340010.1016/j.colsurfb.2023.11340037331192
    [Google Scholar]
  166. LinF. ChenL. ZhangH. Ching NgaiW.S. ZengX. LinJ. ChenP.R. Bioorthogonal prodrug–antibody conjugates for on-target and on-demand chemotherapy.CCS Chem.20191222623610.31635/ccschem.019.20180038
    [Google Scholar]
  167. SantiD.V. AshleyG.W. CabelL. BidardF.C. Could a long-acting prodrug of SN-38 be efficacious in sacituzumab govitecan-resistant tumors?BioDrugs202438217117610.1007/s40259‑024‑00643‑838236523
    [Google Scholar]
  168. SzotC. SahaS. ZhangX.M. ZhuZ. HiltonM.B. MorrisK. SeamanS. DunleaveyJ.M. HsuK.S. YuG.J. MorrisH. SwingD.A. HainesD.C. WangY. HwangJ. FengY. WelschD. DeCrescenzoG. ChaudharyA. ZudaireE. DimitrovD.S. St CroixB. Tumor stroma-targeted antibody-drug conjugate triggers localized anticancer drug release.J. Clin. Invest.201812872927294310.1172/JCI12048129863500
    [Google Scholar]
  169. EmensL. The interplay of immunotherapy and chemotherapy: Harnessing potential synergies.Cancer Immunol. Res.201535436443
    [Google Scholar]
  170. AmouzegarA. ChelvanambiM. FildermanJ. StorkusW. LukeJ. STING agonists as cancer therapeutics.Cancers20211311269510.3390/cancers1311269534070756
    [Google Scholar]
  171. WangY. ZhangS. LiH. WangH. ZhangT. HutchinsonM.R. YinH. WangX. Small-molecule modulators of toll-like receptors.Acc. Chem. Res.20205351046105510.1021/acs.accounts.9b0063132233400
    [Google Scholar]
  172. KumarV. Toll-like receptors in sepsis-associated cytokine storm and their endogenous negative regulators as future immunomodulatory targets.Int. Immunopharmacol.202089Pt B10708710.1016/j.intimp.2020.10708733075714
    [Google Scholar]
  173. SuT. ZhangY. ValerieK. WangX.Y. LinS. ZhuG. STING activation in cancer immunotherapy.Theranostics20199257759777110.7150/thno.3757431695799
    [Google Scholar]
  174. FuC. TongW. YuL. MiaoY. WeiQ. YuZ. ChenB. WeiM. When will the immune-stimulating antibody conjugates (ISACs) be transferred from bench to bedside?Pharmacol. Res.202420310716010.1016/j.phrs.2024.10716038547937
    [Google Scholar]
  175. Urban-WojciukZ. KhanM.M. OylerB.L. FåhraeusR. Marek-TrzonkowskaN. Nita-LazarA. HuppT.R. GoodlettD.R. The role of TLRs in anti-cancer immunity and tumor rejection.Front. Immunol.201910238810.3389/fimmu.2019.0238831695691
    [Google Scholar]
  176. HeL. WangL. WangZ. LiT. ChenH. ZhangY. HuZ. DimitrovD.S. DuJ. LiaoX. Immune modulating antibody–drug conjugate (IM-ADC) for cancer immunotherapy.J. Med. Chem.20216421157161572610.1021/acs.jmedchem.1c0096134730979
    [Google Scholar]
  177. DuvallJ.R. ThomasJ.D. BukhalidR.A. CatcottK.C. BentleyK.W. CollinsS.D. EitasT. JonesB.D. KelleherE.W. LancasterK. ProtopopovaM. RayS.S. Ter-OvanesyanE. XuL. YangL. ZuritaJ. DamelinM. ToaderD. LowingerT.B. Discovery and optimization of a STING agonist platform for application in antibody drug conjugates.J. Med. Chem.20236615107151073310.1021/acs.jmedchem.3c0090737486969
    [Google Scholar]
  178. WuY. FangY. WeiQ. ShiH. TanH. DengY. ZengZ. QiuJ. ChenC. SunL. ChenZ.J. Tumor-targeted delivery of a STING agonist improves cancer immunotherapy.Proc. Natl. Acad. Sci. USA202211949e221427811910.1073/pnas.221427811936442099
    [Google Scholar]
  179. AACR Annual Meeting 2022 - First-in-human study of TAK-500, a novel STING agonist immune stimulating antibody conjugate (ISAC), alone and in combination with pembrolizumab in patients with select advanced solid tumors.2022Available from: https://cattendee.abstractsonline.com/meeting/10517/Presentation/20324
  180. DiamondJ. R. HenryJ. T. FalchookG. S. OlszanskiA. J. SinghH. LeonardE. J. GregoryR. C. ApplemanV. A. GibbsJ. HarbisonC. LiC. SapiroJ. M. YoneyamaT. ParentA. A. ChungV. Phase 1a/1b study design of the novel STING agonist, immune-stimulating antibody-conjugate (ISAC) TAK-500, with or without pembrolizumab in patients with advanced solid tumors.J. Clin. Oncol.202240TPS269010.1200/JCO.2022.40.16_suppl.TPS2690
    [Google Scholar]
  181. RamanjuluJ. PesiridisG. YangJ. NatureN.C. Design of amidobenzimidazole STING receptor agonists with systemic activity.Nature20195707761E53
    [Google Scholar]
  182. Mersana therapeutics announces FDA has lifted clinical hold on phase 1 clinical trial of XMT-2056 - Mersana therapeutics.Available from: https://ir.mersana.com/news-releases/news-release-details/mersana-therapeutics-announces-fda-has-lifted-clinical-hold
  183. DuvallJ. BukhalidR. CetinbasN. ResK. C.-C. XMT-2056, a HER2-targeted immunosynthen STING-agonist antibody-drug conjugate, binds a novel epitope of HER2 and shows increased anti-tumor activity.2022Available from: https://www.mersana.com/xmt-2056-a-her2-targeted-immunosynthen-sting-agonist-antibody-drug-conjugate-binds-a-novel-epitope-of-her2-and-shows-increased-anti-tumor-activity-in-combination-with-trastuzumab-and-pertuzumab/
  184. DuvallJ. BukhalidR. CetinbasN. XMT-2056, a Well-Tolerated, Immunosynthen-Based STING-Agonist Antibody-Drug Conjugate Which Induces Anti-Tumor Immune ActivityLowinger Mersana Therapeutics, Inc.Cambridge, MA2021
    [Google Scholar]
  185. LiX. PuW. ZhengQ. AiM. ChenS. PengY. Proteolysis-targeting chimeras (PROTACs) in cancer therapy.Mol. Cancer20222119910.1186/s12943‑021‑01434‑335410300
    [Google Scholar]
  186. LiuZ. ZhangY. XiangY. KangX. Small-molecule PROTACs for cancer immunotherapy.Molecules20222717543910.3390/molecules2717543936080223
    [Google Scholar]
  187. PoongavanamV. KihlbergJ. PROTAC cell permeability and oral bioavailability: A journey into uncharted territory.Future Med. Chem.202214312312610.4155/fmc‑2021‑020834583518
    [Google Scholar]
  188. YokooH. NaitoM. DemizuY. Investigating the cell permeability of proteolysis-targeting chimeras (PROTACs).Expert Opin. Drug Discov.202318435736110.1080/17460441.2023.218704736908022
    [Google Scholar]
  189. PillowT.H. AdhikariP. BlakeR.A. ChenJ. Del RosarioG. DeshmukhG. FigueroaI. GascoigneK.E. KamathA.V. KaufmanS. KleinheinzT. KozakK.R. LatifiB. LeipoldD.D. Sing LiC. LiR. MulvihillM.M. O’DonohueA. RowntreeR.K. SadowskyJ.D. WaiJ. WangX. WuC. XuZ. YaoH. YuS.F. ZhangD. ZangR. ZhangH. ZhouH. ZhuX. DragovichP.S. Antibody conjugation of a chimeric BET degrader enables in vivo activity.ChemMedChem2020151172510.1002/cmdc.20190049731674143
    [Google Scholar]
  190. DragovichP.S. PillowT.H. BlakeR.A. SadowskyJ.D. AdaligilE. AdhikariP. BhaktaS. BlaquiereN. ChenJ. dela Cruz-ChuhJ. GascoigneK.E. HartmanS.J. HeM. KaufmanS. KleinheinzT. KozakK.R. LiuL. LiuL. LiuQ. LuY. MengF. MulvihillM.M. O’DonohueA. RowntreeR.K. StabenL.R. StabenS.T. WaiJ. WangJ. WeiB. WilsonC. XinJ. XuZ. YaoH. ZhangD. ZhangH. ZhouH. ZhuX. Antibody-mediated delivery of chimeric BRD4 degraders. Part 1: Exploration of antibody linker, payload loading, and payload molecular properties.J. Med. Chem.20216452534257510.1021/acs.jmedchem.0c0184533596065
    [Google Scholar]
  191. ManeiroM. ForteN. ShchepinovaM.M. KoundeC.S. ChudasamaV. BakerJ.R. TateE.W. Antibody–PROTAC conjugates enable HER2-dependent targeted protein degradation of BRD4.ACS Chem. Biol.20201561306131210.1021/acschembio.0c0028532338867
    [Google Scholar]
  192. DragovichP. AdhikariP. Antibody-mediated delivery of chimeric protein degraders which target estrogen receptor alpha (ERα).Bioorg. Med. Chem. Lett.2020Feb15304126907
    [Google Scholar]
  193. DragovichP.S. Degrader-antibody conjugates.Chem. Soc. Rev.202251103886389710.1039/D2CS00141A35506708
    [Google Scholar]
  194. AACR Annual Meeting 2022 - ORM-5029: A first-in-class targeted protein degradation therapy using antibody neodegrader conjugate (AnDC) for HER2-expressing breast cancer.Available from: https://cattendee.abstractsonline.com/meeting/10517/Presentation/15093
  195. ConilhL. SadilkovaL. ViricelW. DumontetC. Payload diversification: A key step in the development of antibody–drug conjugates.J. Hematol. Oncol.2023161310.1186/s13045‑022‑01397‑y36650546
    [Google Scholar]
  196. HurvitzS. A. HamiltonE. P. SpiraA. I. PohlmannP. R. GiordanoA. CliftonK. AndersonB. D. DuttaS. MangipudiU. SainiS. PalacinoJ. KarunaratneT. GreensmithD. ChristensenO. WilksS. A phase 1, first-in-human, open label, escalation and expansion study of ORM-5029, a highly potent GSPT1 degrader targeting HER2, in patients with HER2-expressing advanced solid tumors.J. Clin. Oncol.202341TPS111410.1200/JCO.2023.41.16_suppl.TPS1114
    [Google Scholar]
  197. MarusykA. JaniszewskaM. Intratumor heterogeneity: The rosetta stone of therapy resistance.Cancer Cell202037447148410.1016/j.ccell.2020.03.007
    [Google Scholar]
  198. PlanaD. PalmerA.C. SorgerP.K. Independent drug action in combination therapy: Implications for precision oncology.Cancer Discov.202212360662410.1158/2159‑8290.CD‑21‑021234983746
    [Google Scholar]
  199. LevengoodM.R. ZhangX. HunterJ.H. EmmertonK.K. MiyamotoJ.B. LewisT.S. SenterP.D. Orthogonal cysteine protection enables homogeneous multi‐drug antibody–drug conjugates.Angew. Chem. Int. Ed.201756373373710.1002/anie.20160829227966822
    [Google Scholar]
  200. WalkerJ.A. BohnJ.J. LedesmaF. SorkinM.R. KabariaS.R. ThornlowD.N. AlabiC.A. Substrate design enables heterobifunctional, dual “click” antibody modification via microbial transglutaminase.Bioconjug. Chem.20193092452245710.1021/acs.bioconjchem.9b0052231409067
    [Google Scholar]
  201. DickgiesserS. DeweidL. KellnerR. KolmarH. RascheN. Site-specific antibody–drug conjugation using microbial transglutaminase.Methods Mol. Biol.2019201213514910.1007/978‑1‑4939‑9546‑2_831161507
    [Google Scholar]
  202. YamazakiC.M. YamaguchiA. AnamiY. XiongW. OtaniY. LeeJ. UenoN.T. ZhangN. AnZ. TsuchikamaK. Antibody-drug conjugates with dual payloads for combating breast tumor heterogeneity and drug resistance.Nat. Commun.2021121352810.1038/s41467‑021‑23793‑734112795
    [Google Scholar]
  203. MckertishC.M. KayserV. A Novel dual-payload adc for the treatment of HER2+ breast and colon cancer.Pharmaceutics2023158202010.3390/pharmaceutics1508202037631234
    [Google Scholar]
  204. YuanR. MoreiraD. SmithJ. LiX. ChengC. YuA. HallamT. BedardK. Next-generation immunostimulatory antibody-drug conjugate (iadc) combines direct tumor killing and innate immune stimulation to provide protective anti-tumor immunity.2022Available from: https://www.sutrobio.com/wp-content/uploads/2022/06/Sutro-FOCIS-2022-Poster-FINAL.pdf
    [Google Scholar]
  205. NilchanN. LiX. PedzisaL. NannaA.R. RoushW.R. RaderC. Dual-mechanistic antibody-drug conjugate via site-specific selenocysteine/cysteine conjugation.Antib. Ther.201924717810.1093/abt/tbz00931930187
    [Google Scholar]
  206. KumarA. KinneerK. MastersonL. EzeadiE. HowardP. WuH. GaoC. DimasiN. Synthesis of a heterotrifunctional linker for the site-specific preparation of antibody-drug conjugates with two distinct warheads.Bioorg. Med. Chem. Lett.20182823-243617362110.1016/j.bmcl.2018.10.04330389292
    [Google Scholar]
  207. JinS. SunY. LiangX. GuX. NingJ. XuY. ChenS. PanL. Emerging new therapeutic antibody derivatives for cancer treatment.Signal Transduct. Target. Ther.2022713910.1038/s41392‑021‑00868‑x35132063
    [Google Scholar]
  208. TsumuraR. ManabeS. TakashimaH. Influence of the dissociation rate constant on the intra-tumor distribution of antibody-drug conjugate against tissue factor.J. Control Release20182844956
    [Google Scholar]
  209. DahlénE. VeitonmäkiN. NorlénP. Bispecific antibodies in cancer immunotherapy.Ther. Adv. Vaccines Immunother.20186131710.1177/251513551876328029998217
    [Google Scholar]
  210. AutioK.A. BoniV. HumphreyR.W. NaingA. Probody therapeutics: An emerging class of therapies designed to enhance on-target effects with reduced off-tumor toxicity for use in immuno-oncology.Clin. Cancer Res.202026598498910.1158/1078‑0432.CCR‑19‑145731601568
    [Google Scholar]
  211. NicolòE. GiuglianoF. AscioneL. TarantinoP. CortiC. TolaneyS.M. CristofanilliM. CuriglianoG. Combining antibody-drug conjugates with immunotherapy in solid tumors: Current landscape and future perspectives.Cancer Treat. Rev.202210610239510.1016/j.ctrv.2022.10239535468539
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206348204241128063329
Loading
/content/journals/acamc/10.2174/0118715206348204241128063329
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): ADCs; antibody; clinical trials; FDA-approved drugs; mechanisms of action; oncology
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test