Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Mesenchymal‒epithelial transition factor (c-Met), a receptortyrosine kinase (RTK), plays a vital role in cell proliferation, migration and invasion, and tumour metastasis.

Objective

With increasing duration of treatment, many tumours gradually develop drug resistance. Therefore, novel antitumour drugs need to be developed to treat patients with tumours. Targeting c-met inhibitors may be an effective treatment strategy.

Methods

Scientific databases such as ScienceDirect, PubMed, the Wiley Online Library, and Social Sciences Citation Index were used to collect information. All the relevant literature was reviewed, and the available literature was screened. The upstream and downstream pathways of c-Met and their relevance to antitumour effects were searched based on the articles' title, abstract, and full text. The c-Met-targeting drugs with antitumour effects are summarized below. A “citation within a citation” or snowballing approach was used in this screening process to identify additional papers that may have been missed in the initial literature screening process. High-quality studies published in peer-reviewed journals were summarized and prioritized for citation in the review.

Results

In recent years, research on small-molecule targeted drugs has developed rapidly. Many results have also been achieved in the synthesis and isolation of c-Met inhibitors from natural compounds and traditional Chinese medicines.

Conclusion

This article summarizes the developments in anti-c-Met drugs, which are synthesized and isolated from natural compounds and traditional Chinese medicine (TCM). This study provides primary resources for the development of c-Met inhibitors.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206346207241217064022
2025-01-13
2025-10-15
Loading full text...

Full text loading...

References

  1. CooperC.S. ParkM. BlairD.G. TainskyM.A. HuebnerK. CroceC.M. Vande WoudeG.F. Molecular cloning of a new transforming gene from a chemically transformed human cell line.Nature19843115981293310.1038/311029a06590967
    [Google Scholar]
  2. AltintasD.M. GalloS. BasilicoC. CerquaM. BocediA. VitacolonnaA. BottiO. CasanovaE. RancatiI. MilaneseC. NotariS. GambardellaG. RicciG. MastroberardinoP.G. BoccaccioC. CrepaldiT. ComoglioP.M. The PSI domain of the MET oncogene encodes a functional disulfide isomerase essential for the maturation of the receptor precursor.Int. J. Mol. Sci.202223201242710.3390/ijms23201242736293286
    [Google Scholar]
  3. OrganS.L. TsaoM.S. An overview of the c-MET signaling pathway.Ther. Adv. Med. Oncol.201131_supplS7S1910.1177/175883401142255622128289
    [Google Scholar]
  4. StokerM. GherardiE. PerrymanM. GrayJ. Scatter factor is a fibroblast-derived modulator of epithelial cell mobility.Nature1987327611923924210.1038/327239a02952888
    [Google Scholar]
  5. PaiP. KitturS.K. Hepatocyte growth factor: A novel tumor marker for breast cancer.J. Cancer Res. Ther.202319Suppl. 1S121S12510.4103/jcrt.JCRT_1084_1637147943
    [Google Scholar]
  6. ZhangY. XiaM. JinK. WangS. WeiH. FanC. WuY. LiX. LiX. LiG. ZengZ. XiongW. Function of the c-Met receptor tyrosine kinase in carcinogenesis and associated therapeutic opportunities.Mol. Cancer20181714510.1186/s12943‑018‑0796‑y29455668
    [Google Scholar]
  7. ParkK.C. RichardsonD.R. The c-MET oncoprotein: Function, mechanisms of degradation and its targeting by novel anti-cancer agents.Biochim. Biophys. Acta, Gen. Subj.202018641012965010.1016/j.bbagen.2020.12965032522525
    [Google Scholar]
  8. FantiS. StephensonE. Rocha-VieiraE. ProtonotariosA. KanoniS. ShahajE. LonghiM.P. VyasV.S. DyerC. PontariniE. AsimakiA. Bueno-BetiC. De GaspariM. RizzoS. BassoC. BombardieriM. CoeD. WangG. HardingD. GallagherI. SolitoE. ElliottP. HeymansS. SikkingM. SavvatisK. MohiddinS.A. Marelli-BergF.M. Circulating c-Met-expressing memory T cells define cardiac autoimmunity.Circulation2022146251930194510.1161/CIRCULATIONAHA.121.05561036417924
    [Google Scholar]
  9. HallidayG. PorterR.J. BlackC.J. ArendsM.J. DinS. c-MET immunohistochemical expression in sporadic and inflammatory bowel disease associated lesions.World J. Gastroenterol.202228131338134610.3748/wjg.v28.i13.133835645542
    [Google Scholar]
  10. SharmaR. MalviyaR. Correlation between hypoxia and HGF/c-MET expression in the management of pancreatic cancer.Biochim. Biophys. Acta Rev. Cancer20231878318886910.1016/j.bbcan.2023.18886936842767
    [Google Scholar]
  11. RajS. KesariK.K. KumarA. RathiB. SharmaA. GuptaP.K. JhaS.K. JhaN.K. SlamaP. RoychoudhuryS. KumarD. Molecular mechanisms of regulations of c-MET/HGF signaling in head and neck cancer.Mol. Cancer20222113110.1186/s12943‑022‑01503‑135081970
    [Google Scholar]
  12. LuoT. ZhangS.G. ZhuL.F. ZhangF.X. LiW. ZhaoK. WenX.X. YuM. ZhanY.Q. ChenH. GeC.H. GaoH.Y. WangL. YangX.M. LiC.Y. A selective c-Met and Trks inhibitor Indo5 suppresses hepatocellular carcinoma growth.J. Exp. Clin. Cancer Res.201938113010.1186/s13046‑019‑1104‑430885237
    [Google Scholar]
  13. YuY. PengX.D. QianX.J. ZhangK.M. HuangX. ChenY.H. LiY.T. FengG.K. ZhangH.L. XuX.L. LiS. LiX. MaiJ. LiZ.L. HuangY. YangD. ZhouL.H. ZhongZ.Y. LiJ.D. DengR. ZhuX.F. Fis1 phosphorylation by Met promotes mitochondrial fission and hepatocellular carcinoma metastasis.Signal Transduct. Target. Ther.20216140110.1038/s41392‑021‑00790‑234848680
    [Google Scholar]
  14. MaX.L. NieY.Y. XieS.H. ZhengH. TongY. WangY.C. YanT.Q. MengX. CaoJ.Z. TangW.G. GuoL. LuR.Q. ASAP2 interrupts c-MET-CIN85 interaction to sustain HGF/c-MET-induced malignant potentials in hepatocellular carcinoma.Exp. Hematol. Oncol.20231213810.1186/s40164‑023‑00393‑337061723
    [Google Scholar]
  15. ZhangY. GaoX. ZhuY. KadelD. SunH. ChenJ. LuoQ. SunH. YangL. YangJ. ShengY. ZhengY. ZhuK. DongQ. QinL. The dual blockade of MET and VEGFR2 signaling demonstrates pronounced inhibition on tumor growth and metastasis of hepatocellular carcinoma.J. Exp. Clin. Cancer Res.20183719310.1186/s13046‑018‑0750‑229712569
    [Google Scholar]
  16. XingF. LiuY. SharmaS. WuK. ChanM.D. LoH.W. CarpenterR.L. Metheny-BarlowL.J. ZhouX. QasemS.A. PascheB. WatabeK. Activation of the c-Met pathway mobilizes an inflammatory network in the brain microenvironment to promote brain metastasis of breast cancer.Cancer Res.201676174970498010.1158/0008‑5472.CAN‑15‑354127364556
    [Google Scholar]
  17. LaiY.C. UshioN. RahmanM.M. KatanodaY. OgiharaK. NayaY. MoriyamaA. IwanagaT. SaitohY. SogawaT. SunagaT. MomoiY. IzumiH. MiyoshiN. EndoY. FujikiM. KawaguchiH. MiuraN. Aberrant expression of microRNAs and the miR‐1/MET pathway in canine hepatocellular carcinoma.Vet. Comp. Oncol.201816228829610.1111/vco.1237929314614
    [Google Scholar]
  18. OgunwobiO.O. PuszykW. DongH.J. LiuC. Epigenetic upregulation of HGF and c-Met drives metastasis in hepatocellular carcinoma.PLoS One201385e6376510.1371/journal.pone.006376523723997
    [Google Scholar]
  19. SenninoB. Ishiguro-OonumaT. WeiY. NaylorR.M. WilliamsonC.W. BhagwandinV. TabruynS.P. YouW.K. ChapmanH.A. ChristensenJ.G. AftabD.T. McDonaldD.M. Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors.Cancer Discov.20122327028710.1158/2159‑8290.CD‑11‑024022585997
    [Google Scholar]
  20. HorikawaT. SheenT.S. TakeshitaH. SatoH. FurukawaM. YoshizakiT. Induction of c-Met proto-oncogene by Epstein-Barr virus latent membrane protein-1 and the correlation with cervical lymph node metastasis of nasopharyngeal carcinoma.Am. J. Pathol.20011591273310.1016/S0002‑9440(10)61669‑011438450
    [Google Scholar]
  21. DuF. LiX. FengW. QiaoC. ChenJ. JiangM. QiuZ. QianM. TianD. NieY. FanD. WuK. XiaL. SOX13 promotes colorectal cancer metastasis by transactivating SNAI2 and c-MET.Oncogene202039173522354010.1038/s41388‑020‑1233‑432111984
    [Google Scholar]
  22. HanC. ZhouY. AnQ. LiF. LiD. ZhangX. YuZ. ZhengL. DuanZ. KanQ. MicroRNA-1 (miR-1) inhibits gastric cancer cell proliferation and migration by targeting MET.Tumour Biol.20153696715672310.1007/s13277‑015‑3358‑625874496
    [Google Scholar]
  23. QuW. ChenX. WangJ. LvJ. YanD. MicroRNA-1 inhibits ovarian cancer cell proliferation and migration through c-Met pathway.Clin. Chim. Acta201747323724410.1016/j.cca.2017.07.00828698064
    [Google Scholar]
  24. ReidJ.F. SokolovaV. ZoniE. LampisA. PizzamiglioS. BertanC. ZanuttoS. PerroneF. CameriniT. GallinoG. VerderioP. LeoE. PilottiS. GariboldiM. PierottiM.A. miRNA profiling in colorectal cancer highlights miR-1 involvement in MET-dependent proliferation.Mol. Cancer Res.201210450451510.1158/1541‑7786.MCR‑11‑034222343615
    [Google Scholar]
  25. WangY. TaiQ. ZhangJ. KangJ. GaoF. ZhongF. CaiL. FangF. GaoY. MiRNA-206 inhibits hepatocellular carcinoma cell proliferation and migration but promotes apoptosis by modulating cMET expression.Acta Biochim. Biophys. Sin.201951324325310.1093/abbs/gmy11930805592
    [Google Scholar]
  26. ShengX.J. LiZ. SunM. WangZ.H. ZhouD.M. LiJ.Q. ZhaoQ. SunX.F. LiuQ.C. MACC1 induces metastasis in ovarian carcinoma by upregulating hepatocyte growth factor receptor c-MET.Oncol. Lett.20148289189710.3892/ol.2014.218425009663
    [Google Scholar]
  27. AyoubN.M. IbrahimD.R. AlkhalifaA.E. Al-HuseinB.A. Crizotinib induced antitumor activity and synergized with chemotherapy and hormonal drugs in breast cancer cells via downregulating MET and estrogen receptor levels.Invest. New Drugs2021391778810.1007/s10637‑020‑00989‑032833135
    [Google Scholar]
  28. ShangR. SongX. WangP. ZhouY. LuX. WangJ. XuM. ChenX. UtpatelK. CheL. LiangB. CiglianoA. EvertM. CalvisiD.F. ChenX. Cabozantinib-based combination therapy for the treatment of hepatocellular carcinoma.Gut20217091746175710.1136/gutjnl‑2020‑32071633144318
    [Google Scholar]
  29. AbdelhameedA.S. AttwaM.W. KadiA.A. Identification of iminium intermediates generation in the metabolism of tepotinib using LC-MS/MS: In silico and practical approaches to bioactivation pathway elucidation.Molecules20202521500410.3390/molecules2521500433126762
    [Google Scholar]
  30. PaikP.K. FelipE. VeillonR. SakaiH. CortotA.B. GarassinoM.C. MazieresJ. ViteriS. SenellartH. Van MeerbeeckJ. RaskinJ. ReinmuthN. ConteP. KowalskiD. ChoB.C. PatelJ.D. HornL. GriesingerF. HanJ.Y. KimY.C. ChangG.C. TsaiC.L. YangJ.C.H. ChenY.M. SmitE.F. van der WekkenA.J. KatoT. JuraevaD. StrohC. BrunsR. StraubJ. JohneA. ScheeleJ. HeymachJ.V. LeX. Tepotinib in non-small-cell lung cancer with MET exon 14 skipping mutations.N. Engl. J. Med.20203831093194310.1056/NEJMoa200440732469185
    [Google Scholar]
  31. WolfJ. SetoT. HanJ.Y. ReguartN. GaronE.B. GroenH.J.M. TanD.S.W. HidaT. de JongeM. OrlovS.V. SmitE.F. SouquetP.J. VansteenkisteJ. HochmairM. FelipE. NishioM. ThomasM. OhashiK. ToyozawaR. OverbeckT.R. de MarinisF. KimT.M. LaackE. RobevaA. Le MouhaerS. Waldron-LynchM. SankaranB. BalbinO.A. CuiX. GiovanniniM. AkimovM. HeistR.S. GEOMETRY mono-1 Investigators Capmatinib in MET exon 14-mutated or MET-amplified non-small-cell lung cancer.N. Engl. J. Med.20203831094495710.1056/NEJMoa200278732877583
    [Google Scholar]
  32. HornL. WangZ. WuG. PoddubskayaE. MokT. ReckM. WakeleeH. ChiapporiA.A. LeeD.H. BrederV. OrlovS. CicinI. ChengY. LiuY. FanY. WhisenantJ.G. ZhouY. OertelV. HarrowK. LiangC. MaoL. SelvaggiG. WuY.L. Ensartinib vs crizotinib for patients with anaplastic lymphoma kinase-positive non-small cell lung cancer: A randomized clinical trial.JAMA Oncol.20217111617162510.1001/jamaoncol.2021.352334473194
    [Google Scholar]
  33. WangY. YuanX. XiongJ. HaoZ. PengX. ChenW. CuiL. LiH. WangX. HeX. YangM. LiangC. MaY. DingL. MaoL. Pharmacology and clinical evaluation of ensartinib hydrochloride capsule.Zhongguo Fei Ai Za Zhi202023871972910.3779/j.issn.1009‑3419.2020.102.3432838492
    [Google Scholar]
  34. MarkhamA. Savolitinib: First approval.Drugs202181141665167010.1007/s40265‑021‑01584‑034455538
    [Google Scholar]
  35. HartmaierR.J. MarkovetsA.A. AhnM.J. SequistL.V. HanJ.Y. ChoB.C. YuH.A. KimS.W. YangJ.C.H. LeeJ.S. SuW.C. KowalskiD.M. OrlovS. RenS. FrewerP. OuX. CrossD.A.E. KurianN. CantariniM. JänneP.A. Osimertinib + Savolitinib to overcome acquired MET-mediated resistance in epidermal growth factor receptor-mutated, MET-amplified non-small cell lung cancer: TATTON.Cancer Discov.20231319811310.1158/2159‑8290.CD‑22‑058636264123
    [Google Scholar]
  36. YuY. ZhouJ. LiX. GotoK. MinX. NishinoK. CuiJ. WuL. SakakibaraJ. ShuY. DongX. LiL. YoneshimaY. ZhouC. LiX. ZhangY. HuangD. ZangA. ZhangW. WangX. ZhangL. BaiC. FangJ. CaoL. ZhaoY. YuY. ShiM. ZhongD. LiF. LiM. WuQ. ZhouJ. SunM. LuS. Gumarontinib in patients with non-small-cell lung cancer harbouring MET exon 14 skipping mutations: A multicentre, single-arm, open-label, phase 1b/2 trial.EClinic. Med.20235910195210.1016/j.eclinm.2023.10195237096188
    [Google Scholar]
  37. BaoZ. LiS. WangL. ZhangB. ZhangP. ShiH. QiuX. JiangT. PTPRZ1-METFUsion GENe (ZM-FUGEN) trial: Study protocol for a multicentric, randomized, open-label phase II/III trial.Chin. Neurosurg. J.2023912110.1186/s41016‑023‑00329‑037443050
    [Google Scholar]
  38. CuiJ.J. Tran-DubéM. ShenH. NambuM. KungP.P. PairishM. JiaL. MengJ. FunkL. BotrousI. McTigueM. GrodskyN. RyanK. PadriqueE. AltonG. TimofeevskiS. YamazakiS. LiQ. ZouH. ChristensenJ. MroczkowskiB. BenderS. KaniaR.S. EdwardsM.P. Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK).J. Med. Chem.201154186342636310.1021/jm200761321812414
    [Google Scholar]
  39. YakesF.M. ChenJ. TanJ. YamaguchiK. ShiY. YuP. QianF. ChuF. BentzienF. CancillaB. OrfJ. YouA. LairdA.D. EngstS. LeeL. LeschJ. ChouY.C. JolyA.H. Cabozantinib (XL184), a novel MET and VEGFR2 inhibitor, simultaneously suppresses metastasis, angiogenesis, and tumor growth.Mol. Cancer Ther.201110122298230810.1158/1535‑7163.MCT‑11‑026421926191
    [Google Scholar]
  40. HongD.S. RosenP. LockhartA.C. FuS. JankuF. KurzrockR. KhanR. AmoreB. CaudilloI. DengH. HwangY.C. LobergR. NgarmchamnanrithG. BeaupreD.M. LeeP. A first-in-human study of AMG 208, an oral MET inhibitor, in adult patients with advanced solid tumors.Oncotarget2015621186931870610.18632/oncotarget.447226155941
    [Google Scholar]
  41. KudoM. MorimotoM. MoriguchiM. IzumiN. TakayamaT. YoshijiH. HinoK. OikawaT. ChibaT. MotomuraK. KatoJ. YasuchikaK. IdoA. SatoT. NakashimaD. UeshimaK. IkedaM. OkusakaT. TamuraK. FuruseJ. A randomized, double‐blind, placebo‐controlled, phase 3 study of tivantinib in Japanese patients with MET‐high hepatocellular carcinoma.Cancer Sci.2020111103759376910.1111/cas.1458232716114
    [Google Scholar]
  42. YauT.C.C. LencioniR. SukeepaisarnjaroenW. ChaoY. YenC.J. LausoontornsiriW. ChenP.J. SanpajitT. CampA. CoxD.S. GagnonR.C. LiuY. RaffenspergerK.E. KulkarniD.A. KallenderH. OttesenL.H. PoonR.T.P. BottaroD.P. A Phase I/II multicenter study of single-agent foretinib as first-line therapy in patients with advanced hepatocellular carcinoma.Clin. Cancer Res.201723102405241310.1158/1078‑0432.CCR‑16‑178927821605
    [Google Scholar]
  43. ChiaS.K. EllardS.L. MatesM. WelchS. MihalcioiuC. MillerW.H.Jr GelmonK. LohrischC. KumarV. TaylorS. HagermanL. GoodwinR. WangT. SakashitaS. TsaoM.S. EisenhauerE. BradburyP. A phase-I study of lapatinib in combination with foretinib, a c-MET, AXL and vascular endothelial growth factor receptor inhibitor, in human epidermal growth factor receptor 2 (HER-2)-positive metastatic breast cancer.Breast Cancer Res.20171915410.1186/s13058‑017‑0836‑328464908
    [Google Scholar]
  44. CuiQ. CaiC.Y. GaoH.L. RenL. JiN. GuptaP. YangY. ShuklaS. AmbudkarS.V. YangD.H. ChenZ.S. Glesatinib, a c-Met/SMO dual inhibitor, antagonizes P-glycoprotein mediated multidrug resistance in cancer cells.Front. Oncol.20199931310.3389/fonc.2019.0031331106148
    [Google Scholar]
  45. ZillhardtM. ParkS.M. RomeroI.L. SawadaK. MontagA. KrauszT. YamadaS.D. PeterM.E. LengyelE. Foretinib (GSK1363089), an orally available multikinase inhibitor of c-Met and VEGFR-2, blocks proliferation, induces anoikis, and impairs ovarian cancer metastasis.Clin. Cancer Res.201117124042405110.1158/1078‑0432.CCR‑10‑338721551255
    [Google Scholar]
  46. HeA.R. CohenR.B. DenlingerC.S. SamaA. BirnbaumA. HwangJ. SatoT. LewisN. MynderseM. NilandM. GilesJ. WallinJ. MoserB. ZhangW. WalgrenR. PlimackE.R. First-in-human phase I study of merestinib, an oral multikinase inhibitor, in patients with advanced cancer.Oncologist2019249e930e94210.1634/theoncologist.2018‑041130833489
    [Google Scholar]
  47. MolifeL.R. DeanE.J. Blanco-CodesidoM. KrebsM.G. BrunettoA.T. GreystokeA.P. DanieleG. LeeL. KuznetsovG. MyintK.T. WoodK. de las HerasB. RansonM.R. A phase I, dose-escalation study of the multitargeted receptor tyrosine kinase inhibitor, golvatinib, in patients with advanced solid tumors.Clin. Cancer Res.201420246284629410.1158/1078‑0432.CCR‑14‑040925278451
    [Google Scholar]
  48. Van CutsemE. KaraszewskaB. KangY.K. ChungH.C. ShankaranV. SienaS. GoN.F. YangH. SchuppM. CunninghamD. A multicenter phase II study of AMG 337 in patients with MET-amplified gastric/gastroesophageal junction/esophageal adenocarcinoma and other MET-amplified solid tumors.Clin. Cancer Res.20192582414242310.1158/1078‑0432.CCR‑18‑133730366938
    [Google Scholar]
  49. ZakyM.Y. LiuX. WangT. WangS. LiuF. WangD. WuY. ZhangY. GuoD. SunQ. LiQ. ZhangJ. ZhangY. DongW. LiuZ. LiuS. LiuH. Dynasore potentiates c-Met inhibitors against hepatocellular carcinoma through destabilizing c-Met.Arch. Biochem. Biophys.202068068010823910.1016/j.abb.2019.10823931881189
    [Google Scholar]
  50. VirzìA.R. GentileA. BenvenutiS. ComoglioP.M. Reviving oncogenic addiction to MET bypassed by BRAF (G469A) mutation.Proc. Natl. Acad. Sci. USA201811540100581006310.1073/pnas.172114711530224486
    [Google Scholar]
  51. XiangQ. ZhenZ. DengD.Y.B. WangJ. ChenY. LiJ. ZhangY. WangF. ChenN. ChenH. ChenY. Tivantinib induces G2/M arrest and apoptosis by disrupting tubulin polymerization in hepatocellular carcinoma.J. Exp. Clin. Cancer Res.201534111810.1186/s13046‑015‑0238‑226458953
    [Google Scholar]
  52. D’AmicoL. BelisarioD. MigliardiG. GrangeC. BussolatiB. D’AmelioP. PereraT. DalmassoE. CarbonareL.D. GodioL. ComoglioP. TrusolinoL. FerraciniR. RoatoI. C-met inhibition blocks bone metastasis development induced by renal cancer stem cells.Oncotarget2016729455254553710.18632/oncotarget.999727322553
    [Google Scholar]
  53. LolkemaM.P. BohetsH.H. ArkenauH.T. LampoA. BaraleE. de JongeM.J.A. van DoornL. HellemansP. de BonoJ.S. EskensF.A.L.M. The c-Met tyrosine kinase inhibitor JNJ-38877605 causes renal toxicity through species-specific insoluble metabolite formation.Clin. Cancer Res.201521102297230410.1158/1078‑0432.CCR‑14‑325825745036
    [Google Scholar]
  54. SenninoB. Ishiguro-OonumaT. SchriverB.J. ChristensenJ.G. McDonaldD.M. Inhibition of c-Met reduces lymphatic metastasis in RIP-Tag2 transgenic mice.Cancer Res.201373123692370310.1158/0008‑5472.CAN‑12‑216023576559
    [Google Scholar]
  55. ChengH.S. MarvalimC. ZhuP. LawC.L.D. LowZ.Y.J. ChongY.K. AngB.T. TangC. TanN.S. Kinomic profile in patient-derived glioma cells during hypoxia reveals c-MET-PI3K dependency for adaptation.Theranostics202111115127514210.7150/thno.5474133859738
    [Google Scholar]
  56. FelixF.B. DiasJ. VagoJ.P. MartinsD.G. BeltramiV.A. FernandesD.O. Menezes dos SantosA.C.P. Queiroz-JuniorC.M. de SousaL.P. AmaralF.A. SorianiF.M. TeixeiraM.M. PinhoV. Blocking the HGF-MET pathway induces resolution of neutrophilic inflammation by promoting neutrophil apoptosis and efferocytosis.Pharmacol. Res.202318810664010.1016/j.phrs.2022.10664036627004
    [Google Scholar]
  57. ZillhardtM. ChristensenJ.G. LengyelE. An orally available small-molecule inhibitor of c-Met, PF-2341066, reduces tumor burden and metastasis in a preclinical model of ovarian cancer metastasis.Neoplasia201012111010.1593/neo.0994820072648
    [Google Scholar]
  58. TimofeevskiS.L. McTigueM.A. RyanK. CuiJ. ZouH.Y. ZhuJ.X. ChauF. AltonG. KarlicekS. ChristensenJ.G. MurrayB.W. Enzymatic characterization of c-Met receptor tyrosine kinase oncogenic mutants and kinetic studies with aminopyridine and triazolopyrazine inhibitors.Biochemistry200948235339534910.1021/bi900438w19459657
    [Google Scholar]
  59. HeigenerD.F. ReckM. Crizotinib.Recent Results Cancer Res.201420119720510.1007/978‑3‑642‑54490‑3_1124756793
    [Google Scholar]
  60. SolomonB. Refining the toxicity profile of crizotinib.J. Thorac. Oncol.20149111596159710.1097/JTO.000000000000037525436794
    [Google Scholar]
  61. YashiroM. NishiiT. HasegawaT. MatsuzakiT. MorisakiT. FukuokaT. HirakawaK. A c-Met inhibitor increases the chemosensitivity of cancer stem cells to the irinotecan in gastric carcinoma.Br. J. Cancer2013109102619262810.1038/bjc.2013.63824129235
    [Google Scholar]
  62. AuliacJ.B. PérolM. PlanchardD. MonnetI. WislezM. DoubreH. GuisierF. PichonE. GreillierL. MastroianniB. DecroisetteC. SchottR. Le MoulecS. ArrondeauJ. CortotA.B. GerinièreL. RenaultA. DanielC. FalcheroL. ChouaidC. Real-life efficacy of osimertinib in pretreated patients with advanced non-small cell lung cancer harboring EGFR T790M mutation.Lung Cancer20191279610210.1016/j.lungcan.2018.11.03730642559
    [Google Scholar]
  63. ShahM.A. WainbergZ.A. CatenacciD.V.T. HochsterH.S. FordJ. KunzP. LeeF.C. KallenderH. CecchiF. RabeD.C. KeerH. MartinA.M. LiuY. GagnonR. BonateP. LiuL. GilmerT. BottaroD.P. Correction: Phase II study evaluating 2 dosing schedules of oral foretinib (GSK1363089), c-Met/VEGFR2 inhibitor, in patients with metastatic gastric cancer.PLoS One20221710e027621110.1371/journal.pone.027621136215283
    [Google Scholar]
  64. AkaberiM. SahebkarA. EmamiS.A. Turmeric and curcumin: From traditional to modern medicine.Adv. Exp. Med. Biol.20211291153910.1007/978‑3‑030‑56153‑6_234331682
    [Google Scholar]
  65. MingT. TaoQ. TangS. ZhaoH. YangH. LiuM. RenS. XuH. Curcumin: An epigenetic regulator and its application in cancer.Biomed. Pharmacother.202215611395610.1016/j.biopha.2022.11395636411666
    [Google Scholar]
  66. OhnishiY. SakamotoT. ZhengguangL. YasuiH. HamadaH. KuboH. NakajimaM. Curcumin inhibits epithelial‑mesenchymal transition in oral cancer cells via c‑Met blockade.Oncol. Lett.20201964177418210.3892/ol.2020.1152332391111
    [Google Scholar]
  67. HuH.J. LinX.L. LiuM.H. FanX.J. ZouW.W. Curcumin mediates reversion of HGF-induced epithelial-mesenchymal transition via inhibition of c-Met expression in DU145 cells.Oncol. Lett.20161121499150510.3892/ol.2015.406326893768
    [Google Scholar]
  68. JiaoD. WangJ. LuW. TangX. ChenJ. MouH. ChenQ. Curcumin inhibited HGF-induced EMT and angiogenesis through regulating c-Met dependent PI3K/Akt/mTOR signaling pathways in lung cancer.Mol. Ther. Oncolytics2016331601810.1038/mto.2016.1827525306
    [Google Scholar]
  69. ChenX. TianF. LunP. FengY. Curcumin inhibits HGF-induced EMT by regulating c-Met-dependent PI3K/Akt/mTOR signaling pathways in meningioma.Evid. Based Complement. Alternat. Med.20212021611010.1155/2021/557455534408780
    [Google Scholar]
  70. YamauchiY. IzumiY. YamamotoJ. NomoriH. Coadministration of erlotinib and curcumin augmentatively reduces cell viability in lung cancer cells.Phytother. Res.201428572873510.1002/ptr.505623943298
    [Google Scholar]
  71. SinghP. ArifY. BajguzA. HayatS. The role of quercetin in plants.Plant Physiol. Biochem.2021166101910.1016/j.plaphy.2021.05.02334087741
    [Google Scholar]
  72. CaoH.H. TseA.K.W. KwanH.Y. YuH. ChengC.Y. SuT. FongW.F. YuZ.L. Quercetin exerts anti-melanoma activities and inhibits STAT3 signaling.Biochem. Pharmacol.201487342443410.1016/j.bcp.2013.11.00824275163
    [Google Scholar]
  73. CaoH.H. ChengC.Y. SuT. FuX.Q. GuoH. LiT. TseA.K.W. KwanH.Y. YuH. YuZ.L. Quercetin inhibits HGF/c-Met signaling and HGF-stimulated melanoma cell migration and invasion.Mol. Cancer201514110310.1186/s12943‑015‑0367‑425971889
    [Google Scholar]
  74. SongY. DingQ. HaoY. CuiB. DingC. GaoF. Pharmacological effects of shikonin and its potential in skin repair: A review.Molecules20232824795010.3390/molecules2824795038138440
    [Google Scholar]
  75. HsiehY.S. LiaoC.H. ChenW.S. PaiJ.T. WengM.S. Shikonin inhibited migration and invasion of human lung cancer cells via suppression of c-Met-mediated epithelial-to-mesenchymal transition.J. Cell. Biochem.2017118124639465110.1002/jcb.2612828485480
    [Google Scholar]
  76. WadhwaK. PahwaR. KumarM. KumarS. SharmaP.C. SinghG. VermaR. MittalV. SinghI. KaushikD. JeandetP. Mechanistic insights into the pharmacological significance of silymarin.Molecules20222716532710.3390/molecules2716532736014565
    [Google Scholar]
  77. YassinN.Y.S. AbouZidS.F. El-KalaawyA.M. AliT.M. AlmehmadiM.M. AhmedO.M. Silybum marianum total extract, silymarin and silibinin abate hepatocarcinogenesis and hepatocellular carcinoma growth via modulation of the HGF/c-Met, Wnt/β-catenin, and PI3K/Akt/mTOR signaling pathways.Biomed. Pharmacother.202214511240910.1016/j.biopha.2021.11240934781148
    [Google Scholar]
  78. YuJ. ZhangL. PengJ. WardR. HaoP. WangJ. ZhangN. YangY. GuoX. XiangC. AnS. XuT.R. Dictamnine, a novel c-Met inhibitor, suppresses the proliferation of lung cancer cells by downregulating the PI3K/AKT/mTOR and MAPK signaling pathways.Biochem. Pharmacol.202219511486410.1016/j.bcp.2021.11486434861243
    [Google Scholar]
  79. KohY.W. ChoiE.C. KangS.U. HwangH.S. LeeM.H. PyunJ. ParkR. LeeY. KimC.H. Green tea (−)-epigallocatechin-3-gallate inhibits HGF-induced progression in oral cavity cancer through suppression of HGF/c-Met.J. Nutr. Biochem.201122111074108310.1016/j.jnutbio.2010.09.00521292466
    [Google Scholar]
  80. DuhonD. BigelowR.L.H. ColemanD.T. SteffanJ.J. YuC. LangstonW. KevilC.G. CardelliJ.A. The polyphenol epigallocatechin-3-gallate affects lipid rafts to block activation of the c-Met receptor in prostate cancer cells.Mol. Carcinog.2010498n/a10.1002/mc.2064920623641
    [Google Scholar]
  81. MilliganS.A. BurkeP. ColemanD.T. BigelowR.L. SteffanJ.J. CarrollJ.L. WilliamsB.J. CardelliJ.A. The green tea polyphenol EGCG potentiates the antiproliferative activity of c-Met and epidermal growth factor receptor inhibitors in non-small cell lung cancer cells.Clin. Cancer Res.200915154885489410.1158/1078‑0432.CCR‑09‑010919638461
    [Google Scholar]
  82. LiM. YuX. LiW. LiuT. DengG. LiuW. LiuH. GaoF. Deguelin suppresses angiogenesis in human hepatocellular carcinoma by targeting HGF-c-Met pathway.Oncotarget20189115216610.18632/oncotarget.2207729416603
    [Google Scholar]
  83. García-VilasJ.A. QuesadaA.R. MedinaM.A. Damnacanthal, a noni anthraquinone, inhibits c-Met and is a potent antitumor compound against Hep G2 human hepatocellular carcinoma cells.Sci. Rep.201551802110.1038/srep0802125620570
    [Google Scholar]
  84. HuC.T. ChengC.C. WuJ.R. PanS.M. WuW.S. PKCε-mediated c-Met endosomal processing directs fluctuant c-Met-JNK-paxillin signaling for tumor progression of HepG2.Cell. Signal.20152771544155510.1016/j.cellsig.2015.02.03125778903
    [Google Scholar]
  85. García-VilasJ.A. Pino-ÁngelesA. Martínez-PovedaB. QuesadaA.R. MedinaM.Á. The noni anthraquinone damnacanthal is a multi-kinase inhibitor with potent anti-angiogenic effects.Cancer Lett.201738538511110.1016/j.canlet.2016.10.03727816491
    [Google Scholar]
  86. AliebrahimiS. KouhsariS.M. ArabS.S. ShadboorestanA. OstadS.N. Phytochemicals, withaferin A and carnosol, overcome pancreatic cancer stem cells as c-Met inhibitors.Biomed. Pharmacother.20181061527153610.1016/j.biopha.2018.07.05530119228
    [Google Scholar]
  87. SabarwalA. ChakrabortyS. MahantaS. BanerjeeS. BalanM. PalS. A novel combination treatment with honokiol and rapamycin effectively restricts c-Met-induced growth of renal cancer cells, and also Inhibits the expression of tumor cell PD-L1 involved in immune escape.Cancers2020127178210.3390/cancers1207178232635337
    [Google Scholar]
  88. LeeY.J. LeeY.J. ImJ.H. WonS.Y. KimY.B. ChoM.K. NamH.S. ChoiY.J. LeeS.H. Synergistic anti-cancer effects of resveratrol and chemotherapeutic agent clofarabine against human malignant mesothelioma MSTO-211H cells.Food Chem. Toxicol.201352616810.1016/j.fct.2012.10.06023146690
    [Google Scholar]
  89. WeiW.L. HouJ.J. WangX. YuY. LiH.J. LiZ.W. FengZ.J. QuH. WuW.Y. GuoD.A. Venenum bufonis: An overview of its traditional use, natural product chemistry, pharmacology, pharmacokinetics and toxicology.J. Ethnopharmacol.201923723721523510.1016/j.jep.2019.03.04230905791
    [Google Scholar]
  90. HeR. MaH. ZhouJ. ZhuZ. LvX. LiQ. WangH. YanY. LuoN. DiL. WuQ. DuanJ. High resolution mass profile of bufadienolides and peptides combing with anti-tumor cell screening and multivariate analysis for the quality evaluation of Bufonis venenum.Molecules20192410194310.3390/molecules2410194331137582
    [Google Scholar]
  91. JiangY. ZhangY. LuanJ. DuanH. ZhangF. YagasakiK. ZhangG. Effects of bufalin on the proliferation of human lung cancer cells and its molecular mechanisms of action.Cytotechnology201062657358310.1007/s10616‑010‑9310‑020963488
    [Google Scholar]
  92. ZhouJ. ZhangL. YanJ. HouA. SuiW. SunM. Curcumin induces ferroptosis in A549 CD133+ cells through the GSH-GPX4 and FSP1-CoQ10-NAPH pathways.Discov. Med.20233517625126310.24976/Discov.Med.202335176.2637272092
    [Google Scholar]
  93. ChenH. MengY.H. GuoD.A. LiuX. LiuJ.H. HuL.H. New cytotoxic 19-norbufadienolide and bufogargarizin isolated from Chan Su.Fitoterapia20151041610.1016/j.fitote.2015.05.01125987318
    [Google Scholar]
  94. MohyeldinM.M. BusnenaB.A. AklM.R. DragoiA.M. CardelliJ.A. El SayedK.A. Novel c-Met inhibitory olive secoiridoid semisynthetic analogs for the control of invasive breast cancer.Eur. J. Med. Chem.201611811829931510.1016/j.ejmech.2016.04.04327258622
    [Google Scholar]
  95. WangL. WuR. FuW. LaoY. ZhengC. TanH. XuH. Synthesis and biological evaluation of Oblongifolin C derivatives as c-Met inhibitors.Bioorg. Med. Chem.201624184120412810.1016/j.bmc.2016.06.05427396929
    [Google Scholar]
  96. HuJ. HuangH. CheY. DingC. ZhangL. WangY. HaoH. ShenH. CaoL. Qingchang huashi formula attenuates DSS-induced colitis in mice by restoring gut microbiota-metabolism homeostasis and goblet cell function.J. Ethnopharmacol.202126626611339410.1016/j.jep.2020.11339432941971
    [Google Scholar]
  97. JuL.X. ChenZ. RenR.Z. Progress in research on the treatment of primary liver cancer with traditional Chinese medicine for activating blood to resolve stasis.J. Chin. Integr. Med.20053649149410.3736/jcim2005062016282066
    [Google Scholar]
  98. ChenT. WangQ. LiY. HuangH. HuW. Chinese herbal formula QHF inhibits liver cancer cell invasion and migration.Exp. Ther. Med.20161162413241910.3892/etm.2016.324727284329
    [Google Scholar]
  99. YuanS. GongY. ChenR. DuJ. ZhangH. ChenT. Chinese herbal formula QHF inhibits hepatocellular carcinoma metastasis via HGF/c-Met signaling pathway.Biomed. Pharmacother.202013211086710.1016/j.biopha.2020.11086733075668
    [Google Scholar]
  100. ChenT. YuanS.J. WangJ. HuW. Mechanism of QHF-cisplatin against hepatocellular carcinoma in a mouse model.World J. Gastroenterol.20152135101261013610.3748/wjg.v21.i35.1012626401077
    [Google Scholar]
  101. WangY.P. FuX.Q. YinC.L. ChouJ.Y. LiuY.X. BaiJ.X. ChenY.J. WuY. WuJ.Y. WangX.Q. LiuB. YuZ.L. A traditional Chinese medicine formula inhibits tumor growth in mice and regulates the miR-34b/c-Met/β-catenin pathway.J. Ethnopharmacol.202026026011306510.1016/j.jep.2020.11306532505839
    [Google Scholar]
  102. MohanC.D. ShanmugamM.K. GowdaS.G.S. ChinnathambiA. RangappaK.S. SethiG. c-MET pathway in human malignancies and its targeting by natural compounds for cancer therapy.Phytomedicine202412815537910.1016/j.phymed.2024.15537938503157
    [Google Scholar]
  103. LeonettiE. GesualdiL. C ScheriK. DinicolaS. FattoreL. MasielloM.G. CucinaA. ManciniR. BizzarriM. RicciG. CatizoneA. c-Src recruitment is involved in c-Met-mediated malignant behaviour of NT2D1 non-seminoma cells.Int. J. Mol. Sci.201920232010.3390/ijms2002032030646583
    [Google Scholar]
  104. KwonM. JungH.J. Hovenia dulcis suppresses the growth of Huh7-derived liver cancer stem cells by inducing necroptosis and apoptosis and blocking c-Met signaling.Cells20231312210.3390/cells1301002238201226
    [Google Scholar]
  105. Jabbarzadeh KaboliP. ChenH.F. BabaeizadA. Roustai GeraylowK. YamaguchiH. HungM.C. Unlocking c-MET: A comprehensive journey into targeted therapies for breast cancer.Cancer Lett.202458858821678010.1016/j.canlet.2024.21678038462033
    [Google Scholar]
  106. WangB. LiuW. LiuC. DuK. GuoZ. ZhangG. HuangZ. LinS. CenB. TianY. YuanY. BuJ. Cancer-associated fibroblasts promote radioresistance of breast cancer cells via the HGF/c-Met signaling pathway.Int. J. Radiat. Oncol. Biol. Phys.2023116364065410.1016/j.ijrobp.2022.12.02936586496
    [Google Scholar]
  107. PothulaS.P. XuZ. GoldsteinD. PirolaR.C. WilsonJ.S. ApteM.V. Targeting HGF/c-Met axis in pancreatic cancer.Int. J. Mol. Sci.20202123917010.3390/ijms2123917033271944
    [Google Scholar]
  108. TacarS.Y. YilmazM. OzB. TuralD. Crizotinib for c-MET –amplified advanced NSCLC: A single-center experience.Tumori2022108325826210.1177/0300891621100930333849345
    [Google Scholar]
  109. HagegeA. Saada-BouzidE. AmbrosettiD. RastoinO. BoyerJ. HeX. RoussetJ. MontemagnoC. DoyenJ. PedeutourF. ParolaJ. BourgetI. LucianoF. BozecA. CaoY. PagèsG. DufiesM. Targeting of c-MET and AXL by cabozantinib is a potential therapeutic strategy for patients with head and neck cell carcinoma.Cell Rep. Med.20223910065910.1016/j.xcrm.2022.10065936130479
    [Google Scholar]
  110. GrojeanM. SchwarzM.A. SchwarzJ.R. HassanS. von HolzenU. ZhangC. SchwarzR.E. AwasthiN. Targeted dual inhibition of c‐Met/VEGFR2 signalling by foretinib improves antitumour effects of nanoparticle paclitaxel in gastric cancer models.J. Cell. Mol. Med.202125114950496110.1111/jcmm.1636233939252
    [Google Scholar]
  111. WeiK. LiM. ZöllerM. WangM. MehrabiA. HoffmannK. Targeting c-MET by Tivantinib through synergistic activation of JNK/c-jun pathway in Cholangio carcinoma.Cell Death Dis.201910323110.1038/s41419‑019‑1460‑130850583
    [Google Scholar]
  112. IovinoF. DianaA. CarlinoF. FerraraccioF. AntoniolG. FisoneF. PerroneA. Zito MarinoF. PanareseI. TathodeM.S. CaragliaM. GattaG. RuggieroR. ParisiS. De VitaF. CiardielloF. DocimoL. OrdituraM. Expression of c-Met in estrogen receptor positive and HER2 negative resected breast cancer correlated with a poor prognosis.J. Clin. Med.20221123698710.3390/jcm1123698736498560
    [Google Scholar]
  113. WangQ. YangS. WangK. SunS.Y. MET inhibitors for targeted therapy of EGFR TKI-resistant lung cancer.J. Hematol. Oncol.20191216310.1186/s13045‑019‑0759‑931227004
    [Google Scholar]
  114. CamidgeD.R. BarlesiF. GoldmanJ.W. MorgenszternD. HeistR. VokesE. SpiraA. AngevinE. SuW.C. HongD.S. StricklerJ.H. MotwaniM. DunbarM. ParikhA. NoonE. BlotV. WuJ. KellyK. Phase Ib study of telisotuzumab vedotin in combination with erlotinib in patients with c-Met protein-expressing non-small-cell lung cancer.J. Clin. Oncol.20234151105111510.1200/JCO.22.0073936288547
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206346207241217064022
Loading
/content/journals/acamc/10.2174/0118715206346207241217064022
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): c-Met; cancer; HGF; inhibitors; natural compounds; traditional Chinese medicine
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test