Skip to content
2000
Volume 25, Issue 13
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Cucurbitacin E glucoside (CEG), a prominent constituent of Cucurbitaceae plants, exhibits notable effects on cancer cell behavior, including inhibition of invasion and migration, achieved through mechanisms such as apoptosis induction, autophagy, cell cycle arrest, and disruption of the actin cytoskeleton.

Objective

Melanoma, the fastest-growing malignancy among young individuals in the United States and the predominant cancer among young adults aged 25 to 29, poses a significant health threat.

Aim

This study aims to elucidate the apoptotic mechanism of CEG against the melanoma cancer cell line (A375).

Methods

The study estimated the IC of CEG against the A375 cell line and assessed cell viability, apoptosis, and necrosis upon CEG treatment. Additionally, IC values of CEG against Phosphoglycerate kinase1 (PGK1) and Pyruvate Kinase M2 (PKM2) were determined at various levels of concentrations. The impact of CEG on intracellular glutathione (GSH) levels and the activity of key enzymes (GR, SOD, GPx, CAT), as well as markers of apoptosis (p53), and cell cycle regulation (cyclin D1, cyclin E2, cdk2, cdk4), were estimated. Finally, the level of AMP-activated protein kinase (AMPK), PGK1, and PKM2 gene expression levels in A375 cells were also evaluated.

Results

The IC value of CEG against A375 cells was determined to be 41.87 ± 2.47 µg/mL. A375 cells treated with CEG showed a significant increase in the G0/G1 phase and a decrease in the S and G2/M phases, indicating cell cycle arrest and reduced proliferation. Additionally, there was an increase in the sub-G1 peak, suggesting enhanced apoptosis. Additionally, the pharmacological analysis revealed potent inhibitory activity of CEG against both PGK1 and PKM2 gene expression, with IC values 27.89, 11.70, 7.43 and 2.74 µg/mL after incubation periods interval of 30, 60, 90 and 120 minutes, respectively. In study, computational simulations showed a strong binding affinity of CEG towards AMPK, PGK1, and PKM2 activities, with estimated binding energy (∆G) values of -6.5, -7.9, and -8.3 kcal/mol, respectively. Furthermore, incubation of A375 cells with CEG (at concentrations of 20.9, 41.87, and 83.74 µg/mL) led to a significant decrease in GSH levels and the activity of GR, SOD, GPx, CAT, cyclin D1, cyclin E2, cdk2, and cdk4. Notably, CEG treatment upregulated AMPK levels while downregulating PGK1 and PKM2 gene expression significantly.

Conclusion

CEG induces apoptosis in melanoma cancer cells (A375) through various mechanisms, including enhanced production of p53 and MDA, inhibition of key enzymes (GR, SOD, GPx, CAT) involved in oxidative stress defense and production of cell cycle regulating enzymes (cyclin D1, cyclin E2, cdk2, cdk4, and upregulation of AMPK and downregulation PGK1, and PKM2 in A375 tumor cells pathways. The downregulation of PKM2 in CEG-treated A375 cells inhibits ATP generation aerobic glycolysis, a metabolic preference of cancer cells.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206345600241216053948
2025-01-02
2025-09-03
Loading full text...

Full text loading...

References

  1. HayatM.J. HowladerN. ReichmanM.E. EdwardsB.K. Cancer statistics, trends, and multiple primary cancer analyses from the surveillance, epidemiology, and end results (SEER) program.Oncologist2007121203710.1634/theoncologist.12‑1‑2017227898
    [Google Scholar]
  2. El GizawyH.A.E.H. HusseinM.A. Abdel-SattarE. Biological activities, isolated compounds and HPLC profile of Verbascum nubicum.Pharm. Biol.201957148549710.1080/13880209.2019.164337831401911
    [Google Scholar]
  3. HusseinM.A. Anti-obesity, antiatherogenic, anti-diabetic and antioxidant activities of J. montana ethanolic formulation in obese diabetic rats fed high-fat diet.Free Radic. Antioxid.201111496010.5530/ax.2011.1.9
    [Google Scholar]
  4. Vander HeidenM.G. CantleyL.C. ThompsonC.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation.Science200932459301029103310.1126/science.116080919460998
    [Google Scholar]
  5. SteinE.M. DiNardoC.D. PollyeaD.A. FathiA.T. RobozG.J. AltmanJ.K. StoneR.M. DeAngeloD.J. LevineR.L. FlinnI.W. KantarjianH.M. CollinsR. PatelM.R. FrankelA.E. SteinA. SekeresM.A. SwordsR.T. MedeirosB.C. WillekensC. VyasP. TosoliniA. XuQ. KnightR.D. YenK.E. AgrestaS. de BottonS. TallmanM.S. Enasidenib in mutant IDH2 relapsed or refractory acute myeloid leukemia.Blood2017130672273110.1182/blood‑2017‑04‑77940528588020
    [Google Scholar]
  6. HusseinM.A. IsmailN.E.M. MohamedA.H. BorikR.M. AliA.A. MosaadY.O. Plasma phospholipids: A promising simple biochemical parameter to evaluate COVID-19 infection severity.Bioinform. Biol. Insights2021151177932221105589110.1177/1177932221105589134840499
    [Google Scholar]
  7. ShehataM.R. MohamedM.M.A. ShoukryM.M. HusseinM.A. HusseinF.M. Synthesis, characterization, equilibria and biological activity of dimethyltin(IV) complex with 1,4-piperazine.J. Coord. Chem.20156861101111410.1080/00958972.2015.1007962
    [Google Scholar]
  8. El-gizawyH.A.E. HusseinM.A. Isolation, structure elucidation of ferulic and coumaric acids from Fortunella japonica swingle leaves and their structure antioxidant activity relationship.Free Radic. Antioxid.201671233010.5530/fra.2017.1.4
    [Google Scholar]
  9. ZhengQ. LinZ. XuJ. LuY. MengQ. WangC. YangY. XinX. LiX. PuH. GuiX. LiT. XiongW. LuD. Long noncoding RNA MEG3 suppresses liver cancer cells growth through inhibiting β-catenin by activating PKM2 and inactivating PTEN.Cell Death Dis.20189325310.1038/s41419‑018‑0305‑729449541
    [Google Scholar]
  10. BeneschC. SchneiderC. VoelkerH-U. KappM. CaffierH. KrockenbergerM. DietlJ. KammererU. SchmidtM. The clinicopathological and prognostic relevance of pyruvate kinase M2 and pAkt expression in breast cancer.Anticancer Res.20103051689169420592362
    [Google Scholar]
  11. TangS.J. HoM.Y. ChoH.C. LinY.C. SunG.H. ChiK.H. WangY.S. JhouR.S. YangW. SunK.H. Phosphoglycerate kinase 1‐overexpressing lung cancer cells reduce cyclooxygenase 2 expression and promote anti‐tumor immunity in vivo.Int. J. Cancer2008123122840284810.1002/ijc.2388818814280
    [Google Scholar]
  12. Mohammed AbdallaH.Jr Soad MohamedA.G. In vivo hepato-protective properties of purslane extracts on paracetamol-induced liver damage.Malays. J. Nutr.201016116117022691863
    [Google Scholar]
  13. MohamadE.A. MohamedZ.N. HusseinM.A. ElneklawiM.S. GANE can improve lung fibrosis by reducing inflammation via promoting p38MAPK/TGF-β1/NF-κB signaling pathway downregulation.ACS Omega2022733109312010.1021/acsomega.1c0659135097306
    [Google Scholar]
  14. El GizawyH.A. Abo-SalemH.M. AliA.A. HusseinM.A. Phenolic profiling and therapeutic potential of certain isolated compounds from parkia roxburghii against AChE activity as well as GABAA α5, GSK-3β, and p38α MAP-kinase genes.ACS Omega2021631204922051110.1021/acsomega.1c0234034395996
    [Google Scholar]
  15. GobbaN.A.E.K. Hussein AliA. El SharawyD.E. HusseinM.A. The potential hazardous effect of exposure to iron dust in Egyptian smoking and nonsmoking welders.Arch. Environ. Occup. Health201873318920210.1080/19338244.2017.131493028375782
    [Google Scholar]
  16. WangJ. WangJ. DaiJ. JungY. WeiC.L. WangY. HavensA.M. HoggP.J. KellerE.T. PientaK.J. NorJ.E. WangC.Y. TaichmanR.S. A glycolytic mechanism regulating an angiogenic switch in prostate cancer.Cancer Res.200767114915910.1158/0008‑5472.CAN‑06‑297117210694
    [Google Scholar]
  17. FaubertB. BoilyG. IzreigS. GrissT. SamborskaB. DongZ. DupuyF. ChambersC. FuerthB.J. ViolletB. MamerO.A. AvizonisD. DeBerardinisR.J. SiegelP.M. JonesR.G. AMPK is a negative regulator of the Warburg effect and suppresses tumor growth in vivo.Cell Metab.201317111312410.1016/j.cmet.2012.12.00123274086
    [Google Scholar]
  18. ZhouY. FarooqiA.A. XuB. Comprehensive review on signaling pathways of dietary saponins in cancer cells suppression.Crit. Rev. Food Sci. Nutr.202363204325435010.1080/10408398.2021.200093334751072
    [Google Scholar]
  19. ChenY.F. YangC.H. ChangM.S. CiouY.P. HuangY.C. Foam properties and detergent abilities of the saponins from Camellia oleifera.Int. J. Mol. Sci.201011114417442510.3390/ijms1111441721151446
    [Google Scholar]
  20. BarbosaA.D.P. An overview on the biological and pharmacological activities of saponins.Int. J. Pharm. Pharm. Sci.201464750
    [Google Scholar]
  21. ManS. GaoW. ZhangY. HuangL. LiuC. Chemical study and medical application of saponins as anti-cancer agents.Fitoterapia201081770371410.1016/j.fitote.2010.06.00420550961
    [Google Scholar]
  22. RamalheteC. GonçalvesB.M.F. BarbosaF. DuarteN. FerreiraM.J.U. Momordica balsamina: Phytochemistry and pharmacological potential of a gifted species.Phytochem. Rev.202221261764610.1007/s11101‑022‑09802‑735153639
    [Google Scholar]
  23. BorikR.M. HusseinM.A. Synthesis, molecular docking, biological potentials and structure activity relationship of new quinazoline and quinazoline-4-one derivatives.Asian J. Chem.202133242343810.14233/ajchem.2021.23036
    [Google Scholar]
  24. BoshraS. HusseinM. Cranberry extract as a supplemented food in treatment of oxidative stress and breast cancer induced by N-Methyl-N-Nitrosourea in female virgin rats.Int. J. Phytomed.20168217227
    [Google Scholar]
  25. HusseinM.A. BorikR.M. A novel quinazoline-4-one derivatives as a promising cytokine inhibitors: Synthesis, molecular docking, and structure-activity relationship.Curr. Pharm. Biotechnol.20222391179120310.2174/138920102266621060117065034077343
    [Google Scholar]
  26. HansenM.B. NielsenS.E. BergK. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill.J. Immunol. Methods1989119220321010.1016/0022‑1759(89)90397‑92470825
    [Google Scholar]
  27. CrowleyL.C. MarfellB.J. ScottA.P. WaterhouseN.J. Quantitation of apoptosis and necrosis by annexin V binding, propidium iodide uptake, and flow cytometry.Cold Spring Harb. Protoc.2016201611pdb.prot08728810.1101/pdb.prot08728827803250
    [Google Scholar]
  28. ChenX. ZhaoC. LiX. WangT. LiY. CaoC. DingY. DongM. FinciL. WangJ. LiX. LiuL. Terazosin activates Pgk1 and Hsp90 to promote stress resistance.Nat. Chem. Biol.2015111192510.1038/nchembio.165725383758
    [Google Scholar]
  29. Vander HeidenM.G. ChristofkH.R. SchumanE. SubtelnyA.O. SharfiH. HarlowE.E. XianJ. CantleyL.C. Identification of small molecule inhibitors of pyruvate kinase M2.Biochem. Pharmacol.20107981118112410.1016/j.bcp.2009.12.00320005212
    [Google Scholar]
  30. AkerboomT.P.M. SiesH. TPM A Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples.Methods Enzymol.19817737338210.1016/S0076‑6879(81)77050‑27329314
    [Google Scholar]
  31. TampaM. NicolaeI. EneC.D. SarbuI. MateiC. GeorgescuS.R. Vitamin C and thiobarbituric acid reactive substances (TBARS) in Psoriasis vulgaris related to psoriasis area severity index (PASI).Revista de Chimie2017681434710.37358/RC.17.1.5385
    [Google Scholar]
  32. NishikimiM. Appaji RaoN. YagiK. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen.Biochem. Biophys. Res. Commun.197246284985410.1016/S0006‑291X(72)80218‑34400444
    [Google Scholar]
  33. AebiH. Catalase in vitro.ElsevierMethods in Enzymology1984121126
    [Google Scholar]
  34. Maiorino, F.M.; Brigelius-Flohé, R.; Aumann, K.; Roveri, A.; Schomburg, D.; Flohé, L. Diversity of glutathione peroxidases.Methods in Enzymology, Elsevier19953853
    [Google Scholar]
  35. DymO. EisenbergD. Sequence‐structure analysis of FAD‐containing proteins.Protein Sci.20011091712172810.1110/ps.1280111514662
    [Google Scholar]
  36. XiongG. WuZ. YiJ. FuL. YangZ. HsiehC. YinM. ZengX. WuC. LuA. ChenX. HouT. CaoD. ADMETlab 2.0: An integrated online platform for accurate and comprehensive predictions of ADMET properties.Nucleic Acids Res.202149W1W5W1410.1093/nar/gkab25533893803
    [Google Scholar]
  37. HanwellM.D. CurtisD.E. LonieD.C. VandermeerschT. ZurekE. HutchisonG.R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform.J. Cheminform.2012411710.1186/1758‑2946‑4‑1722889332
    [Google Scholar]
  38. MorrisG.M. HueyR. LindstromW. SannerM.F. BelewR.K. GoodsellD.S. OlsonA.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility.J. Comput. Chem.200930162785279110.1002/jcc.2125619399780
    [Google Scholar]
  39. JiménezJ. DoerrS. Martínez-RosellG. RoseA.S. De FabritiisG. DeepSite: Protein-binding site predictor using 3D-convolutional neural networks.Bioinformatics201733193036304210.1093/bioinformatics/btx35028575181
    [Google Scholar]
  40. TrottO. OlsonA.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading.J. Comput. Chem.201031245546110.1002/jcc.2133419499576
    [Google Scholar]
  41. SystèmesD.B. Discovery Studio Modeling Environment, Release 2019.Dassault Systèmes2019
    [Google Scholar]
  42. GorbalenyaA.E. BakerS.C. BaricR.S. de GrootR.J. DrostenC. GulyaevaA.A. HaagmansB.L. LauberC. LeontovichA.M. NeumanB.W. PenzarD. PerlmanS. PoonL.L.M. SamborskiyD.V. SidorovI.A. SolaI. ZiebuhrJ. The species Severe acute respiratory syndrome-related coronavirus: Classifying 2019-nCoV and naming it SARS-CoV-2.Nat. Microbiol.20205453654410.1038/s41564‑020‑0695‑z32123347
    [Google Scholar]
  43. WuP.L. LinF.W. WuT.S. KuohC.S. LeeK.H. LeeS.J. Cytotoxic and anti-HIV principles from the rhizomes of Begonia nantoensis.Chem. Pharm. Bull.200452334534910.1248/cpb.52.34514993759
    [Google Scholar]
  44. KongY. ChenJ. ZhouZ. XiaH. QiuM.H. ChenC. Cucurbitacin E induces cell cycle G2/M phase arrest and apoptosis in triple negative breast cancer.PLoS One201497e10376010.1371/journal.pone.010376025072848
    [Google Scholar]
  45. HeX. GaoQ. QiangY. GuoW. MaY. Cucurbitacin E induces apoptosis of human prostate cancer cells via cofilin-1 and mTORC1.Oncol. Lett.20171364905491010.3892/ol.2017.608628599494
    [Google Scholar]
  46. Tannin-SpitzT. GrossmanS. DovratS. GottliebH.E. BergmanM. Growth inhibitory activity of cucurbitacin glucosides isolated from Citrullus colocynthis on human breast cancer cells.Biochem. Pharmacol.2007731566710.1016/j.bcp.2006.09.01217049494
    [Google Scholar]
  47. MostafaM.M. AminM.M. ZakariaM.Y. HusseinM.A. ShamaaM.M. Abd El-HalimS.M. Chitosan surface-modified PLGA nanoparticles loaded with cranberry powder extract as a potential oral delivery platform for targeting colon cancer cells.Pharmaceutics202315260610.3390/pharmaceutics1502060636839928
    [Google Scholar]
  48. M SolimanS. MosallamS. MamdouhM.A. HusseinM.A. M Abd El-HalimS. Design and optimization of cranberry extract loaded bile salt augmented liposomes for targeting of MCP-1/STAT3/VEGF signaling pathway in DMN-intoxicated liver in rats.Drug Deliv.202229142743910.1080/10717544.2022.203287535098843
    [Google Scholar]
  49. El-GizawyH. HusseinM. Fatty acids profile, nutritional values, anti-diabetic and antioxidant activity of the fixed oil of malvaparviflora growing in Egypt.Int. J. Phytomed.20157219230
    [Google Scholar]
  50. MosaadY.O. HusseinM.A. AteyyaH. MohamedA.H. AliA.A. RamadanY.A. WinkM. El-KholyA.A. Vanin 1 gene role in modulation of iNOS/MCP-1/TGF-β1 signaling pathway in obese diabetic patients.J. Inflamm. Res.2022156745675910.2147/JIR.S38650636540060
    [Google Scholar]
  51. MinH.Y. PeiH. HyunS.Y. BooH.J. JangH.J. ChoJ. KimJ.H. SonJ. LeeH.Y. Potent anticancer effect of the natural steroidal Saponin gracillin is produced by inhibiting glycolysis and oxidative phosphorylation-mediated bioenergetics.Cancers202012491310.3390/cancers1204091332276500
    [Google Scholar]
  52. GaoX. WangH. YangJ.J. LiuX. LiuZ.R. Pyruvate kinase M2 regulates gene transcription by acting as a protein kinase.Mol. Cell201245559860910.1016/j.molcel.2012.01.00122306293
    [Google Scholar]
  53. ZhengL.F. DaiF. ZhouB. YangL. LiuZ.L. Prooxidant activity of hydroxycinnamic acids on DNA damage in the presence of Cu(II) ions: Mechanism and structure–activity relationship.Food Chem. Toxicol.200846114915610.1016/j.fct.2007.07.01017764801
    [Google Scholar]
  54. BhosleS.M. HuilgolN.G. MishraK.P. Enhancement of radiation-induced oxidative stress and cytotoxicity in tumor cells by ellagic acid.Clin. Chim. Acta20053591-28910010.1016/j.cccn.2005.03.03715922998
    [Google Scholar]
  55. HauptS. BergerM. GoldbergZ. HauptY. Apoptosis - The p53 network.J. Cell Sci.2003116204077408510.1242/jcs.0073912972501
    [Google Scholar]
  56. LiuY. XuX. XuX. LiS. LiangZ. HuZ. WuJ. ZhuY. JinX. WangX. LinY. ChenH. MaoY. LuoJ. ZhengX. XieL. MicroRNA-193a-3p inhibits cell proliferation in prostate cancer by targeting cyclin D1.Oncol. Lett.20171455121512810.3892/ol.2017.686529142597
    [Google Scholar]
  57. ChenZ. YuQ. ChenG. TangR. LuoD. DangY. WeiD. MiR-193a-3p inhibits pancreatic ductal adenocarcinoma cell proliferation by targeting CCND1.Cancer Manag. Res.2019114825483710.2147/CMAR.S19925731213904
    [Google Scholar]
  58. QianX. LiX. LuZ. Protein kinase activity of the glycolytic enzyme PGK1 regulates autophagy to promote tumorigenesis.Autophagy20171371246124710.1080/15548627.2017.131394528486006
    [Google Scholar]
  59. ZhaQ.B. ZhangX.Y. LinQ.R. XuL.H. ZhaoG.X. PanH. ZhouD. OuyangD.Y. LiuZ.H. HeX.H. Cucurbitacin E induces autophagy via downregulating mTORC1 signaling and upregulating AMPK activity.PLoS One2015105e012435510.1371/journal.pone.012435525970614
    [Google Scholar]
  60. ZhangK. SunL. KangY. Regulation of phosphoglycerate kinase 1 and its critical role in cancer.Cell Commun. Signal.202321124010.1186/s12964‑023‑01256‑437723547
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206345600241216053948
Loading
/content/journals/acamc/10.2174/0118715206345600241216053948
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Research Article
Keyword(s): A375; AMPK; Cucurbitacin E glucoside (CEG); melanoma cancer; PGK1; PKM2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test