Skip to content
2000
Volume 25, Issue 20
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Lung cancer remains a leading cause of cancer-related mortality worldwide, primarily due to late-stage diagnosis and resistance to conventional therapies. Recent studies have highlighted the potential of natural compounds in enhancing the efficacy and reducing the side effects of conventional cancer treatments. Baicalin, a bioactive compound from , exhibits significant anticancer properties.

Objectives

This study aimed to investigate the role of baicalin in modulating lung cancer cell behavior through the arachidonate 12-lipoxygenase (ALOX12)-mediated ferroptosis pathway.

Methods

We employed cyber pharmacology and molecular docking techniques to predict and validate the interaction between baicalin and ALOX12. experiments were conducted on A549 lung cancer cells to assess the effects of baicalin on cell proliferation, migration, and invasion. The expression levels of ALOX12, reactive oxygen species (ROS), and ferroptosis markers, such as Glutathione Peroxidase 4 (GPX4) and Acyl-CoA Synthetase Long-Chain Family Member 4 (ACSL4), were measured.

Results

Baicalin treatment significantly upregulated ALOX12 expression in lung cancer cells, and this upregulation was associated with a reduction in cell proliferation, migration, and invasion. Furthermore, baicalin-induced ferroptosis was characterized by increased ROS levels, iron accumulation, and elevated expression of GPX4 and ACSL4. These findings suggest that baicalin enhances ferroptosis through ALOX12 activation, synergistically inhibiting cancer cell growth.

Conclusion

Baicalin significantly upregulated ALOX12 expression, promoted ferroptosis, and inhibited the proliferation and migration of A549 lung cancer cells. This finding provides evidence for the potential use of baicalin as a therapeutic agent for lung cancer and highlights the importance of ALOX12 in lung cancer treatment strategies.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206342238250428115441
2025-05-05
2025-12-17
Loading full text...

Full text loading...

References

  1. HuangJ. NgaiC.H. DengY. TinM.S. LokV. ZhangL. YuanJ. XuW. ZhengZ.J. WongM.C.S. Cancer incidence and mortality in Asian countries: A trend analysis.Cancer Contr.2022291073274822109595510.1177/10732748221095955 35770775
    [Google Scholar]
  2. LiN. WuP. ShenY. YangC. ZhangL. ChenY. WangZ. JiangJ. Predictions of mortality related to four major cancers in China, 2020 to 2030.Cancer Commun.202141540441310.1002/cac2.12143 33660417
    [Google Scholar]
  3. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer statistics, 2022.CA Cancer J. Clin.202272173310.3322/caac.21708 35020204
    [Google Scholar]
  4. ChenP. LiuY. WenY. ZhouC. Non‐small cell lung cancer in China.Cancer Commun.2022421093797010.1002/cac2.12359 36075878
    [Google Scholar]
  5. SiegelR.L. MillerK.D. FuchsH.E. JemalA. Cancer Statistics, 2021.CA Cancer J. Clin.202171173310.3322/caac.21654 33433946
    [Google Scholar]
  6. LiZ. FeiyueZ. GaofengL. Traditional Chinese medicine and lung cancer——From theory to practice.Biomed. Pharmacother.202113711138110.1016/j.biopha.2021.111381 33601147
    [Google Scholar]
  7. LiuR. WangY. Target-territory resection techniques for malignant tumors.Zhonghua Zhong Liu Za Zhi202244772572710.3760/cma.j.cn112152‑20220531‑00376
    [Google Scholar]
  8. KlementJ.D. ReddP.S. LuC. MertingA.D. PoschelD.B. YangD. SavageN.M. ZhouG. MunnD.H. FallonP.G. LiuK. Tumor PD-L1 engages myeloid PD-1 to suppress type I interferon to impair cytotoxic T lymphocyte recruitment.Cancer Cell2023413620636.e910.1016/j.ccell.2023.02.005 36917954
    [Google Scholar]
  9. DingC. ShresthaR. ZhuX. GellerA.E. WuS. WoesteM.R. LiW. WangH. YuanF. XuR. CharikerJ.H. HuX. LiH. TieriD. ZhangH.G. RouchkaE.C. MitchellR. SiskindL.J. ZhangX. XuX.G. McMastersK.M. YuY. YanJ. Inducing trained immunity in pro-metastatic macrophages to control tumor metastasis.Nat. Immunol.202324223925410.1038/s41590‑022‑01388‑8 36604547
    [Google Scholar]
  10. ChenF. LiT. ZhangH. SaeedM. LiuX. HuangL. WangX. GaoJ. HouB. LaiY. DingC. XuZ. XieZ. LuoM. YuH. Acid‐ionizable iron nanoadjuvant augments sting activation for personalized vaccination immunotherapy of cancer.Adv. Mater.20233510220991010.1002/adma.202209910 36576344
    [Google Scholar]
  11. HeF. ZhangP. LiuJ. WangR. KaufmanR.J. YadenB.C. KarinM. ATF4 suppresses hepatocarcinogenesis by inducing SLC7A11 (xCT) to block stress-related ferroptosis.J. Hepatol.202379236237710.1016/j.jhep.2023.03.016 36996941
    [Google Scholar]
  12. RademakerG. BoumahdY. PeifferR. AnaniaS. WissocqT. LiégeoisM. LuisG. SounniN.E. AgirmanF. MaloujahmoumN. TullioD.P. ThiryM. BellahcèneA. CastronovoV. PeulenO. Myoferlin targeting triggers mitophagy and primes ferroptosis in pancreatic cancer cells.Redox Biol.20225310232410.1016/j.redox.2022.102324 35533575
    [Google Scholar]
  13. HuangY. WangS. KeA. GuoK. Ferroptosis and its interaction with tumor immune microenvironment in liver cancer.Biochim. Biophys. Acta Rev. Cancer20231878118884810.1016/j.bbcan.2022.188848 36502929
    [Google Scholar]
  14. XueQ. YanD. ChenX. LiX. KangR. KlionskyD.J. KroemerG. ChenX. TangD. LiuJ. Copper-dependent autophagic degradation of GPX4 drives ferroptosis.Autophagy20231971982199610.1080/15548627.2023.2165323 36622894
    [Google Scholar]
  15. YanH.F. ZouT. TuoQ.Z. Ferroptosis: Mechanisms and links with diseases.Signal Transduct. Target. Ther.2021614910.1038/s41392‑020‑00428‑9
    [Google Scholar]
  16. ShaW. HuF. XiY. ChuY. BuS. Mechanism of ferroptosis and its role in type 2 diabetes mellitus.J. Diabetes Res.2021202111010.1155/2021/9999612 34258295
    [Google Scholar]
  17. YangF. XiaoY. DingJ.H. JinX. MaD. LiD.Q. ShiJ.X. HuangW. WangY.P. JiangY.Z. ShaoZ.M. Ferroptosis heterogeneity in triple-negative breast cancer reveals an innovative immunotherapy combination strategy.Cell Metab.202335184100.e810.1016/j.cmet.2022.09.021 36257316
    [Google Scholar]
  18. NakamuraT. HippC. MourãoS.D.A. BorggräfeJ. AldrovandiM. HenkelmannB. WanningerJ. MishimaE. LyttonE. EmlerD. PronethB. SattlerM. ConradM. Phase separation of FSP1 promotes ferroptosis.Nature2023619796937137710.1038/s41586‑023‑06255‑6 37380771
    [Google Scholar]
  19. KoppulaP. LeiG. ZhangY. YanY. MaoC. KondiparthiL. ShiJ. LiuX. HorbathA. DasM. LiW. PoyurovskyM.V. OlszewskiK. GanB. A targetable CoQ-FSP1 axis drives ferroptosis- and radiation-resistance in KEAP1 inactive lung cancers.Nat. Commun.2022131220610.1038/s41467‑022‑29905‑1 35459868
    [Google Scholar]
  20. ZhuT. WangL. FengY. SunG. SunX. Classical active ingredients and extracts of chinese herbal medicines: Pharmacokinetics, pharmacodynamics, and molecular mechanisms for ischemic stroke.Oxid. Med. Cell. Longev.202120211886894110.1155/2021/8868941 33791075
    [Google Scholar]
  21. WuY. FangY. LiY. AuR. ChengC. LiW. XuF. CuiY. ZhuL. ShenH. A network pharmacology approach and experimental validation to investigate the anticancer mechanism of Qi-Qin-Hu-Chang formula against colitis-associated colorectal cancer through induction of apoptosis via JNK/p38 MAPK signaling pathway.J. Ethnopharmacol.2024319Pt 311732310.1016/j.jep.2023.117323 37852337
    [Google Scholar]
  22. WuJ. CaoM. PengY. DongB. JiangY. HuC. ZhuP. XingW. YuL. XuR. ChenZ. Research progress on the treatment of epilepsy with traditional Chinese medicine.Phytomedicine202312015502210.1016/j.phymed.2023.155022 37647670
    [Google Scholar]
  23. WenR.J. DongX. ZhuangH.W. Baicalin induces ferroptosis in osteosarcomas through a novel Nrf2/xCT/GPX4 regulatory axis.Phytomedicine202311615488110.1016/j.phymed.2023.154881
    [Google Scholar]
  24. HanS. WangW. WangS. YangT. ZhangG. WangD. JuR. LuY. WangH. WangL. Tumor microenvironment remodeling and tumor therapy based on M2-like tumor associated macrophage-targeting nano-complexes.Theranostics20211162892291610.7150/thno.50928 33456579
    [Google Scholar]
  25. WeiX. ZhangB. WeiF. DingM. LuoZ. HanX. TanX. Gegen Qinlian pills alleviate carrageenan-induced thrombosis in mice model by regulating the HMGB1/NF-κB/NLRP3 signaling.Phytomedicine202210015408310.1016/j.phymed.2022.154083 35413645
    [Google Scholar]
  26. LiuY. NieX. WangJ. ZhaoZ. WangZ. JuF. Visualizing the distribution of flavonoids in litchi (Litchi chinenis) seeds through matrix-assisted laser desorption/ionization mass spectrometry imaging.Front. Plant Sci.202314114444910.3389/fpls.2023.1144449 36909412
    [Google Scholar]
  27. ZhaoM. YangY. NianQ. ShenC. XiaoX. LiaoW. ZhengQ. ZhangG. ChenN. GongD. TangJ. WenY. ZengJ. Phytochemicals and mitochondria: Therapeutic allies against gastric cancer.Phytomedicine202311015460810.1016/j.phymed.2022.154608 36586205
    [Google Scholar]
  28. LiJ. ZhangD. WangS. YuP. SunJ. ZhangY. MengX. LiJ. XiangL. Baicalein induces apoptosis by inhibiting the glutamine-mTOR metabolic pathway in lung cancer.J. Adv. Res.20256834135710.1016/j.jare.2024.02.023 38432394
    [Google Scholar]
  29. KeH. TangS. GuoT. HouD. JiaoX. LiS. LuoW. XuB. ZhaoS. LiG. ZhangX. XuS. WangL. WuY. WangJ. ZhangF. QinY. JinL. ChenZ.J. Landscape of pathogenic mutations in premature ovarian insufficiency.Nat. Med.202329248349210.1038/s41591‑022‑02194‑3 36732629
    [Google Scholar]
  30. ZhangX.J. LiuX. HuM. ZhaoG.J. SunD. ChengX. XiangH. HuangY.P. TianR.F. ShenL.J. MaJ.P. WangH.P. TianS. GanS. XuH. LiaoR. ZouT. JiY.X. ZhangP. CaiJ. WangZ.V. MengG. XuQ. WangY. MaX.L. LiuP.P. HuangZ. ZhuL. SheZ.G. ZhangX. BaiL. YangH. LuZ. LiH. Pharmacological inhibition of arachidonate 12-lipoxygenase ameliorates myocardial ischemia-reperfusion injury in multiple species.Cell Metab.2021331020592075.e1010.1016/j.cmet.2021.08.014 34536344
    [Google Scholar]
  31. TakJ. KimY.S. KimT.H. ParkG.C. HwangS. KimS.G. Gα 12 overexpression in hepatocytes by ER stress exacerbates acute liver injury via ROCK1-mediated miR-15a and ALOX12 dysregulation.Theranostics20221241570158810.7150/thno.67722 35198058
    [Google Scholar]
  32. HuangZ. XiaL. ZhouX. WeiC. MoQ. ALOX12 inhibition sensitizes breast cancer to chemotherapy via AMPK activation and inhibition of lipid synthesis.Biochem. Biophys. Res. Commun.20195141243010.1016/j.bbrc.2019.04.101 31014671
    [Google Scholar]
  33. SarsourE.H. SonJ.M. KalenA.L. XiaoW. DuJ. AlexanderM.S. O’LearyB.R. CullenJ.J. GoswamiP.C. Arachidonate 12-lipoxygenase and 12-hydroxyeicosatetraenoic acid contribute to stromal aging-induced progression of pancreatic cancer.J. Biol. Chem.2020295206946695710.1074/jbc.RA120.012798 32265301
    [Google Scholar]
  34. MilanesiE. MandaG. DobreM. CodriciE. NeagoeI.V. PopescuB.O. BajenaruO.A. SpiruL. TudoseC. PradaG.I. DavidescuE.I. Piñol-RipollG. CuadradoA. Distinctive under-expression profile of inflammatory and redox genes in the blood of elderly patients with cardiovascular disease.J. Inflamm. Res.20211442944210.2147/JIR.S280328 33658823
    [Google Scholar]
  35. YangX. WangZ. SamovichS.N. KapralovA.A. AmoscatoA.A. TyurinV.A. DarH.H. LiZ. DuanS. KonN. ChenD. TyckoB. ZhangZ. JiangX. BayirH. StockwellB.R. KaganV.E. GuW. PHLDA2-mediated phosphatidic acid peroxidation triggers a distinct ferroptotic response during tumor suppression.Cell Metab.2024364762777.e910.1016/j.cmet.2024.01.006 38309267
    [Google Scholar]
  36. EgolfS. ZouJ. AndersonA. SimpsonC.L. AubertY. ProutyS. GeK. SeykoraJ.T. CapellB.C. MLL4 mediates differentiation and tumor suppression through ferroptosis.Sci. Adv.2021750eabj914110.1126/sciadv.abj9141 34890228
    [Google Scholar]
  37. TanA.C. Targeting the PI3K/Akt/mTOR pathway in non‐small cell lung cancer (NSCLC).Thorac. Cancer202011351151810.1111/1759‑7714.13328 31989769
    [Google Scholar]
  38. GlavianoA. FooA.S.C. LamH.Y. YapK.C.H. JacotW. JonesR.H. EngH. NairM.G. MakvandiP. GeoergerB. KulkeM.H. BairdR.D. PrabhuJ.S. CarboneD. PecoraroC. TehD.B.L. SethiG. CavalieriV. LinK.H. Javidi-SharifiN.R. ToskaE. DavidsM.S. BrownJ.R. DianaP. StebbingJ. FrumanD.A. KumarA.P. PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer.Mol. Cancer202322113810.1186/s12943‑023‑01827‑6 37596643
    [Google Scholar]
  39. HeY. SunM.M. ZhangG.G. YangJ. ChenK.S. XuW.W. LiB. Targeting PI3K/Akt signal transduction for cancer therapy.Signal Transduct. Target. Ther.20216142510.1038/s41392‑021‑00828‑5 34916492
    [Google Scholar]
  40. ZhangL. JinY. PengJ. ChenW. LishaL. LinJ. Qingjie Fuzheng Granule attenuates 5-fluorouracil-induced intestinal mucosal damage.Biomed. Pharmacother.201911810922310.1016/j.biopha.2019.109223 31325706
    [Google Scholar]
  41. HuangB. LuY. GuiM. GuanJ. LinM. ZhaoJ. MaoQ. LinJ. Qingjie Fuzheng Granule suppresses lymphangiogenesis in colorectal cancer via the VEGF-C/VEGFR-3 dependent PI3K/AKT pathway.Biomed. Pharmacother.202113711133110.1016/j.biopha.2021.111331 33578235
    [Google Scholar]
  42. SzklarczykD. FranceschiniA. KuhnM. The STRING database in 2011: Functional interaction networks of proteins, globally integrated and scored.Nucleic Acids Res.201039Database issueD561D56810.1093/nar/gkq973
    [Google Scholar]
  43. ShabbirU. TyagiA. HamH.J. ElahiF. OhD.H. Effect of fermentation on the bioactive compounds of the black soybean and their anti-alzheimer’s activity.Front. Nutr.2022988036110.3389/fnut.2022.880361 35634410
    [Google Scholar]
  44. KimH. ParkS.H. HanS.Y. LeeY.S. ChoJ. KimJ.M. LXA4-FPR2 signaling regulates radiation-induced pulmonary fibrosis via crosstalk with TGF-β/Smad signaling.Cell Death Dis.202011865310.1038/s41419‑020‑02846‑7 32811815
    [Google Scholar]
  45. ChuB. KonN. ChenD. LiT. LiuT. JiangL. SongS. TavanaO. GuW. ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway.Nat. Cell Biol.201921557959110.1038/s41556‑019‑0305‑6 30962574
    [Google Scholar]
  46. WangX. ShiJ. LiuZ. Advancements in the diagnosis and treatment of sub centimeter lung cancer in the era of precision medicine (Review).Mol. Clin. Oncol.20242042810.3892/mco.2024.2726 38414512
    [Google Scholar]
  47. SalfiR. HakimF. BhikshapathiD. KhanA. Anticancer evaluation of novel quinazolinone acetamides: Synthesis and characterization.Anticancer. Agents Med. Chem.202222592693210.2174/1871520621666210524164351
    [Google Scholar]
  48. ZhaoW. JinL. ChenP. LiD. GaoW. DongG. Colorectal cancer immunotherapy-recent progress and future directions.Cancer Lett.202254521581610.1016/j.canlet.2022.215816 35810989
    [Google Scholar]
  49. LiM.S.C. MokK.K.S. MokT.S.K. Developments in targeted therapy and immunotherapy—how non-small cell lung cancer management will change in the next decade: A narrative review.Ann. Transl. Med.2023111035835810.21037/atm‑22‑4444 37675321
    [Google Scholar]
  50. ZhengX. SongX. ZhuG. PanD. LiH. HuJ. XiaoK. GongQ. GuZ. LuoK. LiW. Nanomedicine combats drug resistance in lung cancer.Adv. Mater.2024363230897710.1002/adma.202308977 37968865
    [Google Scholar]
  51. HerbstR.S. WuY.L. JohnT. GroheC. MajemM. WangJ. KatoT. GoldmanJ.W. LaktionovK. KimS.W. YuC.J. VuH.V. LuS. LeeK.Y. MukhametshinaG. AkewanlopC. MarinisD.F. BonannoL. DomineM. ShepherdF.A. UrbanD. HuangX. BolanosA. StachowiakM. TsuboiM. Adjuvant osimertinib for resected egfr-mutated stage ib-iiia non–small-cell lung cancer: Updated results from the phase III randomized adaura trial.J. Clin. Oncol.202341101830184010.1200/JCO.22.02186 36720083
    [Google Scholar]
  52. Paz-AresL. ChampiatS. LaiW.V. IzumiH. GovindanR. BoyerM. HummelH.D. BorghaeiH. JohnsonM.L. SteeghsN. BlackhallF. DowlatiA. ReguartN. YoshidaT. HeK. GadgeelS.M. FelipE. ZhangY. PatiA. MinochaM. MukherjeeS. GoldrickA. NagorsenD. SadraeiH.N. OwonikokoT.K. Tarlatamab, a first-in-class dll3-targeted bispecific t-cell engager, in recurrent small-cell lung cancer: An open-label, phase I study.J. Clin. Oncol.202341162893290310.1200/JCO.22.02823 36689692
    [Google Scholar]
  53. BrahmerJ.R. LeeJ.S. CiuleanuT.E. CaroB.R. NishioM. UrbanL. Audigier-ValetteC. LupinacciL. SanghaR. PluzanskiA. BurgersJ. MahaveM. AhmedS. SchoenfeldA.J. Paz-AresL.G. ReckM. BorghaeiH. O’ByrneK.J. GuptaR.G. BushongJ. LiL. BlumS.I. EcclesL.J. RamalingamS.S. Five-year survival outcomes with nivolumab plus ipilimumab versus chemotherapy as first-line treatment for metastatic non–small-cell lung cancer in checkmate 227.J. Clin. Oncol.20234161200121210.1200/JCO.22.01503 36223558
    [Google Scholar]
  54. TianY. MaJ. JingX. ZhaiX. LiY. GuoZ. YuJ. ZhuH. Radiation therapy for extensive-stage small-cell lung cancer in the era of immunotherapy.Cancer Lett.202254121571910.1016/j.canlet.2022.215719 35597478
    [Google Scholar]
  55. CortiulaF. ReymenB. PetersS. MolV.P. WautersE. VansteenkisteJ. RuysscherD.D. HendriksL.E.L. Immunotherapy in unresectable stage III non-small-cell lung cancer: State of the art and novel therapeutic approaches.Ann. Oncol.202233989390810.1016/j.annonc.2022.06.013 35777706
    [Google Scholar]
  56. WrightK. DigbyG.C. GyawaliB. JadR. MenardA. MoraesF.Y. WijeratneD.T. Malignant superior vena cava syndrome: A scoping review.J. Thorac. Oncol.202318101268127610.1016/j.jtho.2023.04.019 37146753
    [Google Scholar]
  57. LahiriA. MajiA. PotdarP.D. SinghN. ParikhP. BishtB. MukherjeeA. PaulM.K. Lung cancer immunotherapy: Progress, pitfalls, and promises.Mol. Cancer20232214010.1186/s12943‑023‑01740‑y 36810079
    [Google Scholar]
  58. WangM. HerbstR.S. BoshoffC. Toward personalized treatment approaches for non-small-cell lung cancer.Nat. Med.20212781345135610.1038/s41591‑021‑01450‑2 34385702
    [Google Scholar]
  59. HarðardóttirH. JónssonS. GunnarssonÖ. HilmarsdóttirB. ÁsmundssonJ. GuðmundsdóttirI. SævarsdóttirV.Ý. HansdóttirS. HannessonP. GuðbjartssonT. Advances in lung cancer diagnosis and treatment - a review.Laeknabladid20221081172910.17992/lbl.2022.01.671
    [Google Scholar]
  60. ChenJ. YuanC.B. YangB. ZhouX. Baicalin inhibits EMT through PDK1/AKT signaling in human nonsmall cell lung cancer.J. Oncol.2021202111010.1155/2021/4391581 34868313
    [Google Scholar]
  61. ContursiA. TacconelliS. HoflingU. BrunoA. DovizioM. BalleriniP. PatrignaniP. Biology and pharmacology of platelet-type 12-lipoxygenase in platelets, cancer cells, and their crosstalk.Biochem. Pharmacol.202220511525210.1016/j.bcp.2022.115252 36130648
    [Google Scholar]
  62. WengS. LiuZ. XuH. GeX. RenY. DangQ. LiuL. ZhangJ. LuoP. RenJ. HanX. ALOX12: A novel insight in bevacizumab response, immunotherapy effect, and prognosis of colorectal cancer.Front. Immunol.20221391058210.3389/fimmu.2022.910582 35833141
    [Google Scholar]
  63. XuF. ZhangZ. ZhaoY. ZhouY. PeiH. BaiL. Bioinformatic mining and validation of the effects of ferroptosis regulators on the prognosis and progression of pancreatic adenocarcinoma.Gene202179514580410.1016/j.gene.2021.145804 34175402
    [Google Scholar]
  64. YangW. WangX. SongS. ChuY. SunD. YuX. ZouY. Long noncoding RNA ALOX12-AS1 inhibits cervical cancer cells proliferation via targeting miR-3171.Anticancer Drugs2022331e362e36910.1097/CAD.0000000000001214 34407056
    [Google Scholar]
  65. MiaoY.D. KouZ.Y. WangJ.T. MiD.H. Prognostic implications of ferroptosis-associated gene signature in colon adenocarcinoma.World J. Clin. Cases20219298671869310.12998/wjcc.v9.i29.8671 34734046
    [Google Scholar]
  66. YangL. TianS. ChenY. MiaoC. ZhaoY. WangR. ZhangQ. Ferroptosis-related gene model to predict overall survival of ovarian carcinoma.J. Oncol.2021202111410.1155/2021/6687391 33519933
    [Google Scholar]
  67. ZengY. LiaoX. GuoY. LiuF. BuF. ZhanJ. ZhangJ. CaiY. ShenM. Baicalin-peptide supramolecular self-assembled nanofibers effectively inhibit ferroptosis and attenuate doxorubicin-induced cardiotoxicity.J. Control. Release202436683884810.1016/j.jconrel.2023.12.034 38145663
    [Google Scholar]
  68. ZhaoS. HuangM. YanL. ZhangH. ShiC. LiuJ. ZhaoS. LiuH. WangB. Exosomes derived from baicalin-pretreated mesenchymal stem cells alleviate hepatocyte ferroptosis after acute liver injury via the Keap1-NRF2 pathway.Oxid. Med. Cell. Longev.2022202211810.1155/2022/8287227 35910831
    [Google Scholar]
  69. QiaoD. LiY. XingJ. SunP. WangY. ZhangY. ChenL. RenX. LinZ. JinJ. PiaoY. Baicalein inhibits PI3K/AKT signaling pathway and induces autophagy of MGC-803 cells.Xibao Yu Fenzi Mianyixue Zazhi2019357613618 31537246
    [Google Scholar]
  70. SuiX. HanX. ChenP. WuQ. FengJ. DuanT. ChenX. PanT. YanL. JinT. XiangY. GaoQ. WenC. MaW. LiuW. ZhangR. ChenB. ZhangM. YangZ. KongN. XieT. DingX. Baicalin induces apoptosis and suppresses the cell cycle progression of lung cancer cells through downregulating AKT/MTOR signaling pathway.Front. Mol. Biosci.2021760228210.3389/fmolb.2020.602282 33585556
    [Google Scholar]
  71. TamiyaM. TamiyaA. OkamotoN. TaniguchiY. NishinoK. AtagiS. HirashimaT. ImamuraF. KumagaiT. SuzukiH. The ratio of T790M to EGFR-activating mutation predicts response of osimertinib in 1st or 2nd generation EGFR-TKI-refractory NSCLC.Sci. Rep.2021111962910.1038/s41598‑021‑89006‑9 33953280
    [Google Scholar]
  72. TanN. LiY. YingJ. ChenW. Histological transformation in lung adenocarcinoma: Insights of mechanisms and therapeutic windows.J. Transl. Int. Med.202412545246510.1515/jtim‑2024‑0019 39513032
    [Google Scholar]
  73. LiuY. WuW. CaiC. ZhangH. ShenH. HanY. Patient-derived xenograft models in cancer therapy: Technologies and applications.Signal Transduct. Target. Ther.20238116010.1038/s41392‑023‑01419‑2 37045827
    [Google Scholar]
  74. TongL. CuiW. ZhangB. FonsecaP. ZhaoQ. ZhangP. XuB. ZhangQ. LiZ. Seashore-LudlowB. YangY. SiL. LundqvistA. Patient-derived organoids in precision cancer medicine.Med20245111351137710.1016/j.medj.2024.08.010 39341206
    [Google Scholar]
  75. AhnJ. SeiY. JeonN. KimY. Tumor microenvironment on a Chip: The progress and future perspective.Bioengineering2017436410.3390/bioengineering4030064 28952543
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206342238250428115441
Loading
/content/journals/acamc/10.2174/0118715206342238250428115441
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test