Skip to content
2000
Volume 25, Issue 10
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Introduction/Objective

Plants and their bioactive compounds play a crucial role in the pharmaceutical industry for treating cancer. To date, the cytotoxic and antiproliferative effects of methanol extract on human thyroid cancer cell lines have not been thoroughly explored. The present study aimed to assess the potential anti-cancer effects of HPME on human thyroid cancer and investigate its potential therapeutic benefits.

Methods

HPME was prepared using the maceration method, and its antioxidant activity was examined. Cytotoxicity studies were then carried out, followed by an investigation of the possible effects of HPME on metastasis and colony-forming capacities of human thyroid cancer cells. Afterward, qRT-PCR, western blotting, and apoptosis assays were performed.

Results

Cytotoxicity studies revealed notable cytotoxicity of HPME against the TT cell line. Moreover, HPME significantly curtailed metastasis and invasion of TT cells in an wound healing assay. Analyses of gene expressions demonstrated an elevation in caspase-12, caspase-3, and Bax, coupled with a reduction in BcL-2, APOE, and CLU expression. Following HPME treatment, there was an increase in the protein expression levels of Bax and Caspase-12, while a decrease in the BcL-2, APOE, and CLU protein expression. Furthermore, apoptotic studies indicated an increase in early apoptosis.

Conclusion

Overall results revealed that HPME demonstrates a notable antioxidant capacity in human thyroid cancer. It exerts an influence on crucial biological processes associated with cancer, indicating its potential to hinder the proliferation of human thyroid cancer cells by enhancing apoptosis through the upregulation of gene and protein expression, particularly involving caspases.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206340411241120051020
2025-01-14
2025-10-15
Loading full text...

Full text loading...

References

  1. LiL. ChengL. SaR. QiuX. ChenL. Real-world insights into the efficacy and safety of tyrosine kinase inhibitors against thyroid cancers.Crit. Rev. Oncol. Hematol.202217210362410.1016/j.critrevonc.2022.10362435150866
    [Google Scholar]
  2. SenM. ItoR. AbeT. KazusakaH. MatsuiM. SaitouM. NagaokaR. JikuzonoT. SugitaniI. Elevations of neutrophil-to-lymphocyte ratio and C-reactive protein over time as a precursor to anaplastic transformation of papillary thyroid carcinoma: a case report.Surg. Case Rep.202410119010.1186/s40792‑024‑01991‑x39158760
    [Google Scholar]
  3. NanB. XiongG.F. ZhaoZ.R. GuX. HuangX.S. Comprehensive identification of potential crucial genes and miRNA-mRNA regulatory networks in papillary thyroid cancer.BioMed Res. Int.2021202112510.1155/2021/675214133521130
    [Google Scholar]
  4. LukyanovS.A. TitovS.E. KozorezovaE.S. DemenkovP.S. VeryaskinaY.A. KorotovskiiD.V. IlyinaT.E. VorobyevS.L. ZhivotovV.A. BondarevN.S. SleptsovI.V. SergiykoS.V. Prediction of the aggressive clinical course of papillary thyroid carcinoma based on fine needle aspiration biopsy molecular testing.Int. J. Mol. Sci.20242513709010.3390/ijms2513709039000197
    [Google Scholar]
  5. VanderH.M.G. DeBerardinisR.J. Understanding the intersections between metabolism and cancer biology.Cell2017168465766910.1016/j.cell.2016.12.03928187287
    [Google Scholar]
  6. LinX. ZhangJ. ZhaoR.H. ZhangW.J. WuJ.F. XueG. APOE is a prognostic biomarker and correlates with immune infiltrates in papillary thyroid carcinoma.J. Cancer20221351652166310.7150/jca.6354535371313
    [Google Scholar]
  7. RenL. YiJ. LiW. ZhengX. LiuJ. WangJ. DuG. Apolipoproteins and cancer.Cancer Med.20198167032704310.1002/cam4.258731573738
    [Google Scholar]
  8. SaettaA.A. LazarisA.C. MiaouliM. VoutsinasG.E. PatsourisE. Tseleni-BalafoutaS. Fanourakis Resistance to fas-mediated apoptosis does not correlate to structural alterations or expression changes of the death receptor in papillary thyroid carcinomas.Pathobiology2018855-630431010.1159/00049235830278467
    [Google Scholar]
  9. BatoolS. AsimL. RaffaqQ.F. MasoodA. MushtaqM. SaleemR.S.Z. Molecular targets of plant-based alkaloids and polyphenolics in liver and breast cancer- An insight into anticancer drug development.Anticancer. Agents Med. Chem.20242410.2174/011871520630221624062807255438963106
    [Google Scholar]
  10. KoralahalliKP HussainS DDW SiddikuzzamanV MB Molecular actions of enicostemma hyssopifolium whole plant extract on HPV18-infected human cervical cancer (HeLa) cells.Anticancer Agents Med Chem.2024
    [Google Scholar]
  11. CaldeiraG.I. GouveiaL.P. SerranoR. SilvaO.D. Hypericum genus as a natural source for biologically active compounds.Plants20221119250910.3390/plants1119250936235373
    [Google Scholar]
  12. AvilaC. WhittenD. EvansS. The safety of St John’s wort ( Hypericum perforatum ) in pregnancy and lactation: A systematic review of rodent studies.Phytother. Res.20183281488150010.1002/ptr.609929708295
    [Google Scholar]
  13. RizzoP. AltschmiedL. RavindranB.M. RuttenT. D’AuriaJ.C. The biochemical and genetic basis for the biosynthesis of bioactive compounds in Hypericum perforatum L., one of the largest medicinal crops in Europe.Genes (Basel)20201110121010.3390/genes1110121033081197
    [Google Scholar]
  14. MaticI.Z. ErgünS. CrnogoracM.D. MisirS. AliyaziciogluY. DamjanovicA. Cytotoxic activities of L. extracts against 2D and 3D cancer cell models.Cytotechnology202173337338910.1007/s10616‑021‑00464‑534149173
    [Google Scholar]
  15. AgapoudaA. BookerA. KissT. HohmannJ. HeinrichM. CsuporD. Quality control of Hypericum perforatum L. analytical challenges and recent progress.J. Pharm. Pharmacol.2018711153710.1111/jphp.1271128266019
    [Google Scholar]
  16. SarrouE. GiassafakiL.P. MasueroD. PerenzoniD. VizirianakisI.S. IrakliM. Metabolomics assisted fingerprint of chemotypes and assessment of their cytotoxic activity.Food Chem. Toxicol.201811432533310.1016/j.fct.2018.02.05729499307
    [Google Scholar]
  17. RizzoP. AltschmiedL. RavindranB.M. RuttenT. D’AuriaJ.C. The biochemical and genetic basis for the biosynthesis of bioactive compounds in L., one of the largest medicinal crops in Europe.Genes (Basel)2020111010.3390/genes1110121033081197
    [Google Scholar]
  18. ŞebinM. YılmazN. AydınA. Some wild mushrooms with high antioxidant capacity exhibit potent anticancer activity on cancer cells using the apoptotic and antimigration cell death mechanisms.Anticancer. Agents Med. Chem.202323131567157610.2174/187152062366623033108401037005536
    [Google Scholar]
  19. ApakR. GüçlüK. ÖzyürekM. KarademirS.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method.J. Agric. Food Chem.200452267970798110.1021/jf048741x15612784
    [Google Scholar]
  20. PargiM. RavirajS.K.J. NarayanappaP. UrumarudappaS.K.J. MalleshappaP. MalleshappaK.H. Antiproliferative effects of fruit extract and its bioactive fraction through upregulation of p53/γH2AX signals and G2/M phase arrest in MIA PaCa-2 cells.Anti-Cancer Agent Me.202222172998300810.2174/187152062266622020110343135105296
    [Google Scholar]
  21. KandirS. KarakurtS. Gökçek-SaraçÇ. KarakurtS. Tannic acid elicits differential gene regulation in prostate cancer apoptosis.Acta Pharm.202474353955010.2478/acph‑2024‑002039279521
    [Google Scholar]
  22. ChenX. LiZ. YiX. JinC. Lidocaine inhibits the lung cancer progression through decreasing the HIST1H2BL levels via SIRT5 mediated succinylation.Sci. Rep.20241412331010.1038/s41598‑024‑73966‑939375419
    [Google Scholar]
  23. KarakurtS. AbuşoğluG. AritulukZ.C. Comparison of anticarcinogenic properties of Viburnum opulus and its active compound p-coumaric acid on human colorectal carcinoma.Turk. J. Biol.202044525226310.3906/biy‑2002‑3033110363
    [Google Scholar]
  24. CelikG. SemizA. KarakurtS. Gencler-OzkanA.M. ArslanS. AdaliO. SenA. Inhibitory action of Epilobium hirsutum extract and its constituent ellagic acid on drug-metabolizing enzymes.Eur. J. Drug Metab. Pharmacokinet.201641210911610.1007/s13318‑014‑0238‑125425117
    [Google Scholar]
  25. Celik-TurgutG. OlmezN. KocT. Ozgun-AcarO. SemizA. DodurgaY. Lale Satiroglu-TufanN. SenA. Role of AHR, NF-kB and CYP1A1 crosstalk with the X protein of Hepatitis B virus in hepatocellular carcinoma cells.Gene202385314709910.1016/j.gene.2022.14709936476661
    [Google Scholar]
  26. LiangS. JinJ. ShenX. JiangX. LiY. HeQ. Triptolide protects podocytes via autophagy in immunoglobulin A nephropathy.Exp. Ther. Med.20181632275228010.3892/etm.2018.648030186468
    [Google Scholar]
  27. FilettiS. DuranteC. HartlD. LeboulleuxS. LocatiL.D. NewboldK. PapottiM.G. BerrutiA. ESMO Guidelines Committee. Electronic address: [email protected] Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up.Ann. Oncol.201930121856188310.1093/annonc/mdz40031549998
    [Google Scholar]
  28. HostanskaK. ReichlingJ. BommerS. WeberM. SallerR. Hyperforin a constituent of St John’s wort (L.) extract induces apoptosis by triggering activation of caspases and with hypericin synergistically exerts cytotoxicity towards human malignant cell lines.Eur. J. Pharm. Biopharm.200356112113210.1016/S0939‑6411(03)00046‑812837490
    [Google Scholar]
  29. EghdamiA. PiriH. Sirati-SabetM. IlghariD. Investigation of anti proliferative properties and antioxidant activity of aerial parts ethanolic extract of Hypericum perforatum L. by breast cancer 4T1 cell lines.Int. J. Biosci.201331226527210.12692/ijb/3.12.265‑272
    [Google Scholar]
  30. SeyrekoğluF. TemizH. Effect of Extraction Conditions on the Phenolic Content and DPPH Radical Scavenging Activity of Hypericum perforatum L.Turkish J. Agriculture - Food Sci. Technol.20208122622910.24925/turjaf.v8i1.226‑229.3013
    [Google Scholar]
  31. SarikurkcuC. LocatelliM. TartagliaA. FerroneV. JuszczakA.M. OzerM.S. TepeB. TomczykM. Enzyme and biological activities of the water extracts from the plants Aesculus hippocastanum, Olea europaea and Hypericum perforatum that are used as folk remedies in Turkey.Molecules2020255120210.3390/molecules2505120232155959
    [Google Scholar]
  32. ErogluE. GirginS.N. A unique phenolic extraction method from olive oil macerate of using DMSO: Assessment of anticancer activity, LC-MS/MS profile, total phenolic content and antioxidant capacity.S. Afr. J. Bot.202113961110.1016/j.sajb.2021.01.015
    [Google Scholar]
  33. MojicM. PristovJ.B. Maksimovic-IvanicD. JonesD.R. StanicM. MijatovicS. Extracellular iron diminishes anticancer effects of vitamin C: An study.Sci Rep-Uk20144
    [Google Scholar]
  34. RyszawyD. PudełekM. CatapanoJ. CiarachM. SetkowiczZ. KondurackaE. MadejaZ. CzyżJ. High doses of sodium ascorbate interfere with the expansion of glioblastoma multiforme cells in vitro and in vivo.Life Sci.201923211665710.1016/j.lfs.2019.11665731306660
    [Google Scholar]
  35. GönençT.M. OzturkM. TürksevenS.G. KirmizibayrakP.B. GünalS. YilmazS. Hypericum perforatum L.: An overview of the anticancer potencies of the specimens collected from different ecological environments.Pak. J. Bot.20205231003101010.30848/PJB2020‑3(24)
    [Google Scholar]
  36. OnderT.T. GuptaP.B. ManiS.A. YangJ. LanderE.S. WeinbergR.A. Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways.Cancer Res.200868103645365410.1158/0008‑5472.CAN‑07‑293818483246
    [Google Scholar]
  37. FuzioP. NapoliA. CiampolilloA. LattaruloS. PezzollaA. NuzzielloN. LiuniS. GiorginoF. MaioranoE. PerlinoE. Clusterin transcript variants expression in thyroid tumor: a potential marker of malignancy?BMC Cancer201515134910.1186/s12885‑015‑1348‑025934174
    [Google Scholar]
  38. AroraC. KaurD. NaoremL.D. RaghavaG.P.S. Prognostic biomarkers for predicting papillary thyroid carcinoma patients at high risk using nine genes of apoptotic pathway.PLoS One20211611e025953410.1371/journal.pone.025953434767591
    [Google Scholar]
  39. WangY. YuH. ZhangJ. GaoJ. GeX. LouG. Hesperidin inhibits HeLa cell proliferation through apoptosis mediated by endoplasmic reticulum stress pathways and cell cycle arrest.BMC Cancer201515168210.1186/s12885‑015‑1706‑y26459308
    [Google Scholar]
  40. ZhaoZ. ZouS. GuanX. WangM. JiangZ. LiuZ. LiC. LinH. LiuX. YangR. GaoY. WangX. Apolipoprotein E overexpression is associated with tumor progression and poor survival in colorectal cancer.Front. Genet.2018965010.3389/fgene.2018.0065030631342
    [Google Scholar]
  41. ItoY. TakanoT. MiyauchiA. Apolipoprotein e expression in anaplastic thyroid carcinoma.Oncology2006715-638839310.1159/00010711217690558
    [Google Scholar]
  42. CelıkE. Apoptotic and anti-inflammatory effects of hypericum perforatum extract in human basal cell carcinoma TE 354.T cell line.Dicle Tip Derg.2021481929810.5798/dicletip.887378
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206340411241120051020
Loading
/content/journals/acamc/10.2174/0118715206340411241120051020
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test