Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Background

Prostate cancer (PC) affects millions of men, causing high mortality rates. Despite the treatment approaches, the options for metastatic castration-resistant prostate cancer (mCRPC), a lethal form of advanced PC, are still limited. Cabazitaxel (Cbx) is the last taxane-derived chemotherapeutic approved for Docetaxel-resistant mCRPC patients. However, its effects are limited due to the activation of several pathways. Therefore, new approaches are needed to increase the efficacy of Cbx. Usnic acid (UA) is a natural product with well-known anti-tumorigenic and synergistic effects with various chemotherapeutics. Although the cytotoxicity of UA and Cbx has been evaluated on mCRPC cells, the anti-tumorigenic effect of UA combination with any taxane has not been investigated yet. Thus, we aimed to evaluate the possible synergistic effect of Cbx+UA in mCRPC cells.

Methods

Cell viability and apoptosis were analyzed using WST-1 and Annexin-V. Morphological changes were visualized by fluorescent staining. Finally, cell cycle, mitochondrial health, and ROS levels were determined.

Results

Based on WST-1 results, 25 µM UA exhibited significant additive and synergistic effects with the use of Cbx. Annexin V and cell cycle results showed that UA significantly enhanced the Cbx efficacy at increasing doses compared to using only Cbx (<0.01). Moreover, combined treatment significantly increased ROS levels and mitochondrial membrane depolarization compared with Cbx alone (<0.01).

Conclusions

Thus, the results suggest that UA increased the anti-tumorigenic effects of Cbx on mCRPC cells by increasing apoptosis, causing an increase in intracellular ROS and disrupting mitochondrial health. Consequently, combining UA and Cbx offers a new combined therapeutic strategy for mCRPC treatment.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206336754241015062614
2025-01-10
2025-11-05
Loading full text...

Full text loading...

References

  1. SiegelR.L. MillerK.D. WagleN.S. JemalA. Cancer statistics, 2023.CA Cancer J. Clin.2023731174810.3322/caac.21763 36633525
    [Google Scholar]
  2. Nouri-MajdS. Salari-MoghaddamA. AminianfarA. LarijaniB. EsmaillzadehA. Association between red and processed meat consumption and risk of prostate cancer: A systematic review and meta-analysis.Front. Nutr.2022980172210.3389/fnut.2022.801722 35198587
    [Google Scholar]
  3. LeungD.K.W. ChiuP.K.F. NgC.F. TeohJ.Y.C. Novel strategies for treating castration-resistant prostate cancer.Biomedicines20219433910.3390/biomedicines9040339 33801751
    [Google Scholar]
  4. SaadF. HotteS.J. Guidelines for the management of castrate-resistant prostate cancer.Can. Urol. Assoc. J.20104638038410.5489/cuaj.10167 21191494
    [Google Scholar]
  5. Ruiz de PorrasV. FontA. AytesA. Chemotherapy in metastatic castration-resistant prostate cancer: Current scenario and future perspectives.Cancer Lett.202152316216910.1016/j.canlet.2021.08.033 34517086
    [Google Scholar]
  6. TsaoC.K. CuttingE. MartinJ. OhW.K. The role of cabazitaxel in the treatment of metastatic castration-resistant prostate cancer.Ther. Adv. Urol.2014639710410.1177/1756287214528557 24883107
    [Google Scholar]
  7. PobelC. AuclinE. ProcureurA. Clément-ZhaoA. SimonaggioA. DelanoyN. VanoY.A. ThibaultC. OudardS. Cabazitaxel schedules in metastatic castration-resistant prostate cancer: A review.Future Oncol.20211719110210.2217/fon‑2020‑0672 33463373
    [Google Scholar]
  8. BumbacaB. LiW. Taxane resistance in castration-resistant prostate cancer: Mechanisms and therapeutic strategies.Acta Pharm. Sin. B20188451852910.1016/j.apsb.2018.04.007 30109177
    [Google Scholar]
  9. DuranG.E. WangY.C. FranciscoE.B. RoseJ.C. MartinezF.J. CollerJ. BrassardD. VrignaudP. SikicB.I. Mechanisms of resistance to cabazitaxel.Mol. Cancer Ther.201514119320110.1158/1535‑7163.MCT‑14‑0155 25416788
    [Google Scholar]
  10. ColakogluC. HaciefendiA. EryilmazI.E. EskilerG.G. EgeliU. CecenerG. The cytotoxic effect of usnic acid in malignant melanoma cells with different genomic profiles in the BRAF aspect.WCRJ20229e2240
    [Google Scholar]
  11. EryilmazI.E. Guney EskilerG. EgeliU. YurdacanB. CecenerG. TuncaB. In vitro cytotoxic and antiproliferative effects of usnic acid on hormone‐dependent breast and prostate cancer cells.J. Biochem. Mol. Toxicol.20183210e2220810.1002/jbt.22208 30101414
    [Google Scholar]
  12. YurdacanB. EgeliU. EskilerG.G. EryilmazI.E. CecenerG. TuncaB. The role of usnic acid-induced apoptosis and autophagy in hepatocellular carcinoma.Hum. Exp. Toxicol.201938220121510.1177/0960327118792052 30084279
    [Google Scholar]
  13. Guney EskilerG. EryilmazI.E. YurdacanB. EgeliU. CecenerG. TuncaB. Synergistic effects of hormone therapy drugs and usnic acid on hormone receptor‐positive breast and prostate cancer cells.J. Biochem. Mol. Toxicol.2019338e2233810.1002/jbt.22338 30980508
    [Google Scholar]
  14. YurdacanB. EgeliU. Guney EskilerG. EryilmazI.E. CecenerG. TuncaB. Investigation of new treatment option for hepatocellular carcinoma: A combination of sorafenib with usnic acid.J. Pharm. Pharmacol.20197171119113210.1111/jphp.13097 31025377
    [Google Scholar]
  15. WuW. GouH. DongJ. YangX. ZhaoY. PengH. ChenD. GengR. ChenL. LiuJ. Usnic acid inhibits proliferation and migration through ATM mediated DNA damage response in RKO colorectal cancer cell.Curr. Pharm. Biotechnol.20212281129113810.2174/1389201021666201002155955 33006536
    [Google Scholar]
  16. XuZ. XuL. GeY. SunH. ZhuJ. DouQ. JiaR. Cabazitaxel suppresses the proliferation and promotes the apoptosis and radiosensitivity of castration-resistant prostate cancer cells by inhibiting PI3K/AKT pathway.Am. J. Transl. Res.2022141166181 35173836
    [Google Scholar]
  17. DeğerliE. TorunV. Cansaran-DumanD. miR-185-5p response to usnic acid suppresses proliferation and regulating apoptosis in breast cancer cell by targeting Bcl2.Biol. Res.20205311910.1186/s40659‑020‑00285‑4 32366289
    [Google Scholar]
  18. EryilmazI.E. EgeliU. CecenerG. An in vitro redox adaptation model for metastatic prostate cancer: Establishing, characterizing and Cabazitaxel response evaluating.Clin. Exp. Pharmacol. Physiol.202249101094110410.1111/1440‑1681.13694 35751096
    [Google Scholar]
  19. MachiokaK. IzumiK. KadonoY. IwamotoH. NaitoR. MakinoT. KadomotoS. NatsagdorjA. KellerE.T. ZhangJ. MizokamiA. Establishment and characterization of two cabazitaxel-resistant prostate cancer cell lines.Oncotarget2018922161851619610.18632/oncotarget.24609 29662635
    [Google Scholar]
  20. Oprea-LagerD.E. BijnsdorpI.V. VAN MoorselaarR.J. VAN DEN EertweghA.J. HoekstraO.S. GeldofA.A. ABCC4 Decreases docetaxel and not cabazitaxel efficacy in prostate cancer cells in vitro.Anticancer Res.2013332387391 23393328
    [Google Scholar]
  21. ChouT.C. Drug combination studies and their synergy quantification using the Chou-Talalay method.Cancer Res.201070244044610.1158/0008‑5472.CAN‑09‑1947 20068163
    [Google Scholar]
  22. Kellokumpu-LehtinenP.L. MarttilaT. JekunenA. HervonenP. KlintrupK. KatajaV. UtriainenT. LuukkaaM. LeskinenM. PulkkanenK. KautioA.L. HuttunenT. Biweekly cabazitaxel is a safe treatment option for Metastatic Castration-resistant Prostate Cancer (mCRPC) patients after docetaxel – a final analysis of the prosty II trial.Anticancer Res.202040126915692110.21873/anticanres.14715 33288585
    [Google Scholar]
  23. QiW. LuC. HuangH. ZhangW. SongS. LiuB. (+)-usnic acid induces ROS-dependent apoptosis via inhibition of mitochondria respiratory chain complexes and Nrf2 expression in lung squamous cell carcinoma.Int. J. Mol. Sci.202021387610.3390/ijms21030876 32013250
    [Google Scholar]
  24. ZhangS. WangY. ChenZ. KimS. IqbalS. ChiA. RitenourC. WangY.A. KucukO. WuD. Genistein enhances the efficacy of cabazitaxel chemotherapy in metastatic castration-resistant prostate cancer cells.Prostate201373151681168910.1002/pros.22705 23999913
    [Google Scholar]
  25. SouchekJ.J. DavisA.L. HillT.K. HolmesM.B. QiB. SinghP.K. KridelS.J. MohsA.M. Combination treatment with orlistat-containing nanoparticles and taxanes is synergistic and enhances microtubule stability in taxane-resistant prostate cancer cells.Mol. Cancer Ther.20171691819183010.1158/1535‑7163.MCT‑17‑0013 28615298
    [Google Scholar]
  26. GengX. ZhangX. ZhouB. ZhangC. TuJ. ChenX. WangJ. GaoH. QinG. PanW. Usnic acid induces cycle arrest, apoptosis, and autophagy in gastric cancer cells in vitro and in vivo.Med. Sci. Monit.20182455656610.12659/MSM.908568 29374767
    [Google Scholar]
  27. SinghN. NambiarD. KaleR.K. SinghR.P. Usnic acid inhibits growth and induces cell cycle arrest and apoptosis in human lung carcinoma A549 cells.Nutr. Cancer201365Suppl. 1364310.1080/01635581.2013.785007 23682781
    [Google Scholar]
  28. GalantyA. KoczurkiewiczP. WnukD. PawM. KarnasE. PodolakI. WęgrzynM. BorusiewiczM. MadejaZ. CzyżJ. MichalikM. Usnic acid and atranorin exert selective cytostatic and anti-invasive effects on human prostate and melanoma cancer cells.Toxicol. In Vitro20174016116910.1016/j.tiv.2017.01.008 28095330
    [Google Scholar]
  29. HuoR. WangL. LiuP. ZhaoY. ZhangC. BaiB. LiuX. ShiC. WeiS. ZhangH. Cabazitaxel-induced autophagy via the PI3K/Akt/mTOR pathway contributes to A549 cell death.Mol. Med. Rep.20161443013302010.3892/mmr.2016.5648 27572899
    [Google Scholar]
  30. KosakaT. HongoH. MiyazakiY. NishimotoK. MiyajimaA. OyaM. Reactive oxygen species induction by cabazitaxel through inhibiting Sestrin-3 in castration resistant prostate cancer.Oncotarget2017850876758768310.18632/oncotarget.21147 29152111
    [Google Scholar]
  31. LimaA.R. AraújoA.M. PintoJ. JerónimoC. HenriqueR. BastosM.L. CarvalhoM. Guedes de PinhoP. Discrimination between the human prostate normal and cancer cell exometabolome by GC-MS.Sci. Rep.201881553910.1038/s41598‑018‑23847‑9 29615722
    [Google Scholar]
  32. ChenS. ZhangZ. QingT. RenZ. YuD. CouchL. NingB. MeiN. ShiL. TollesonW.H. GuoL. Activation of the Nrf2 signaling pathway in usnic acid-induced toxicity in HepG2 cells.Arch. Toxicol.20179131293130710.1007/s00204‑016‑1775‑y 27369375
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206336754241015062614
Loading
/content/journals/acamc/10.2174/0118715206336754241015062614
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test