Skip to content
2000
Volume 25, Issue 14
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Objectives

Our study aimed to explore the effects of quercetin on glioma stem cells in patients with brain tumors.

Methods

Human glioblastoma cell line, U373MG, or glioma stem cell lines, were treated with quercetin. Cell viability was determined by using the cell counting kit 8 assays. Cell apoptosis was determined by using the Annexin-V reagent. Western blotting and qPCR were used to detect the protein and mRNA levels of cyclin-dependent kinase inhibitor 2A (p16INK4a). Chromatin immunoprecipitation analysis was used to determine the enrichment of H3K27me3 on the p16-INK4 locus with or without quercetin.

Results

Treatment with quercetin inhibited cell viability and induced cell apoptosis in U373MG cells. Moreover, treatment with quercetin inhibited the cell viability of four glioma stem cell lines (G3, G10, G15, and G17) from brain tumor samples at high concentrations while having no obvious effects for the other two glioma stem cell lines (G9 and G21). Treatment with quercetin increased the mRNA and protein levels of p16- INK4 in glioma stem cell lines. The study of the underlying mechanism revealed that treatment with quercetin reduced H3K27me3 (an epigenetic modification to the DNA packaging protein histone H3) levels at the p16-INK4 locus.

Conclusions

In conclusion, quercetin inhibits glioma cell growth by activating p16-INK4 gene expression through epigenetic regulation.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206332048241126095207
2025-01-31
2025-09-04
Loading full text...

Full text loading...

References

  1. WirschingH.G. GalanisE. WellerM. Glioblastoma.Handb. Clin. Neurol.201613438139710.1016/B978‑0‑12‑802997‑8.00023‑2 26948367
    [Google Scholar]
  2. TamimiA.F. JuweidM. Epidemiology and outcome of glioblastoma.In: Glioblastoma.Exon Publications201710.15586/codon.glioblastoma.2017.ch8
    [Google Scholar]
  3. DavisM. Glioblastoma: Overview of disease and treatment.Clin. J. Oncol. Nurs.2016205Suppl.S2S810.1188/16.CJON.S1.2‑8 27668386
    [Google Scholar]
  4. PreusserM. de RibaupierreS. WöhrerA. ErridgeS.C. HegiM. WellerM. StuppR. Current concepts and management of glioblastoma.Ann. Neurol.201170192110.1002/ana.22425 21786296
    [Google Scholar]
  5. TanA.C. AshleyD.M. LópezG.Y. MalinzakM. FriedmanH.S. KhasrawM. Management of glioblastoma: State of the art and future directions.CA Cancer J. Clin.202070429931210.3322/caac.21613 32478924
    [Google Scholar]
  6. FernandesC. CostaA. OsórioL. LagoR.C. LinharesP. CarvalhoB. CaeiroC. Current standards of care in glioblastoma therapy.In: Glioblastoma.Exon Publications201719724110.15586/codon.glioblastoma.2017.ch11
    [Google Scholar]
  7. OstromQ.T. CioffiG. GittlemanH. PatilN. WaiteK. KruchkoC. Barnholtz-SloanJ.S. CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the United States in 2012–2016.Neuro Oncol.201921Suppl. 5v1v10010.1093/neuonc/noz150 31675094
    [Google Scholar]
  8. SurguchovA. BernalL. SurguchevA.A. Phytochemicals as regulators of genes involved in synucleinopathies.Biomolecules202111562410.3390/biom11050624 33922207
    [Google Scholar]
  9. LesjakM. BearaI. SiminN. PintaćD. MajkićT. BekvalacK. OrčićD. Mimica-DukićN. Antioxidant and anti-inflammatory activities of quercetin and its derivatives.J. Funct. Foods201840687510.1016/j.jff.2017.10.047
    [Google Scholar]
  10. KellyG.S. Quercetin. Monograph.Altern. Med. Rev.2011162172194 21649459
    [Google Scholar]
  11. GormazJ. QuintremilS. RodrigoR. Cardiovascular disease: A target for the pharmacological effects of quercetin.Curr. Top. Med. Chem.201515171735174210.2174/1568026615666150427124357 25915608
    [Google Scholar]
  12. TavanaE. MollazadehH. MohtashamiE. ModaresiS.M.S. HosseiniA. SabriH. SoltaniA. JavidH. AfshariA.R. SahebkarA. Quercetin: A promising phytochemical for the treatment of glioblastoma multiforme.Biofactors202046335636610.1002/biof.1605 31880372
    [Google Scholar]
  13. TsiailanisA.D. RenziehausenA. KiriakidiS. VrettosE.I. MarkopoulosG.S. SayyadN. HirmizB. AguilarM.I. Del BorgoM.P. KolettasE. WiddopR.E. MavromoustakosT. CrookT. SyedN. TzakosA.G. Enhancement of glioblastoma multiforme therapy through a novel Quercetin-Losartan hybrid.Free Radic. Biol. Med.202016039140210.1016/j.freeradbiomed.2020.08.007 32822744
    [Google Scholar]
  14. KimH.I. LeeS.J. ChoiY.J. KimM.J. KimT.Y. KoS.G. Quercetin induces apoptosis in glioblastoma cells by suppressing Axl/IL-6/STAT3 signaling pathway.Am. J. Chin. Med.202149376778410.1142/S0192415X21500361 33657989
    [Google Scholar]
  15. LiuY. TangZ.G. LinY. QuX.G. LvW. WangG.B. LiC.L. Effects of quercetin on proliferation and migration of human glioblastoma U251 cells.Biomed. Pharmacother.201792333810.1016/j.biopha.2017.05.044 28528183
    [Google Scholar]
  16. ZaminL.L. Filippi-ChielaE.C. VargasJ. DemartiniD.R. MeurerL. SouzaA.P. BonorinoC. SalbegoC. LenzG. Quercetin promotes glioma growth in a rat model.Food Chem. Toxicol.20146320521110.1016/j.fct.2013.11.002 24252772
    [Google Scholar]
  17. RayessH. WangM.B. SrivatsanE.S. Cellular senescence and tumor suppressor gene p16.Int. J. Cancer201213081715172510.1002/ijc.27316 22025288
    [Google Scholar]
  18. JurisicV. ObradovicJ. NikolicN. JavoracJ. PerinB. MilasinJ. Analyses of P16INK4a gene promoter methylation relative to molecular, demographic and clinical parameters characteristics in non-small cell lung cancer patients: A pilot study.Mol. Biol. Rep.202350297197910.1007/s11033‑022‑07982‑1 36378420
    [Google Scholar]
  19. KitamuraH. TakemuraH. MinamotoT. Tumor p16INK4 gene expression and prognosis in colorectal cancer.Oncol. Rep.20184121367137610.3892/or.2018.6884 30483798
    [Google Scholar]
  20. ZhaoW. HuangC.C. OttersonG.A. LeonM.E. TangY. ShiloK. VillalonaM.A. Altered p16(INK4) and RB1 expressions are associated with poor prognosis in patients with nonsmall cell lung cancer.J. Oncol.201220121710.1155/2012/957437 22619677
    [Google Scholar]
  21. TanS. WangC. LuC. ZhaoB. CuiY. ShiX. MaX. Quercetin is able to demethylate the p16INK4a gene promoter.Chemotherapy200955161010.1159/000166383 18974642
    [Google Scholar]
  22. JangE. KimI.Y. KimH. LeeD.M. SeoD.Y. LeeJ.A. ChoiK.S. KimE. Quercetin and chloroquine synergistically kill glioma cells by inducing organelle stress and disrupting Ca2+ homeostasis.Biochem. Pharmacol.202017811409810.1016/j.bcp.2020.114098 32540484
    [Google Scholar]
  23. PollardS.M. YoshikawaK. ClarkeI.D. DanoviD. StrickerS. RussellR. BayaniJ. HeadR. LeeM. BernsteinM. SquireJ.A. SmithA. DirksP. Glioma stem cell lines expanded in adherent culture have tumor-specific phenotypes and are suitable for chemical and genetic screens.Cell Stem Cell20094656858010.1016/j.stem.2009.03.014 19497285
    [Google Scholar]
  24. ZhouD. AlverB.M. LiS. HladyR.A. ThompsonJ.J. SchroederM.A. LeeJ.H. QiuJ. SchwartzP.H. SarkariaJ.N. RobertsonK.D. Distinctive epigenomes characterize glioma stem cells and their response to differentiation cues.Genome Biol.20181914310.1186/s13059‑018‑1420‑6 29587824
    [Google Scholar]
  25. LiuC. ZhaoJ. LiuY. HuangY. ShenY. WangJ. SunW. SunY. A novel pentacyclic triterpenoid, Ilexgenin A, shows reduction of atherosclerosis in apolipoprotein E deficient mice.Int. Immunopharmacol.20164011512410.1016/j.intimp.2016.08.024 27588911
    [Google Scholar]
  26. MohammadF. WeissmannS. LeblancB. PandeyD.P. HøjfeldtJ.W. CometI. ZhengC. JohansenJ.V. RapinN. PorseB.T. TvardovskiyA. JensenO.N. OlacireguiN.G. LavarinoC. SuñolM. de TorresC. MoraJ. CarcabosoA.M. HelinK. EZH2 is a potential therapeutic target for H3K27M-mutant pediatric gliomas.Nat. Med.201723448349210.1038/nm.4293 28263309
    [Google Scholar]
  27. SanaiN. Alvarez-BuyllaA. BergerM.S. Neural stem cells and the origin of gliomas.N. Engl. J. Med.2005353881182210.1056/NEJMra043666 16120861
    [Google Scholar]
  28. GoffartN. KroonenJ. RogisterB. Glioblastoma-initiating cells: Relationship with neural stem cells and the micro-environment.Cancers (Basel)2013531049107110.3390/cancers5031049 24202333
    [Google Scholar]
  29. LiuL. YinS. BrobbeyC. GanW. Ubiquitination in cancer stem cell: Roles and targeted cancer therapy.STEMedicine202013e3710.37175/stemedicine.v1i3.37
    [Google Scholar]
  30. MatarredonaE.R. PastorA.M. Neural stem cells of the subventricular zone as the origin of human glioblastoma stem cells. Therapeutic implications.Front. Oncol.2019977910.3389/fonc.2019.00779 31482066
    [Google Scholar]
  31. BagóJ.R. Alfonso-PecchioA. OkolieO. DumitruR. RinkenbaughA. BaldwinA.S. MillerC.R. MagnessS.T. HingtgenS.D. Therapeutically engineered induced neural stem cells are tumour-homing and inhibit progression of glioblastoma.Nat. Commun.2016711059310.1038/ncomms10593 26830441
    [Google Scholar]
  32. LiggettW.H. SidranskyD. Role of the p16 tumor suppressor gene in cancer.J. Clin. Oncol.19981631197120610.1200/JCO.1998.16.3.1197 9508208
    [Google Scholar]
  33. RoccoJ.W. SidranskyD. p16(MTS-1/CDKN2/INK4a) in cancer progression.Exp. Cell Res.20012641425510.1006/excr.2000.5149 11237522
    [Google Scholar]
  34. FoulkesW.D. FlandersT.Y. PollockP.M. HaywardN.K. The CDKN2A (p16) gene and human cancer.Mol. Med.19973152010.1007/BF03401664 9132280
    [Google Scholar]
  35. EstellerM. GonzálezS. RisquesR.A. MarcuelloE. ManguesR. GermàJ.R. HermanJ.G. CapellàG. PeinadoM.A. K-ras and p16 aberrations confer poor prognosis in human colorectal cancer.J. Clin. Oncol.200119229930410.1200/JCO.2001.19.2.299 11208819
    [Google Scholar]
  36. MohsenyA.B. TiekenC. van der VeldenP.A. SzuhaiK. de AndreaC. HogendoornP.C.W. Cleton-JansenA.M. Small deletions but not methylation underlie CDKN2A/p16 loss of expression in conventional osteosarcoma.Genes Chromosomes Cancer201049121095110310.1002/gcc.20817 20737480
    [Google Scholar]
  37. ReedA.L. CalifanoJ. CairnsP. WestraW.H. JonesR.M. KochW. AhrendtS. EbyY. SewellD. NawrozH. BartekJ. SidranskyD. High frequency of p16 (CDKN2/MTS-1/INK4A) inactivation in head and neck squamous cell carcinoma.Cancer Res.1996561636303633 8705996
    [Google Scholar]
  38. KamiryoT. TadaK. ShiraishiS. ShinojimaN. NakamuraH. KochiM. KuratsuJ. SayaH. UshioY. Analysis of homozygous deletion of the p16 gene and correlation with survival in patients with glioblastoma multiforme.J. Neurosurg.200296581582210.3171/jns.2002.96.5.0815 12005388
    [Google Scholar]
  39. AsgharianP. TazekandA.P. HosseiniK. ForouhandehH. GhasemnejadT. RanjbarM. HasanM. KumarM. BeiramiS.M. TarhrizV. SoofiyaniS.R. KozhamzharovaL. Sharifi-RadJ. CalinaD. ChoW.C. Potential mechanisms of quercetin in cancer prevention: Focus on cellular and molecular targets.Cancer Cell Int.202222125710.1186/s12935‑022‑02677‑w 35971151
    [Google Scholar]
  40. Carlos-ReyesÁ. López-GonzálezJ.S. Meneses-FloresM. Gallardo-RincónD. Ruíz-GarcíaE. MarchatL.A. Astudillo-de la VegaH. Hernández de la CruzO.N. López-CamarilloC. Dietary compounds as epigenetic modulating agents in cancer.Front. Genet.2019107910.3389/fgene.2019.00079 30881375
    [Google Scholar]
  41. HarrisZ. DonovanM.G. BrancoG.M. LimesandK.H. BurdR. Quercetin as an emerging anti-melanoma agent: A four-focus area therapeutic development strategy.Front. Nutr.201634810.3389/fnut.2016.00048 27843913
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206332048241126095207
Loading
/content/journals/acamc/10.2174/0118715206332048241126095207
Loading

Data & Media loading...

Supplements


  • Article Type:
    Research Article
Keyword(s): apoptosis; cell viability; epigenetic modification; glioma stem cells; p16-INK4; Quercetin
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test