Skip to content
2000
Volume 24, Issue 17
  • ISSN: 1871-5206
  • E-ISSN: 1875-5992

Abstract

Objective

() contains several bioactive compounds with anti-cancer activities. This study was performed to investigate the molecular effects of on HPV18-containing HeLa cells.

Methods

The methanol extract of whole plant was tested for cytotoxicity by MTT assay. A lower and higher dose (80 and 160 µg/mL) to IC were analyzed for colonization inhibition (Clonogenic assay), cell cycle arrest (FACS analysis), and induction of apoptosis (AO/EtBr staining fluorescent microscopy and FACS analysis) and DNA fragmentation (comet assay). The HPV 18 E6 gene expression in treated cells was analyzed using RT-PCR and qPCR.

Results

A significant dose-dependent anti-proliferative activity (IC - 108.25±2 µg/mL) and inhibition of colony formation cell line were observed using both treatments. Treatment with 80 µg/mL of extract was found to result in a higher percent of cell cycle arrest at G/G and GM phases with more early apoptosis, while 160 µg/mL resulted in more cell cycle arrest at SUBG and S phases with late apoptosis for control. The comet assay also demonstrated a highly significant increase in DNA fragmentation after treatment with 160 µg/mL of extract (tail moments-19.536 ± 17.8), while 80 µg/mL of extract treatment showed non-significant tail moment (8.152 ± 13.0) compared to control (8.038 ± 12.0). The RT-PCR and qPCR results showed a significant reduction in the expression of the HPV18 E6 gene in HeLa cells treated with 160 µg/mL of extract, while 80 µg/mL did not show a significant reduction.

Conclusion

The 160 µg/mL methanol extract of demonstrated highly significant anti-cancer molecular effects in HeLa cells.

Loading

Article metrics loading...

/content/journals/acamc/10.2174/0118715206296375240703115848
2024-10-01
2025-10-11
Loading full text...

Full text loading...

References

  1. MartinT.A. YeL. SandersA.J. Cancer invasion and metastasis: Molecular and cellular perspective. Madame Curie Bioscience Database.Bethesda, MDNational Library of Medicine2013
    [Google Scholar]
  2. ThunM.J. DeLanceyJ.O. CenterM.M. JemalA. WardE.M. The global burden of cancer: Priorities for prevention.Carcinogenesis201031110011010.1093/carcin/bgp26319934210
    [Google Scholar]
  3. PucciC. MartinelliC. CiofaniG. Innovative approaches for cancer treatment: Current perspectives and new challenges.Ecancermedicalscience20191396110.3332/ecancer.2019.961
    [Google Scholar]
  4. KhanT. AliM. KhanA. NisarP. JanS.A. AfridiS. ShinwariZ.K. Anticancer plants: A review of the active phytochemicals, applications in animal models, and regulatory aspects.Biomolecules20191014710.3390/biom1001004731892257
    [Google Scholar]
  5. ParkS.H. KimM. LeeS. JungW. KimB. Therapeutic potential of natural products in treatment of cervical cancer: A review.Nutrients202113115410.3390/nu1301015433466408
    [Google Scholar]
  6. BrayF. FerlayJ. SoerjomataramI. SiegelR.L. TorreL.A. JemalA. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.CA Cancer J. Clin.201868639442410.3322/caac.2149230207593
    [Google Scholar]
  7. LeeJ. JeongM.I. KimH.R. ParkH. MoonW.K. KimB. Plant extracts as possible agents for Sequela of cancer therapies and cachexia.Antioxidants20209983610.3390/antiox909083632906727
    [Google Scholar]
  8. DasariS. BernardT.P. Cisplatin in cancer therapy: Molecular mechanisms of action.Eur. J. Pharmacol.201474036437810.1016/j.ejphar.2014.07.02525058905
    [Google Scholar]
  9. de JonghF.E. van VeenR.N. VeltmanS.J. de WitR. van der BurgM.E.L. van den BentM.J. PlantingA.S.T. GravelandW.J. StoterG. VerweijJ. Weekly high-dose cisplatin is a feasible treatment option: Analysis on prognostic factors for toxicity in 400 patients.Br. J. Cancer20038881199120610.1038/sj.bjc.660088412698184
    [Google Scholar]
  10. PergialiotisV. BellosI. ThomakosN. HaidopoulosD. PerreaD.N. KontzoglouK. DaskalakisG. RodolakisA. Survival outcomes of patients with cervical cancer and accompanying hydronephrosis: A systematic review of the literature.Oncol. Rev.201913138710.4081/oncol.2019.38730746036
    [Google Scholar]
  11. HanR. YangY.M. DietrichJ. LuebkeA. Mayer-PröschelM. NobleM. Systemic 5-fluorouracil treatment causes a syndrome of delayed myelin destruction in the central nervous system.J. Biol.2008741210.1186/jbiol6918430259
    [Google Scholar]
  12. KwonS.J. Management of side effects of 5-FU based chemotherapy.Korean J. Clin. Oncol.2005115158
    [Google Scholar]
  13. KadoyamaK. MikiI. TamuraT. BrownJ.B. SakaedaT. OkunoY. Adverse event profiles of 5-fluorouracil and capecitabine: Data mining of the public version of the FDA Adverse Event Reporting System, AERS, and reproducibility of clinical observations.Int. J. Med. Sci.201291333910.7150/ijms.9.3322211087
    [Google Scholar]
  14. DelanoM.J. WardP.A. The immune system’s role in sepsis progression, resolution, and long‐term outcome.Immunol. Rev.2016274133035310.1111/imr.1249927782333
    [Google Scholar]
  15. FedericoC. SunJ. MuzB. AlhallakK. CosperP.F. MuhammadN. JeskeA. HingerA. MarkovinaS. GrigsbyP. SchwarzJ.K. AzabA.K. Localized delivery of cisplatin to cervical cancer improves its therapeutic efficacy and minimizes its side effect profile.Int. J. Radiat. Oncol. Biol. Phys.202110951483149410.1016/j.ijrobp.2020.11.05233253820
    [Google Scholar]
  16. YinS.Y. WeiW.C. JianF.Y. YangN.S. Therapeutic applications of herbal medicines for cancer patients.Evid. Based Complement. Alternat. Med.2013201311510.1155/2013/30242623956768
    [Google Scholar]
  17. SanfordN.N. SherD.J. AhnC. AizerA.A. MahalB.A. Prevalence and nondisclosure of complementary and alternative medicine use in patients with cancer and cancer survivors in the United States.JAMA Oncol.20195573573710.1001/jamaoncol.2019.034930973579
    [Google Scholar]
  18. ShirakamiY. ShimizuM. Possible mechanisms of green tea and its constituents against cancer.Molecules2018239228410.3390/molecules23092284
    [Google Scholar]
  19. LiuL. WangM. LiX. YinS. WangB. An overview of novel agents for cervical cancer treatment by inducing apoptosis: Emerging drugs ongoing clinical trials and preclinical studies.Front. Med.2021868236610.3389/fmed.2021.682366
    [Google Scholar]
  20. XiongY. ChenL. LuoP. N ‐Benzylcinnamide induces apoptosis in HPV 16 and HPV 18 cervical cancer cells via suppression of E 6 and E 7 protein expression.IUBMB Life201567537437910.1002/iub.138025914202
    [Google Scholar]
  21. TeymouriM. PirroM. JohnstonT.P. SahebkarA. Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: A review of chemistry, cellular, molecular, and preclinical features.Biofactors201743333134610.1002/biof.134427896883
    [Google Scholar]
  22. EzzatS.M. ShoumanS.A. ElkhoelyA. AttiaY.M. ElsesyM.S. El SenousyA.S. ChoucryM.A. El GayedS.H. El SayedA.A. SattarE.A. El TanboulyN. Anticancer potentiality of lignan rich fraction of six Flaxseed cultivars.Sci. Rep.20188154410.1038/s41598‑017‑18944‑029323210
    [Google Scholar]
  23. NgW.K. YazanL.S. IsmailM. Thymoquinone from Nigella sativa was more potent than cisplatin in eliminating of SiHa cells via apoptosis with down-regulation of Bcl-2 protein.Toxicol. In Vitro20112571392139810.1016/j.tiv.2011.04.030
    [Google Scholar]
  24. JayalekshmiC. Bioactive compounds of Calotropis gigantea for cancer treatment.Oral Oncol Reports20241010033610.1016/j.oor.2024.100336
    [Google Scholar]
  25. AliM. WaniS.U.D. SalahuddinM. S N, M.; K, M.; Dey, T.; Zargar, M.I.; Singh, J. Recent advance of herbal medicines in cancer- a molecular approach.Heliyon202392e1368410.1016/j.heliyon.2023.e1368436865478
    [Google Scholar]
  26. PatelN. TyagiR.K. TandelN. GargN.K. SoniN. The molecular targets of swertiamarin and its derivatives confer anti- diabetic and anti-hyperlipidemic effects.Curr. Drug Targets201819161958196710.2174/138945011966618040611342829623834
    [Google Scholar]
  27. VaijanathappaJ. PuttaswamygowdaJ. BevanhalliR. DixitS. PrabhakaranP. Molecular docking, antiproliferative and anticonvulsant activities of swertiamarin isolated from Enicostemma axillare.Bioorg. Chem.20209410342810.1016/j.bioorg.2019.10342831740047
    [Google Scholar]
  28. RaviK. GunasekaranK. RajagopalanV. SilambananS. Evaluation of the effect of enicostemma axillare extract on migration of MCF-7 cell line.J. Clin. Diagn. Res.20191310BC10BC1310.7860/JCDR/2019/42371.13241
    [Google Scholar]
  29. AntonyR.I.C. UmaraniV. SankaranarayananS. BamaP. RamachandranJ. Antioxidant, antibacterial and cytotoxicity studies from flavonoid rich fraction of Enicostemma axillare (LAM.) raynal leaves.Afr. J. Pharm. Pharmacol.2016104391692510.5897/AJPP2016.4675
    [Google Scholar]
  30. Krishna VeniA. MohandassS. In-vitro cytotoxic activity of Enicostemma axillare extract against hela cell line.Int. J. Pharmacogn. Phytochem. Res.201462320323
    [Google Scholar]
  31. okokon, J.E.; Nwafor, P.A.; Abia, G.O.; Bankhede, H.K. Antipyretic and antimalarial activities of crude leaf extract and fractions of Enicostema littorale.Asian Pac. J. Trop. Dis.20122644244710.1016/S2222‑1808(12)60097‑8
    [Google Scholar]
  32. VigneswaranM. PremK.G. SubiramaniS. SivaG. NandakumaranT. PrabhaL. NarayanasamyJ.A. Compendious review of Enicostemma littorale Blume. Panacea to several maladies.Int. J. Sci. Eng. Res.2017818171836
    [Google Scholar]
  33. LaxmanS. BalaP. YusufK. NancyP. Pharmacognostical standardization of Enicostemma littorale Blume.Pharmacogn. J.2010216152310.1016/S0975‑3575(10)80044‑6
    [Google Scholar]
  34. MuraliB. UpadhyayaU.M. GoyalR.K. Effect of chronic treatment with Enicostemma littorale in non-insulin-dependent diabetic (NIDDM) rats.J. Ethnopharmacol.200281219920410.1016/S0378‑8741(02)00077‑612065151
    [Google Scholar]
  35. RajasekaranD. ManoharanS. PrabhakarM.M. ManimaranA. Enicostemma littorale prevents tumor formation in 7,12-dimethylbenz(a)anthracene-induced hamster buccal pouch carcinogenesis.Hum. Exp. Toxicol.201534991192110.1177/096032711456203326286523
    [Google Scholar]
  36. KavimaniS. ManisenthlkumarK.T. Effect of methanolic extract of Enicostemma littorale on Dalton’s ascitic lymphoma.J. Ethnopharmacol.2000711-234935210.1016/S0378‑8741(00)00190‑210904185
    [Google Scholar]
  37. GhosalS. JaiswalD.K. Chemical constituents of gentianaceae XXVIII: Flavonoids of Enicostemma hyssopifolium (Willd.).Verd. J. Pharm. Sci.1980691535610.1002/jps.26006901157354443
    [Google Scholar]
  38. KomalK.P. Berlin GraceV.M. WilsonD.D. HussainS. Phytochemical screening and in vitro antioxidant activity of Enicostemma hyssopifolium.Eur. J. Mol. Clin. Med.202073382394
    [Google Scholar]
  39. PatelM.B. MishraS.H. Hypoglycemic activity of C-glycosyl flavonoid from Enicostemma hyssopifolium.Pharm. Biol.201149438339110.3109/13880209.2010.51775921391839
    [Google Scholar]
  40. RajK.K. Dalton’s lymphoma as a murine model for understanding the progression and development of T-Cell lymphoma and its role in drug discovery. Int. J. Immunother. Cancer Res.,2017201700100610.17352/2455‑8591.000011
    [Google Scholar]
  41. ZhangJ.X. Wei-TanH. HuC.Y. WangW.Q. ChuG.H. WeiL.H. ChenL. Anticancer activity of 23,24-dihydrocucurbitacin B against the HeLa human cervical cell line is due to apoptosis and G2/M cell cycle arrest.Exp. Ther. Med.20181532575258210.3892/etm.2018.571029456661
    [Google Scholar]
  42. LamM. CarmichaelA.R. GriffithsH.R. An aqueous extract of Fagonia cretica induces DNA damage, cell cycle arrest and apoptosis in breast cancer cells via FOXO3a and p53 expression.PLoS One201276e4015210.1371/journal.pone.004015222761954
    [Google Scholar]
  43. GraceV.M.B. ShaliniJ.V. lekha, T.T.S.; Devaraj, S.N.; Devaraj, H. Co-overexpression of p53 and bcl-2 proteins in HPV-induced squamous cell carcinoma of the uterine cervix.Gynecol. Oncol.2003911515810.1016/S0090‑8258(03)00439‑614529662
    [Google Scholar]
  44. Berlin GraceV.M. NiranjaliD.S. RadhakrishnanP.M. DevarajH. HPV-induced carcinogenesis of the uterine cervix is associated with reduced serum ATRA level.Gynecol. Oncol.2006103111311910.1016/j.ygyno.2006.01.05716554086
    [Google Scholar]
  45. BerlinG.V.M. HPV18 is more onco-potent than HPV16 in Uterine Cervical Carcinogenesis though HPV16 is the prevalent type in India, Chennai.Indian J. Cancer20094620320710.4103/0019‑509X.5295419574671
    [Google Scholar]
  46. FrankenN.A.P. RodermondH.M. StapJ. HavemanJ. van BreeC. Clonogenic assay of cells in vitro.Nat. Protoc.2006152315231910.1038/nprot.2006.33917406473
    [Google Scholar]
  47. HosseinG. Azimian-ZavarehV. JanzaminE. Effect of lithium chloride and antineoplastic drugs on survival and cell cycle of androgen-dependent prostate cancer LNCap cells.Indian J. Pharmacol.201244671472110.4103/0253‑7613.10326523248400
    [Google Scholar]
  48. KasibhatlaS. Amarante-MendesG.P. FinucaneD. BrunnerT. Bossy-WetzelE. GreenD.R. Acridine Orange/Ethidium Bromide (AO/EB) staining to detect apoptosis. CSH Protoc., 200620063pdb.prot4493
    [Google Scholar]
  49. LiuK. LiuP. LiuR. WuX. Dual AO/EB staining to detect apoptosis in osteosarcoma cells compared with flow cytometry.Med. Sci. Monit. Basic Res.201521152010.12659/MSMBR.89332725664686
    [Google Scholar]
  50. VermesI. HaanenC. Steffens-NakkenH. ReutellingspergerC. A novel assay for apoptosis Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V.J. Immunol. Methods19951841395110.1016/0022‑1759(95)00072‑I7622868
    [Google Scholar]
  51. DhawanA. BajpaiM. PandeyA.K. ParmarD. THE SCGE/Comet assay protocol. Protocol for the single cell gel electrophoresis/comet assay for rapid genotoxicity assessment.2003Available From: http://www.cometassayindia.org/protocol%20for%20comet%20assay.pdf
    [Google Scholar]
  52. NewmanD.J. CraggG.M. Natural products as sources of new drugs over the 30 years from 1981 to 2010.J. Nat. Prod.201275331133510.1021/np200906s22316239
    [Google Scholar]
  53. AtanasovA.G. ZotchevS.B. DirschV.M. SupuranC.T. Natural products in drug discovery: Advances and opportunities.Nat. Rev. Drug Discov.202120320021610.1038/s41573‑020‑00114‑z33510482
    [Google Scholar]
  54. CraggG.M. NewmanD.J. Nature: A vital source of leads for anticancer drug development.Phytochem. Rev.20098231333110.1007/s11101‑009‑9123‑y
    [Google Scholar]
  55. SoloweyE. LichtensteinM. SallonS. PaavilainenH. SoloweyE. Lorberboum-GalskiH. Evaluating medicinal plants for anticancer activity.Sci World J2014201411210.1155/2014/72140225478599
    [Google Scholar]
  56. RatesS.M.K. Plants as source of drugs.Toxicon200139560361310.1016/S0041‑0101(00)00154‑911072038
    [Google Scholar]
  57. JavedI. Plant-derived anticancer agents: A green anticancer approach.Asian Pac. J. Trop. Biomed.20177121129115010.1016/j.apjtb.2017.10.016
    [Google Scholar]
  58. SreelathaS. JeyachitraA. PadmaP.R. Antiproliferation and induction of apoptosis by Moringa oleifera leaf extract on human cancer cells.Food Chem. Toxicol.20114961270127510.1016/j.fct.2011.03.00621385597
    [Google Scholar]
  59. AminM.F. AriwibowoT. PutriS.A. KurniaD. Moringa oleifera: A review of the pharmacology, chemical constituents, and application for dental health.Pharmaceuticals202417114210.3390/ph1701014238276015
    [Google Scholar]
  60. PrabhuA. KrishnamoorthyM. PrasadD.J. NaikP. Anticancer activity of friedelin isolated from ethanolic leaf extract of Cassia tora on HeLa and HSC-1 cell lines.Indian J. Appl. Res.20113101410.15373/2249555X/OCT2013/121
    [Google Scholar]
  61. DemirS. TuranI. AliyaziciogluR. YamanS.O. AliyaziciogluY. Primula vulgaris extract induces cell cycle arrest and apoptosis in human cervix cancer cells.J. Pharm. Anal.20188530731110.1016/j.jpha.2018.05.00330345144
    [Google Scholar]
  62. Tugce OzkanM. AliyaziciogluR. DemirS. MisirS. TuranI. YildirmisS. AliyaziciogluY. Phenolic characterisation and antioxidant activity of Primula vulgaris and its antigenotoxic effect on fibroblast cells.Jundishapur J. Nat. Pharm. Prod.201612139540110.5812/jjnpp.40073
    [Google Scholar]
  63. Demi̇rS. Turanİ. Ali̇yazicioğluY. Antioxidant properties of Primula vulgaris flower extract and its cytotoxic effect on human cancer cell lines.Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi2019221788410.18016/ksutarimdoga.vi.460242
    [Google Scholar]
  64. DemirN. GungorA.A. NadarogluH. DemirY. The antioxidant and radical scavenging activities of Primrose (Primula vulgaris).Eur. J. Exp. Biol.201442395401
    [Google Scholar]
  65. MercadanteA.A. KasiA. Genetics, Cancer Cell Cycle Phases.Treasure Island, FLStatPearls2024
    [Google Scholar]
  66. LuoY. WuY. PengY. LiuX. BieJ. LiS. Systematic analysis to identify a key role of CDK1 in mediating gene interaction networks in cervical cancer development.Ir. J. Med. Sci.2016185123123910.1007/s11845‑015‑1283‑825786624
    [Google Scholar]
  67. KumarS. MulchandaniV. Das SarmaJ. Methanolic neem (Azadirachta indica) stem bark extract induces cell cycle arrest, apoptosis and inhibits the migration of cervical cancer cells in vitro.BMC Compl. Med. Ther.202222123910.1186/s12906‑022‑03718‑736088372
    [Google Scholar]
  68. ChaudharyG. GoyalS. PooniaP. Lawsonia inermis Linnaeus: A phytopharmacological review.Int. J. Pharm. Sci. Drug Res.2010229198
    [Google Scholar]
  69. OulahalN. DegraeveP. Phenolic-rich plant extracts with antimicrobial activity: An alternative to food preservatives and biocides?Front. Microbiol.20221275351810.3389/fmicb.2021.75351835058892
    [Google Scholar]
  70. WangX. WangT. Swertiamarin exerts anticancer effects on human cervical cancer cells via induction of apoptosis, inhibition of cell migration and targeting of MEK-ERK pathway.Trop. J. Pharm. Res.2021201758110.4314/tjpr.v20i1.12
    [Google Scholar]
  71. Muhamad FadzilN.S. SekarM. GanS.H. BonamS.R. WuY.S. VaijanathappaJ. RaviS. LumP.T. DhaddeS.B. Chemistry, pharmacology and therapeutic potential of swertiamarin – a promising natural lead for new drug discovery and development.Drug Des. Devel. Ther.2021152721274610.2147/DDDT.S29975334188450
    [Google Scholar]
  72. ArtunF.T. KaragözA. Antiproliferative and apoptosis inducing effects of the methanolic extract of Centaurea hermannii in human cervical cancer cell line.Biotech. Histochem.202196111010.1080/10520295.2020.175128832362148
    [Google Scholar]
  73. Aboul-SoudM.A.M. EnnajiH. KumarA. AlfhiliM.A. BariA. AhamedM. ChebaibiM. BourhiaM. KhalloukiF. AlghamdiK.M. GiesyJ.P. Antioxidant, anti-proliferative activity and chemical fingerprinting of Centaurea calcitrapa against breast cancer cells and molecular docking of Caspase-3.Antioxidants2022118151410.3390/antiox1108151436009233
    [Google Scholar]
  74. Figueroa-GonzálezG. Pérez-PlasenciaC. Strategies for the evaluation of DNA damage and repair mechanisms in cancer.Oncol. Lett.20171363982398810.3892/ol.2017.600228588692
    [Google Scholar]
  75. JessicaE. Cellular Senescence. The molecular basis of cancer.Cambridge, MAElsevier Saunders201510.1016/B978‑1‑4557‑4066‑6.00015‑9
    [Google Scholar]
  76. HallA.H.S. AlexanderK.A. RNA interference of human papillomavirus type 18 E6 and E7 induces senescence in HeLa cells.J. Virol.200377106066606910.1128/JVI.77.10.6066‑6069.200312719599
    [Google Scholar]
/content/journals/acamc/10.2174/0118715206296375240703115848
Loading
/content/journals/acamc/10.2174/0118715206296375240703115848
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test