Skip to content
2000

Multi-Resolution Image Similarity Learning: A Method for Extracting Comprehensive Image Features

image of Multi-Resolution Image Similarity Learning: A Method for Extracting Comprehensive Image Features
Preview this chapter:

This research presents an image similarity learning method that focuses on extracting multi-resolution features from images. The proposed method involves a series of steps, including image collection, normalization processing, image pairing based on visual judgment and a Hash algorithm, and division of data into training and testing sets. Furthermore, a network model is constructed using a deep learning framework, and a specific objective function and optimizer are designated for similarity learning. The network model is then trained and tested using the prepared data sets. This method addresses several challenges encountered in conventional image similarity learning, such as limited feature information extraction, inadequate description of image features, limitations imposed by data volume during network training, and susceptibility to overfitting.

/content/books/9789815305364.chapter-14
dcterms_subject,pub_keyword
-contentType:Journal -contentType:Figure -contentType:Table -contentType:SupplementaryData
10
5
Chapter
content/books/9789815305364
Book
false
en
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test