Skip to content
2000

A Machine Learning Application to Predict Customer Churn: A Case in Indonesian Telecommunication Company

image of A Machine Learning Application to Predict Customer Churn: A Case in Indonesian Telecommunication Company

This study aims to develop a churn prediction model which can assist telecommunication companies in predicting customers who are most likely subject to churn. The model is developed by employing machine learning techniques on big data platforms. Customer churn is one of the most critical issues, especially in high investment telecommunication companies. Accordingly, the companies are looking for ways to predict potential customers to churn and take necessary actions to reduce the churn. To accomplish the objective of the study, it first compares eight machine learning techniques, i.e., ridge classifier, gradient booster, adaptive boosting, bagging classifier, k-nearest neighbour (kNN), decision tree, logistic regression, and random forest. By using five evaluation performance metrics (i.e., accuracy, AUC score, precision score, recall score, and the F score), kNN is selected since it outperforms other techniques. Second, the selected technique is used to predict the likelihood of customers churning.

/content/books/9789815124842.chap10
dcterms_subject,pub_keyword
-contentType:Journal -contentType:Figure -contentType:Table -contentType:SupplementaryData
10
5
Chapter
content/books/9789815124842
Book
false
en
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test