Skip to content
2000

Prediction using Machine Learning

image of Prediction using Machine Learning

This chapter begins with a concise introduction to machine learning and the classification of machine learning systems (supervised learning, unsupervised learning, and reinforcement learning). ‘Breast Cancer Prediction Using ML Techniques’ is the topic of Chapter 2. This chapter describes various breast cancer prediction algorithms, including convolutional neural networks (CNN), support vector machines, Nave Bayesian classification, and weighted Nave Bayesian classification. Prediction of Heart Disease Using Machine Learning Techniques is the topic of Chapter 3. This chapter describes the numerous heart disease prediction algorithms, including Support Vector Machines (SVM), Logistic Regression, KNN, Random Forest Classifier, and Deep Neural Networks. Prediction of IPL Data Using Machine Learning Techniques is the topic of Chapter 4. The following algorithms are covered in this chapter: decision trees, naive bayes, K-Nearest Neighbour Random Forest, data mining techniques, fuzzy clustering logic, support vector machines, reinforcement learning algorithms, data analytics approaches and Bayesian prediction techniques. Chapter Five: Software Error Prediction by means of machine learning- The AR model and the Known Power Model (POWM), as well as artificial neural networks (ANNs), particle swarm optimisation (PSO), decision trees (DT), Nave Bayes (NB), and linear classifiers, are among the approaches (K-nearest neighbours, Nave Bayes, C-4.5, and decision trees) Prediction of Rainfall Using Machine Learning Techniques, Chapter 6: The following are discussed: LASSO (Least Absolute Shrinkage and Selection Operator) Regression, ANN (Artificial Neural Network), Support Vector Machine, Multi-Layer Perception, Decision Tree, Adaptive Neuro-Fuzzy Inference System, Wavelet Neural Network, Ensemble Prediction Systems, ARIMA model, PCA and KMeans algorithms, Recurrent Neural Network (RNN), statistical KNN classifier, and neural SOM Weather Prediction Using Machine Learning Techniques that includes Bayesian Networks, Linear Regression, Logistic Regression, KNN Decision Tree, Random Forest, K-Means, and Apriori's Algorithm, as well as Linear Regression, Polynomial Regression, Random Forest Regression, Artificial Neural Networks, and Recurrent Neural Networks.

/content/books/9789815124514.chap3
dcterms_subject,pub_keyword
-contentType:Journal -contentType:Figure -contentType:Table -contentType:SupplementaryData
10
5
Chapter
content/books/9789815124514
Book
false
en
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test