Skip to content
2000

Carbon and Boron Nitride Nanostructures for Hydrogen Storage Applications; A Theoretical Perspective

image of Carbon and Boron Nitride Nanostructures for Hydrogen Storage Applications; A Theoretical Perspective

We present the recent progress in hydrogen storage in carbon and boron nitride nanostructures. Carbon and boron nitride nanostructures are considered advantageous in this prospect due to their lightweight and high surface area. Many researchers highlight the demerits of pristine structures to hold hydrogen molecules for mobile applications. In such cases, weak van der Waals interaction comes into account. Hence, the hydrogen molecules make weak bonds with the host materials and, therefore, weak adsorption energy and low hydrogen molecules uptake. So, to tune the adsorption energy and overall kinetics, methods such as doping, light alkali-alkaline earth metals decoration, vacancy, functionalization, pressure variation, application of external electric field, and biaxial strain have been adopted by many researchers. Physisorption with atoms decoration is promising for hydrogen storage applications. Under this condition, the host materials have high storage capacity, average adsorption energy and feasible adsorption/desorption kinetics.

/content/books/9789815050745.chap1
dcterms_subject,pub_keyword
-contentType:Journal
10
5
Chapter
content/books/9789815050745
Book
false
en
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test