Skip to content
2000

Improvement of Performance of Single and Multicrystalline Silicon Solar Cell Using Lowtemperature Surface Passivation Layer and Antireflection Coating

image of Improvement of Performance of Single and Multicrystalline Silicon Solar Cell Using Lowtemperature Surface Passivation Layer and Antireflection Coating
Preview this chapter:

In this work, amorphous silicon oxide (a-SiOx:H) and silicon nitride (a-SiNx:H) layers are deposited at a very low substrate temperature of 250oC -300oC by the chemical Vapour deposition technique. Interface charge density (Dit) and fixed charge density (Qf) have been estimated by high frequency (1 MHz) capacitancevoltage measurement on Metal-Insulator–Silicon structure (CV-MIS). The low interface charge density (Dit) reduces the surface recombination velocity. Fixed positive charges (Df) stored in SiOx:H/a-SiNx:H layer forms negative charges at silicon film. The band bending due to negative charges provides a very effective field-induced surface passivation. A significant improvement in efficiency and short circuit current has been observed using developed a-SiOx:H and a-SiNx:H on the front surface of c-Si solar cells. As the refractive index of the films is close to silicon, hence it also acts as an anti-reflection coating (ARC) to reduce optical losses in silicon solar cells.

/content/books/9789815049961.chap5
dcterms_subject,pub_keyword
-contentType:Journal -contentType:Figure -contentType:Table -contentType:SupplementaryData
10
5
Chapter
content/books/9789815049961
Book
false
en
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test