Skip to content
2000

Porous 2D MXenes for EMI Shielding

image of Porous 2D MXenes for EMI Shielding

Advancement in modern electronic devices needs special requirements such as compact size, lightweight, and easy processing ability for the new innovative systems. This chapter describes the fundamentals of porous MXene composites (foams and aerogels) with the aim of inhibiting electromagnetic (EM) pollution. The first article that elucidated the EM shielding capabilities of MXene composites demonstrated superior performances to those of the existing materials, owing to their metallic conductivity, large surface area, surface modifiability, and ease of processability. Various approaches have been used to attenuate EM waves, including the application of laminate, porous, and hybrid structures. Among these, the porous morphology can contribute to the design of the absorption-dominant EM shield. Herein, the variations in electrical conductivity, mechanical stability, and electromagnetic interference shielding effectiveness (EMI SE) were explored with the use of a porous morphology. Subsequently, the theoretical and experimental results were analyzed to obtain new insights into the shielding mechanisms. This chapter will provide an overview of porous MXene composite materials and future challenges and strategies to design hybrid materials for next-generation EMI shielding applications.

/content/books/9789815036428.chap10
dcterms_subject,pub_keyword
-contentType:Journal
10
5
Chapter
content/books/9789815036428
Book
false
en
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test