Skip to content
2000

Frontier Molecular Orbital Approach to the Cycloaddition Reactions

image of Frontier Molecular Orbital Approach to the Cycloaddition Reactions
Preview this chapter:

The frontier molecular orbital (FMO) theory has provided a powerful model for the qualitative understanding of reactivity and regioselectivity of the Cycloaddition reactions, based on the electronic properties of isolated reactants. The 1,3-dipolar cycloaddition reactions are explicable by the frontier molecular orbital approach, which is based on the assumption that bonds are formed by a flow of electrons from the highest occupied molecular orbital (HOMO) of one reactant to the lowest unoccupied molecular orbital (LUMO) of another. But the tricky part here was to decide which molecule supplied the HOMO and which supplied the LUMO. Furthermore, the computational chemistry techniques like HOMOdipole-LUMOdipolarophile/HOMOdipolarophile- LUMOdipole energy gaps, electronic chemical potentials (µ), electrophilicity indices (ω) and the charge capacities (ΔNmax) are useful in indicating whether the reactions are under normal or inverse electron demand conditions. Also, the relative kinetics of cycloaddition reactions can be rationalized by utilizing HOMOdipole-LUMOdipolarophile energy gaps and ΔNmax, from which it was found that increasing electron-withdrawing power of the dipolarophile substituents, the energy gap decreases and, thus, reactions with the same dipole became faster in Normal electron demand cycloadditions, while the reverse occurs in case of inverse electron demand conditions.

/content/books/9789811457791.chapter-6
dcterms_subject,pub_keyword
-contentType:Journal -contentType:Figure -contentType:Table -contentType:SupplementaryData
10
5
Chapter
content/books/9789811457791
Book
false
en
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test