Skip to content
2000

Convolutional Neural Network for Denoising Left Ventricle Magnetic Resonance Images

image of Convolutional Neural Network for Denoising Left Ventricle Magnetic Resonance Images

nbsp;Medical image processing is critical in disease detection and prediction. For example, they locate lesions and measure an organ's morphological structures. Currently, cardiac magnetic resonance imaging (CMRI) plays an essential role in cardiac motion tracking and analyzing regional and global heart functions with high accuracy and reproducibility. Cardiac MRI datasets are images taken during the heart's cardiac cycles. These datasets require expert labeling to accurately recognize features and train neural networks to predict cardiac disease. Any erroneous prediction caused by image impairment will impact patients' diagnostic decisions. As a result, image preprocessing is used, including enhancement tools such as filtering and denoising. This paper introduces a denoising algorithm that uses a convolution neural network (CNN) to delineate left ventricle (LV) contours (endocardium and epicardium borders) from MRI images. With only a small amount of training data from the EMIDEC database, this network performs well for MRI image denoising.

/content/books/9781681089553.chap1
dcterms_subject,pub_keyword
-contentType:Journal
10
5
Chapter
content/books/9781681089553
Book
false
en
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test