Skip to content
2000

Sound and Sound Sources

image of Sound and Sound Sources
Preview this chapter:

There is no difference in principle between the infrasonic and ultrasonic sounds which are inaudible to humans (or other animals) and the sounds that we can hear. In all cases, sound is a wave of pressure and particle oscillations propagating through an elastic medium, such as air. This chapter is about the physical laws that govern how animals produce sound signals and how physical principles determine the signals' frequency content and sound level, the nature of the sound field (sound pressure versus particle vibrations) as well as directional properties of the emitted signal. Many of these properties are dictated by simple physical relationships between the size of the sound emitter and the wavelength of emitted sound. The wavelengths of the signals need to be sufficiently short in relation to the size of the emitter to allow for the efficient production of propagating sound pressure waves. To produce directional sounds, even higher frequencies and shorter wavelengths are needed. In this context ‘short' is measured relative to the size of the sound source. Some sound sources, such as dipoles and pistons, are inherently directional, whereas others, such as monopoles, are inherently omnidirectional.

/content/books/9781681083179.chapter-1
dcterms_subject,pub_keyword
-contentType:Journal -contentType:Figure -contentType:Table -contentType:SupplementaryData
10
5
Chapter
content/books/9781681083179
Book
false
en
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test