Design Optimization of Variable Stiffness Composite Structures for Aerospace Applications
- Authors: Mohammad Rouhi1, Hossein Ghayoor2, Suong V. Hoa3, Mehdi Hojjati4
-
View Affiliations Hide Affiliations1 Concordia Center for Composites, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada 2 Concordia Center for Composites, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada 3 Concordia Center for Composites, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada 4 Concordia Center for Composites, Department of Mechanical and Industrial Engineering, Concordia University, Montreal, Quebec, H3G 1M8, Canada
- Source: Aerospace Structures and Materials , pp 515-541
- Publication Date: October 2016
- Language: English
Design Optimization of Variable Stiffness Composite Structures for Aerospace Applications, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/9781681083056/chapter-14-1.gif
Automated fiber placement (AFP) machines can steer the fibers/tows to make the so-called variable stiffness (VS) composites. They allow the designers to fully exploit the directional properties of composite materials to tailor the internal load distribution and improve the structural performance. VS composites have been shown to be very promising in the design optimization of composite panels and shells for buckling and post-buckling performance and consequently for further reducing the mass of future aerospace structures. In this chapter, the buckling performance improvement of VS composite cylinders with circular and elliptical cross sections is investigated. A metamodeling based design optimization (MBDO) method is presented to maximize the buckling performance of VS composite cylinders compared with their constant stiffness (CS) designs. The structural improvement mechanism via stiffness tailoring in a VS composite cylinder is also presented and discussed. The effects of different parameters including the cylinders aspect ratio and size as well as the percentage of the steered plies in the laminate are also investigated.
-
From This Site
/content/books/9781681083056.chapter-14dcterms_subject,pub_keyword-contentType:Journal -contentType:Figure -contentType:Table -contentType:SupplementaryData105