Skip to content
2000

Linear Regression, Model Averaging, and Bayesian Techniques for Predicting Chemical Activities from Structure

image of Linear Regression, Model Averaging, and Bayesian Techniques for Predicting Chemical Activities from Structure
Preview this chapter:

A primary goal of quantitative structure-activity relationships (QSARs) and quantitative structure-property relationships (QSPRs) is to predict chemical activities from chemical structure. Chemical structure can be quantified in many ways resulting in hundreds, if not thousands, of measurements for every chemical. Chemical activities measures how the chemical interacts with other chemicals, e.g. toxicity, biodegradability, boiling point, and vapor pressure. Typically there are more chemical structure measurements than chemicals being measured, the so-called large-p, small-n problem. Here we review some of the statistical procedures that have been commonly used to explore these problems in the past and provide several examples of their use. Finally, we peek into the future to discuss two areas that we believe will see dramatically increased attention in the near future: model averaging and Bayesian techniques.

/content/books/9781681080529.chapter-6
dcterms_subject,pub_keyword
-contentType:Journal -contentType:Figure -contentType:Table -contentType:SupplementaryData
10
5
Chapter
content/books/9781681080529
Book
false
en
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test